用户名: 密码: 验证码:
黄土高原塬区多年生栽培草地表层土壤碳库组成及其特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土高原地区是我国乃至世界上典型的生态脆弱区,特有的自然地理条件及以谷物生产为主的单一农业系统引致的水土流失和肥力下降受到了广泛关注,多年生牧草形成根系能力强,有利于土壤有机碳的储存和固定。为评价多年生牧草在甘肃庆阳黄土高原的固碳效果,本研究于2007年6月至2008年6月,对多年生草地0-10 cm土壤全碳(TC)、有机碳(SOC)含量,>0.25mm颗粒有机碳(POC)、可溶性有机碳含量(DOC)、易氧化有机碳(EOC)含量、碳库管理指数(CPMI)、有机碳矿化速率常数(SOCM)等进行了比较研究,以冬小麦田为参照:
     1.苜蓿、红豆草、三叶草、百脉根、美国香豌豆、无芒雀麦等牧草单播种植5年后,0-5cm土壤TC含量为19.28 g/kg-25.42 g/kg, SOC含量为9.84 g/kg-16.10 g/kg, DOC含量为33.82 g/kg-40.58 g/kg, EOC含量为9.65 g/kg-13.4 g/kg,比对照冬麦田分别提高21%-52%,34%-120%,17%-40%,61%-123%;至5-10 cm层,各项指标依次为16.42g/kg~18.55 g/kg,7.84 g/kg~10.04 g/kg,28.59 g/kg~38.06 g/kg,88~8.58 g/kg,分别比对照冬麦田提高2%~11%,18%-51%,11%-45%,4-51%。
     2.苜蓿、红豆草与无芒雀麦等组成的不同混播组合中,0-5 cm土壤TC、SOC、POC、EOC含量分别为17.91 g/kg-21.97 g/kg,9.93 g/kg-11.33 g/kg,5.00 g/kg-4.06 g/kg, 8.71 g/kg~10.15 g/kg,较对照冬麦田提高7%-31%,35%-54%,45%-115%,59%~69%;至5-10 cm土壤,上述指标较对照冬麦田提高1%~38%,36%-78%,169%-336%,33%-69%,以POC提高幅度为甚,POC、DOC和EOC碳的变化相对于SOC更为敏感。栽培草地TC含量在0-10cm内随深度的增加而减少,而冬麦田则随深度的增加而增加,耕作使TC的空间分布趋于均衡。
     3.三叶草草地0-10 cm土壤有机碳密度在7个种单播中最高,为1.41 kg/m2,以百脉根最低为1.05 kg/m2,对照冬麦田为0.95 kg/m2;混播牧草地以无芒雀麦+苜蓿+红豆草组合含量最高,为1.36 kg/m2,比冬麦田提高23%,多年生栽培牧草有利于土壤有机碳密度的增加。
     4.单播草地0-5 cm CPMI比冬麦田高出81%-179%,以三叶草为最高,百脉根为最低,至5-10 cm层,7个单播草地比冬麦田高出51%-114%;混播牧草地土壤碳库管理指数比冬麦田高出42%-105%,多年生栽培牧草显著提高土壤碳库管理指数,利于土壤固碳。
     5.0-10 cm土壤全氮含量与土壤全碳、总有机碳含量、易氧化有机碳含量之间呈显著正相关性。
     6.经170天室内培养,0-10cm土壤有机碳矿化累积释放量均以冬麦田最低,0-5 cm层有机碳矿化累积释放量比5-10 cm高13%-30%,具明显空间分布,而冬麦田则趋于稳定大致为0.77 mg C/g-0.87 mg C/g;单播牧草有机碳潜在矿化量C0为1.670 mgC/g-2.989 mg C/g,混播牧草地则为1.354~1.510 mg C/g,冬麦田C0为0.86 mg C/g。多年生牧草地表层土壤有机碳潜在矿化量均高于冬麦田,有机碳矿化速率常数均低于冬麦田,说明冬麦田土壤潜在可矿化量碳含量虽少,但矿化速率常数较大,对土壤碳的固定能力低于多年生牧草地。
The Loess Plateau features unique geographical conditions. The soil erosion and fertility degradation of the region has been recognized worldwide, which have predominately arisen as a result of a long history of traditional grain crop farming systems. Perennial pasture has the proven ability to form extensive root systems, with the benefits of soil organic matter storage and sequestration. In order to evaluate the carbon sequestration effect of perennial pasture in the region, an experiment was conducted from June 2007 to June 2008. Soil total carbon (TC), soil organic carbon (SOC),>0.25 mm particular organic carbon (POC), dissolved organic carbon (DOC), easily oxidized organic carbon (EOC), CPMI and soil organic carbon mineralization speed constant in pure and mixed perennial pastures were measured and compared to that of winter wheat:
     1. Soil TC in the 0-5 cm layer from pure cultivated lucerne, sainfoin, clover, crowtoe, sweet pea and brome grass pastures after five years was found to be 19.28 g/kg~25.42 g/kg, SOC was 9.84 g/kg~16.10 g/kg, DOC was 33.82 g/kg~40.58 g/kg, EOC was 9.65 g/kg-13.4 g/kg, values which were 21%~52%,34%~120%,17%~40%,61%~123% higher than winter wheat respectively; In the 5-10 cm soil layer, each index were 16.42 g/kg~18.55 g/kg,7.84 g/kg~10.04 g/kg,28.59 g/kg~38.06 g/kg,5.88 g/kg~8.58 g/kg respectively, which were 2%~11%,18%~51%,11%~45%,4%~51% higher than winter wheat respectively.
     2. In the mixed-pasture containing lucerne, sainfoin and brome grass, soil TC, SOC, POC and EOC in the 0-5 cm layer were 17.91 g/kg~21.97 g/kg,9.93 g/kg~11.33 g/kg,5.00 g/kg-4.06 g/kg,8.71 g/kg-10.15 g/kg respectively,7%~31%,35%~54%,45%~115 %,59%~69%higher than winter wheat; In 5-10 cm layer, the indexes above are 1%~38 %,36%-78%,169%-336%,33~69%higher than that of winter wheat, with POC having the largest range. POC, DOC and EOC are more sensitive than SOC. The TC content under cultivated pasture in 0-10 cm layer decreased with depths, but under winter wheat increased with depths. Cultivated pasture led the space distribution poise.
     3. In the 0-10 cm soil layer, soil organic carbon density content under clover pasture was 1.41 kg/m2 which was the highest in the seven single-spices sowing forages where as for crowtoe it was found to be 1.05 kg/m2 which was the lowest. Winter wheat was 0.95 kg/m; Brome grass+Lucerne+sainfoin was 1.36 kg/m2, which was 23% higher than winter wheat and is the highest of mixed-spices sowing forages, leading to the conclusion that perennial pasture is superior for soil organic carbon storage.
     4. In the 0-5 cm soil layer, the CPMI in single-spices sowing of forages was 81%~179% higher than winter wheat soil. The highest was clover, the lowest was crowtoe. In the 5-10 cm layer, the CPMI in single-spices sowing of forages was 51%~114% higher than soil under winter wheat; the CPMI in the soil of single-species sowing of forages was 42 %~105% higher than winter wheat. Perennial pasture significantly increased the CPMI, which is preferable for soil organic carbon storage.
     5. In the 0-10 cm soil layer total nitrogen was significant correlated with soil total carbon, soil organic carbon and easily oxidized organic carbon.
     6. After 170 days of incubation in the lab, for the 0-10 cm soil layer, the organic carbon mineralization release capacity under winter wheat was the lowest; the 0-5 cm layer was 13%~30% higher than 5-10 cm layer. There was significant space difference, but winter wheat was 0.77 mg C/g~0.87 mg C/g; Soil organic carbon potential mineralization capacity was 1.670~2.989 mg C/g under single-spices sowing of forages, whereas under mixed-spices sowing of forages it was 1.354 mg C/g~1.510 mg C/g; in winter wheat, soil organic carbon mineralization potential was 0.86 mg C/g. The soil organic carbon mineralization capacity is higher in perennial pasture than winter wheat, soil organic carbon mineralization speed constant is lower than winter wheat, leading to the conclusion that the capacity of soil storage of carbon is lower in winter wheat than perennial pasture.
引文
蔡立群,齐鹏,张仁陟,李爱宗.不同保护性耕作措施对麦-豆轮作土壤有机碳库的影响.中国生态农业学报.2009.17(1):1-6.
    常文哲,常瑞丽,慕鹏,李月娥.黄土高塬沟壑区生态修复途径探讨.人民黄河.2009.31(2):68.102.
    常宗强,冯起,司建华,李建林,苏永红.祁连山不同植被类型土壤碳贮量和碳通量.生态学杂志.2008,27(5):681-688.
    陈庆强,沈承德,易惟熙,等.土壤碳循环研究进展.地球科学进展,1998,13(6):555-562.
    戴慧,王希华,阎恩荣.浙江天童土地利用方式对土壤有机碳矿化的影响.生态学杂志,2007.26(7):1021-1026.
    戴全厚,刘国彬,薛萐,等.不同植被恢复模式对黄土丘陵区土壤碳库及其管理指数的影响.水土保持研究.2008,15(3):61-64.
    董自红,蒋平安,程路明等.围栏对新疆山区草地土壤碳氮的影响.新疆农业大学学报,2006,29(1):31-35.
    樊江文,钟华平,梁飚等.草地生态系统碳储量及其影响因素.中国草地.2003,25(6):51-58.
    范春梅,廖超英,李培玉,孙长忠,许喜明.放牧强度对林草地土壤物理性状的影响—以黄土高原丘陵沟壑区为例.中国农业科学.2006,39(7):1501-1506.
    方华军,杨学明,张晓平,等.东北黑土区坡耕地表层土壤颗粒有机碳和团聚体结合碳的空间分布.生态学报,2006,26(9):2847-2854.
    高雪松,何鹏,邓良基,张世熔,黄春.丘陵区坡面土壤有机碳及颗粒有机碳分布特征.生态环境学报.2009,18(1):337-342.
    龚伟,胡庭兴,王景燕,等.川南天然常绿阔叶林人工更新后枯落物对土壤的影响.林业科学,2007,43(7):112-119.
    郭瑞斌.西北地区生态环境变化与经济可持续发展研究.2008.甘肃农业大学.硕士学位论文.
    郭雨华.中国西北地区退耕还林工程效益监测与评价.2009.北京林业大学.博士学位论文.
    韩建国,韩永伟,孙铁军,王小山.农牧交错带退耕还草对土壤有机质和氮的影响.草业学报.2004,13(4):21-28.
    侯鹏程.土地利用变化对土壤质量的影响-以江苏省吴江市为例.2006.南京农业大学.硕士论文.
    黄文清.西部地区“一退两还”后补偿机制研究.2008.华中农业大学.博士论文.
    黄雪夏.紫色水稻土有机碳固定剂碳汇效应.2005.西南农业大学.博士学位论文.
    黄耀,刘世梁,沈其荣,等.环境因子对农业土壤有机碳分解的影响.应用生态学报.2002,13(6):709-714.
    贾国梅,张宝林,刘成,成霄峰,陈芳清.三峡库区不同植被覆盖对土壤碳的影响.生态环境,2008,17(5):2037-2040.
    姜培坤.不同林分下土坡活性有机碳库研究.林业科学.2005,41(1):10-13.
    金峰,杨浩,赵其国.土壤有机碳储量及影响因素研究进展.土壤,2000,1:11-17.
    李海鹰.实验室培养下中国亚热带和温带土壤有机碳分解特征的研究.南京:南京农业大学,2006.23-40.
    李金花,潘浩文,王刚.内蒙古典型草原退化原因的初探.草业科学,2004,21(5):49-51.
    李琳,李素娟,张海林,等.保护性耕作下土壤碳库管理指数的研究.水土保持学报,2006,20(3):106-109.
    李凌浩.土地利用变化对草原生态系统土壤碳贮量的影响.植物生态学报,1998,(2):300-302.
    李凌浩,陈佐忠.草地生态系统碳循环及其对全球变化的响应Ⅰ碳循环的分室模型、碳输入与贮量.植物学通报,1998,(2):14-22.
    李淑芬,俞元春,何晟.土壤溶解性有机碳的研究进展.土壤与环境,2002,11(4):422-429.
    李裕元,邵明安,郑纪勇,李秋芳.黄土高原北部草地的恢复与重建对土壤有机碳的影响.生态学报.2007,27(6):2279-2287.
    李月梅,曹广民,徐仁海.土地利用方式对高寒草甸土壤有机碳及其组分的影响.安徽农业科学,2008,36(14):5951-5953,6010.
    李月梅,曹广民,王跃思.开垦对海北高寒草甸土壤有机碳的影响.生态学杂志,2006,25(8):911-915.
    李正才.土地利用变化对土壤有机碳的影响.2006.中国林业科学研究院.博士论文.
    李忠,孙波,林心雄.我国东部土壤有机碳的密度及转化的控制因素.地理科学,2001,21(4):301-306.
    李忠佩,张桃林,陈碧云.可溶性有机碳的含量动态及其与土壤有机碳矿化的关系.土壤学报,2004,41(4):544-552.
    林慧龙,王军,徐震等.草地农业生态系统中的碳循环研究动态.草业科学,2005,.22(4):59-62.
    林心雄.中国土壤有机质状况及其管理,沈善敏主编,中国土壤肥力.北京:中国农 业出版社,1998,111-153.
    刘连友,王建华,李小雁,等.耕作土壤可蚀性颗粒的风洞模拟测定.科学通报,1998,43(15):1663-1666.
    刘文娜,吴文良,王秀斌,王明新,毛文峰.不同土壤类型和农业用地方式对土壤微生物量碳的影响.植物营养与肥料学报.2006,12(3):406-411.
    柳敏,宇万太,姜子绍,等.土壤活性有机碳.生态学杂志,2006,25(11):1412-1417.
    马文红,韩梅,林鑫等.内蒙古温带草地植被的碳储量.干旱区资源与环境,2006,20(4):192-195.
    倪进治,徐建民,谢正苗.土壤水溶性有机碳的研究进展.生态环境,2003,12(1):71-75.
    潘根兴,曹建华,周运超.土壤碳及其在地球表层系统碳循环中的意义.第四纪研究.2000.20(4):325-334.
    潘根兴,李恋卿,张旭辉,代静玉,周运超,张平究.中国土壤有机碳库量与农业土壤碳固定动态的若干问题.地球科学进展.2003,18(4):609-618.
    潘根兴,赵其国.我国农田土壤碳库演变研究:全球变化和国家粮食安全.地球科学进展.2005,20(4):384-393.
    彭珂珊.论退耕还林还草工程.国土资源.2005,(2):28-31.
    齐雁冰,黄标,顾志权,赵永存,孙维侠,王志刚,杨玉峰.长江三角洲典型区农田土壤碳氮比值的演变趋势及其环境意义.矿物岩石地球化学通报.2008.27(1):50-56.
    邱莉萍,张兴昌,程积民.土地利用方式对土壤有机质及其碳库管理指数的影响.中国环境科学.2009,29(1):84-89.
    瞿王龙,裴世芳,周志刚等.放牧与围栏对阿拉善荒漠草地土壤有机碳和植被特征的影响.甘肃林业科技,2004,29(6):4-6.
    曲德双.农田土壤碳储量的研究进展.农业系统科学与综合研究.2008,24(3):382-384.
    任书杰,曹明奎,陶波,李可让.陆地生态系统氮状态对碳循环的限制作用研究进展.地理科学进展,2006,25(4):58-67.
    沈宏,曹志洪,王志明.不同农田生态系统土壤碳库管理指数的研究.自然资源学报,1999,14(3):206-211.
    沈宏,曹志宏,胡正义.土壤活性有机碳的表征及其生态效应.生态学杂志,1999,18(3):32-38.
    沈宏,曹志洪,徐志红.施肥对土壤不同碳形态及碳库管理指数的影响.土壤学报,2000,37(2):166-173.
    石锋.管理措施对草地土壤有机碳含量的影响.2009.中国农业科学院.硕士论文.
    史衍玺,唐克丽.人为加速侵蚀下土壤质量的生物学特性变化.土壤侵蚀与水土保持学报,1998,4(1):28-33.
    苏静.宁南地区植被恢复对土壤团聚体稳定性及碳库的影响.2005.西北农林科技大学.硕士论文.
    苏永中.黑河中游边缘绿洲农田退耕还草的土壤碳、氮固存效应.环境科学.2006,27(7):1312-1318.
    苏永中,赵哈林,文海燕.退化沙质草地开垦和封育对土壤理化性状的影响.水土保持学报,2002a,16(4):5-8.
    苏永中,赵哈林,张铜会等.不同强度放牧后自然恢复的沙质草地土壤性状特性.中国沙漠,2002b,22(4):333-338.
    孙庚,吴宁,罗鹏.不同管理措施对川西北草地土壤氮和碳特征的影响.植物生态学报,2005,29(2):304-310.
    谭勇,王长如,梁宗锁,等.黄土高原半干旱区林草植被建设措施.草业学报,2006,15(4):1-3.
    汪杏芬,白克智,匡廷云.大气CO2浓度倍增对植物暗呼吸的影响.植物学报,1997,9(9):849-854.
    王白群,苏以荣,吴金水.开垦草地对土壤有机碳库构成与来源的效应.核农学报2007,21(6):618-622.
    王国强,毛艳玲.土地利用变化对亚热带土壤有机碳的影响.中国高新技术企业,2008,(19):123.126.
    王晶,张仁陟,李爱宗.耕作方式对土壤活性有机碳和碳库管理指数的影响.干旱地区农业研究.2008,26(6):8-12.
    王清奎,汪思龙.土壤团聚体形成与稳定机制及影响因素.应用生态学报,1999,10(4):425-429.
    王清奎,汪思龙,于小军,张剑,刘燕新.常绿阔叶林与杉木林的土壤碳矿化潜力及其对土壤活性有机碳的影响.生态学杂志,2007,26(12):1918-1923.
    王绍强,周成虎,李克让,等.中国土壤有机碳库及空间分布特征分析.地理学报,2000,55(5):533-544.
    王岩,沈其荣,史瑞和等.土壤微生物量及其生态效应.南京农业大学学报,1996,19(4):45-51.
    王艳芬,陈佐忠,Tieszen L T.人类活动对锡林郭勒地区主要草原土壤有机碳分布的影响.植物生态学报,1998,22(6):545-551.
    吴庆标,王效科,郭然.土壤有机碳稳定性及其影响因素.土壤通报.2005,36(5):743-747.
    吴建国,艾丽,苌伟.祁连山中部四种典型生态系统土壤有机碳矿化及其影响
    因素.生态学杂志,2007,26(11):1703-1711.
    吴建国,张小全,徐德应.六盘山林区几种土地利用方式对土壤有机碳矿化影响的比较.植物生态学报,2004a,28(4):530-538.
    吴建国,张小全,徐德应.六盘山林区几种土地利用方式对土壤活性有机碳的比较.植物生态学报,2004b,28(5):657-664.
    赵哈林,大黑俊哉,周瑞莲等.人类活动与气候变化对科尔沁沙质草地植被的影响.地球科学进展,2008,23(4):408-414.
    谢锦升,杨玉盛,解明曙,杨少红,杨智杰.土壤轻组有机质研究进展.福建林学院学报.2006,26(3):281-288.
    徐瑞和.《联合国气候变化框架公约》与《京都议定书》及其谈判进程.国际合作与交流.2005.3:65-71.
    徐香兰,张科利,徐宪立,彭文英.黄土高原地区土壤有机碳估算及其分布规律分析.水土保持学报.2003,17(3):13-15.
    杨继松,刘景双,孙丽娜.温度、水分对湿地土壤有机碳矿化的影响.生态学杂志,2008,27(1):38-42.
    杨晶.陇东黄土高原塬区玉米—小麦—大豆轮作系统各组分对保护性耕作的响应.2009.兰州大学.硕士论文.
    杨少红.土地利用变化对土壤有机碳和土壤呼吸的影响.2006.福建农林大学.硕士论文.
    杨世琦.西北地区退耕还林还草与农业结构调整战略研究.2003.西北农林科技大学.博士论文.
    袁可能.土壤腐殖质氧化稳定性的研究.浙江农业科学.1964.7:345
    袁可能.土壤有机矿质复合体中腐殖质氧化稳定性的初步研究.土壤学报.1963.11(3):286-292.
    查轩,黄少燕.植被破坏对黄土高原加速侵蚀及土壤退化过程的影响.山地学报,2001,19(2):109-114.
    赵美清,白原生,刘宝莲.混播草地禾草及土壤主要养分变化研究.中国草地,1997,5:45-48.
    赵生才.我国农田土壤碳库演变机制及发展趋势—第236次香山科学会议侧记.地球科学进展,2005,20(5).
    张迪,韩晓增,李海波,宋春,侯雪莹.不同植被覆盖与施肥管理对黑土活性有机碳及碳库管理指数的影响.生态与农村环境学报.2008,24(4):1-5.
    张金波,宋长春.土地利用方式对土壤碳库影响的敏感性评价指标.生态环境,2003,12(4):500-504.
    张雷明,上官周平,史俊通.黄土区坡面水肥条件与植被建设.干旱区资源与环境, 2001,15(4):68-74.
    张甲坤,曹军,陶澍.土壤水溶性有机物的紫外光谱特征及地域分布.土壤学报.2003,40(1):118-122.
    张林波,曹洪法,高吉喜,等.大气CO2浓度升高对土壤微生物的影响.生态学杂志,1998,17(4):33-38.
    张磊.土地耕作后微生物量碳和水溶性有机碳的动态特征.水土保持学报.2008,22(2):146-150.
    张履勤,章明奎.土地利用方式对红壤和黄壤颗粒有机碳和碳黑积累的影响.土壤通报.2006,37(4):662-665.
    张国盛,黄高宝,张仁陟.种植苜蓿对黄绵土表土理化性质的影响.草业学报,2003,12(5):88-93.
    郑杰炳.土地利用方式对土壤有机碳固定影响研究.西南大学硕士学位论文.中国.重庆.2007
    周程爱,张于光,肖烨,张小全,李迪强.土地利用变化对川西米亚罗林土壤活性碳库的影响.生态学报.2009,29(8):4542-4547.
    周焱,徐宪根,阮宏华,汪家社,方燕鸿,吴焰玉,徐自坤.武夷山不同海拔高度土壤有机碳矿化速率的比较.生态学杂志,2008,27(11):1901-1907.
    钟华平,樊江文,于贵瑞,韩彬.草地生态系统碳蓄积的研究进展.草业科学.2005,22(1):4-11.
    Amundson R. The carbon budget in soils. Annual Review of Earth & Planetary Sciences,2001, (29):535-5621.
    Anderson D W, Coleman D C. The dynamics of organic matter in grassland soils. Journal of Soil and Water Conservation,1985, (40):211-216.
    Andersson S, Nilsson S I. Influence of pH and temperature on microbial activity substrate availability of soil2solution bacteria and leaching of dissolved organic carbon in a morhumus. Soil Biology and Biochemistry,2001,33: 1181-1191.
    Atsunobu K, Shinya F, Takashi K. Factors controlling mineralization of soil organic matter in the Eurasian steppe. Soil Biology & Biochemistry,2008(40): 947-955.
    Batjes N H. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science,1996, (47):151-163.
    Bazzaz F A. The response of natural eeosystems to the rising global CO2 levels. Annu. Rev. Eeol. Syst.1990,21:167-196.
    Bernoux M, Arrouays D, Cerri C, Bourennane H. Modeling vertical distribution of
    carbon in oxisols of the western Brazilian amazon. Soil Science.1998.163: 941-951.
    Biederbeck V O, Janzen H H, Campbell C A, Zentner R R. Labile soil organic matter as influenced by cropping practices in an arid environment. Soil Biology Biochemotry. 1994,26:1647-1656.
    Blair N, Crocker G J. Crop rotation effects on soil carbon and physical fertility of two Australian soils. Australian Journal of Soil Research.2000.38:71-84.
    Blair B J, Lefroy R D. Soil carbon fractions based on their degree of oxidation, and the developments of a carbon management index for agricultural systems. Australian Journal of Agricultural Research,1995,46 (7):1456-1466.
    Boone R D. Light fraction soil organic matter:origin and contribution to net nitrogen mineralization. Soil Biology and Biochemistry,1994,26:1459-1468.
    Bouwman A F. Globle distribution of the major soils and land cover types. New York: John Wiley and Sons,1990,33-59.
    Buringh P, In:Woodwell G M ed. The Role of Terrestrial Vegetation in the Global Carbon Cycle:Measurement by Remote Sensing. Chichester/U. K:John wiley & Sons, 1984,91-110.
    Cambardella, C A, Elliot E T. Particulate soil organie-matter changes across a grassland cultivation sequence. Soil Science Society of America Journal.1992.56:777-783.
    Cao M K, Woodward F I. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature,1998,393:249-252.
    Chambers J Q, Sehimel J P, NObre A D. Respiration from coarse wood litter in central amazon forests. Biogeochemistry,2001,52:115-131.
    Chan K Y. Consequences of changes in particulate organic carbon in verticals under pasture land cropping. Soil Sci. Soe. Amer. J.1997.61:1376-1382.
    Chan K Y, Bowman A, Oates A. Oxidisible organic carbon fractions and soil quality changes in an Oxic Paleustalf under different pasture leys. Soil science.2001.166(1): 61-67.
    Chen H, Tian H Q, Liu M L, et al. Effect of land-cover change on terrestrial carbon dynamics in the southern United States. Journal of Environmental Quality, 2006,35:1533-1547.
    Colemen D C, Rcid C P P, Cole C. Biological strategies of nutrient cycling in soil systems. Advances in Ecological Research,1983,13:1-55.
    Collins H P, Paul E A, Paustian K, Elliott E T. Characterization of soil organic carbon relative to its stability and turnover. In:Paul, E A, Paustian K, Elliott E T, Coleeds C.
    V. Soil organic matter in temperate agroecosystems, long-term experiments in North America. Boca Raton, Florida:CRC Press, Inc.1997.51-72.
    Dalal R C, Chan K Y. Soil organic matter in rainfed cropping systems of the Australian cereal belt. Australian Journal of Soil Research,2001,39:435-464.
    Dalal R C, Mayer R J. Long-term trends in fertility of soils under continuous cultivation and cereal cropping in Southern Queensland I V. Loss of organic carbon from different density fractions. Australian Journal of Soil Research,1986,24:301-309.
    Dapaah H K, Vyn T J. Nitrogen fertilization and cover crop effects on soil structural stability and corn performance. Communication in Soil Science and Plant Analysis,1998,29:2557-2569.
    Evrendileka F, Celikb I., Kilic S.Changes in soil organic carbon and other physical soil properties along adjacent Mediterranean forest, grassland, and cropland ecosystems in Turkey. Journal of Arid Environments,2004,5:743-752.
    Feng Ke, Wang XiaoLi, Wang XiaoZhi. Relationship between 2:1 mineral structure and the fixation and release of cations. Pedosphere,2003,13 (1):81-86.
    Franzluebbers A J, Hons F M. Changes in soil mierobial biomass and mineraliazble C and N wheat managemen tsystems soil. Biol Bioehem.1987.26:1469-1475.
    Freibauer Annette, Mark D A Rounsevell, Pete Smith, et al. Carbon sequestration in the agricultural soils of Europe. Geoderm a,2004,122:1223.
    Gardner W K, Fawcett R G, Steed G R. Crop production on duplex soil in southeastern Australia. Australian Journal of Experimental Agriculture,1992, 32 (7):915-927.
    Graetz D. In:Meyer W B and Turner B L ed. Changes in land-use and land cover:A global perspective. London:Cambridge Univ Press,1994:125-145.
    Greenland D J, Ford G W. Separation of partially humified organic materials by ultrasonic dispersion. International Society of Soil Science. Eighth International Congress of Soil Science. Bucharest, Romania, Transaction,1964,3:137-148.
    Guggenbergeri G, Zech W. Soil organic matter composition under Primary forest, and secondary forest succession. Forest Ecology and Management.1999.124,93-104.
    IPCC. Radiative Forcing of Climate Change. The 1994 Report of the Scientific Assessment Working Group of IPCC, Summary for Policymakers. WMO/UNEP, Geneva, Switzerland,1994.
    IPCC. Climate Change 1995:The Science of Climate Change-Contribution of Working Group I to the Second Assessment of the Intergovernmental Panel on Climate Change. UK:Cambridge University Press,1996.
    Hassink J. Density fractions of soil macro organic matter and microbial biomass as predictors of C and N mineralization. Soil Biology &Biochemistry,1995,27: 1099-1108.
    Haynes R J. Labile organic matter as indicator of organic matter quality in arable and pastoral soils in New Zealand. Soil biology and biochemistry,2001,32(2):211-219.
    Heenan D P, Chan K Y. The long-term effects of rotation, tillage and stubble management on soil mineral nitrogen supply to wheat. Australian Journal of Soil Research,1992,30:977-988.
    Hossain S A, Strong W M, Waring S A. Comparison of legume based cropping systems at Warra, Queensland II. Mineral nitrogen accumulation and availability to the subsequent wheat crop. Australian Journal of Soil Research,1996,34:289-297.
    Houghton R A. Changes in the storage of terrestrial carbon since 1850. Lai R. Soils and Global Change. Boca Raton. Florida:CRC Press, Inc1,1995.45-65.
    Kalbit K, Solinger S, Park J H, et al. Controls onthe dynamics ofdissolved organic matterin soils:A review. Soil Sci.,2000,165:277-304.
    Karlen D L, Rosek M J, Gardner J C, et al. Conservation reserve program effects on soil quality indicators. Journal of Soil and Water Conservation,1999,54(1):439-444.
    Keeling C D, Bacastow R B. Impact of industrial gasses on climate:In Energy and climate. National Academy of Sciences, Washington D C, USA,1997.
    Killham K. Nitrification in coniferous forest soils. Plant and Soil,1990,128:31-44.
    Klein D A. Ecoogy,1994,1977,58:184-190.
    Koch G W, Harold A. Response of terrestrial ecosystems to elevated CO2:A synthesis and summary. Carbon Dioxide and Terestrial Ecosystem, Academic Press, Ine.1996, 415-429.
    Lal R. Soil C sequestration in China through agricultural intensification and restoration of degraded and desertified soils. Land Degradation & Development,2002,13: 469-478.
    Lal R. World soils and greenhouse effect. IGBP Global Change Newsletter,1999, (37):4-51.
    Lal R. Griffin M, Apt J, et al. Managing soil carbon. Science,2004, (304):393.
    Lal R., Kimble J, Follett R. Land use and soil C pool in terrestrial ecosystem. In: Management of carbon sequestration in soil. Boca Raton:CRC Press,1998,1-10.
    Lefroy R D B, Blair G J, Strong W M. Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope bundance. Plant Soil, 1993,155/156(5):399-402.
    Logninow W, Wisniewski W, Strong W M, et al. Fractionation of organic carbon based on susceptibility to oxidation. Polish. J. of Soil Sci,1987,20:47-52.
    Janzen H H. Soil organic matter characteristics after long-term cropping to various spring wheat rotations. Canadian Journal of Soil Science,1987,67:845-856.
    Janzen H H, Campbell C A, Brandt S A, et al1 Light-fraction organic matter in soils from long-term crop rotations. Soil Science Society of America Journal,1992,56: 1799-1806.
    Mccarthy J F. Carbon fluxes in soil:long-terms sequestration in deeper soil horizons. Journal of Geographical Science.2005,15:149-154.
    McConnell S G, Quinn M L. Soil productivity of four land use systems in southeastern Montana. Soil Science Society of America Journal,1988, (52):500-506.
    Meijboom F W, Hassink J, Van Noordwijk M. Density frcationation of soil macro organic matter using silica suspensions. Soil Biology and Biochemistry,1995,27: 1109-1111.
    Missfeldt Fanny, Haites Erik. The potential contribution of sinks to meeting Kyoto Protocol commitments. Environmental Science & Policy,2001,42:269-292.
    Motavalli, P P, Palm C A, Parton W J, Elliott E T, Frey S D. Comparison of laboratory and modeling simulation methods for estimating carbon pools in tropical forest soils. Soil Biology & Biochemistry,1994.26:935-944.
    Ni J. Carbon storage in grasslands of China. Journal of Arid Environments,2002,50: 205-218.
    Ojima D S, Dirks B O M, Gleovn E P, et al. Assessment of C budget for grasslands and drylands of the world. Water, Air, and Soil Pollution.1993, (70):95-109.
    Parton W J, Schimel D S, Cole C V, Ojima D S. Analysis of factors controlling soil organic matter levels in Great Plains grassland. Soil Science Society of America Journal.1987.51:1173-1179.
    Parton W J, Scurlock J M O, Ojima D S. Observation and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochem Cycles,1993,7:785-809.
    Parton W J, Sehimel D S, Cole C V, Ojima D S. Analysis of factors controlling soil organic matter levels in Great Plains grassland. Soil Science of America Journal. 1987,51:1173-1179.
    Patra D D, Chnad S. Seasonl changes in mieorbial biomass in soils cropped with palmarosa and Japenese mit in subtropical India. Hiol Fertial soils.1995.19: 193-196.
    Paul K I, Polglase P J, Nyakuengama J G, et al. Change in soil carbon following afforestation. Forest Ecology and Management,2002,168:241-257.
    Polyakov V O, Lal R. Soil organic matter and CO2 emission as affected by water erosion on field runoff plots. Geoderma,2008,143 (1/2):216-222.
    Post W M, Emanuel W R, Zinke P J, et al. Soil carbon pools and world life zones. Nature, 1982,298(8):156-159.
    Post W M, Kwon K C. Soil carbon sequestration and land use change:processes and potential. Global Change Biology,2000,6:317-327.
    Post W M, Mann L K. Changes in soil organic carbon and nitrogen as a result of cultivation. In:Soils and the Greenhouse Effect. New York:John Wiley & Sons, 1990,401-406.
    Prentice I C. Biome modelling and the carbon cycle. Heiman M, ed. NATO ASI Series I In:The global carbon cycle. Springer-Verlag:Berlin,1993. (15):219-238.
    Price DT, Peng C H, APPs M J, et al. Simulating effects of climate Change on boreal ecosystem carbon Pools in central Canada. Journal of Biogeography.1999,26: 1237-1248.
    Puget P, Chenu C, Balesdent J. Dynamics of soil organic matter associated with particle2size fractions of water-stable aggregates. European Journal of soil science. 2000,51:595-605.
    Ross, D. J, K. R. Tate, N. A. Scott & C. W. Feltham. Landuse change:effects on soil carbon, nitrogen and hosphorus pools and fluxes in three adjacent ecosystems. Soil Biology & Biochemistry.1999.31:803-813.
    Schlesinger W H. An overview of the global carbon cycle. Lai R et al. Soils and Global Change. CRC Press, Inc. Boca Raton, Florida,1995.9-25.
    Sharma P, Rai S C, Sharma R, et al. Efect ofland use changes on soil microbial C, N and P in a Himalayan watershed. Pedobiologia,2004,48:83-92.
    Smith P, Milne R, Powlson D S, et al. Revised estimates of the carbon mitigation potential of UK agricultural land. Soil Use and Management,2000a,16:293-295.
    Smith P, Powlson D S, Smith J U, et al. Meeting Europe's climate change commitments: quantitative estimates of the potential for carbon mitigation by agriculture. Global Change Biology,2000b,6:525-539.
    Sollins P, Spycher G, Glassman C A. Net nitrogen mineralization from light and heavy-fraction forest soil organic matter. Soil Biology and Biochemistry,1984,16: 31-371.
    Song G, Li L, Pan G, et al. Topsoil organic carbon storage of China and its loss by cultivation. Biogeochemistry,2005,74(11):47-62.
    Stanford G, Smith S J. Nitrogen mineralization potentials of soils. Soil Science Society of America Proceedings.1972,36,465-472.
    Strickland T C, Sollins P. Improved method for separating light and heavy fraction organic material from soil. Soil Science Society of America Journal,1987,51: 1390-1393.
    Trumbore S E. Comparison of carbon dynamics in tropical and temperate soils using radiocarbon measurements. Global Biogeochemical Cycles,1993,7(2):275-290.
    UNFCCC. Kyoto Production the United Nations Framework Convention on Climate Change. In:Report of the Conference of its Third Session, Held at Kyoto from 1 December,1997-Addendum Part Two:Action Taken by the conference of the Parties at its Third Session,7-27.UNFCCC document FCCC/CP/1997//Add.1,1998.
    Upadhyaya S D, Singh V P. Pedobiologia,1981.1:100-109.
    Wander M M, Traina S J, Stinner B R, et al. The effects of organic and conventional management on biologically active soil organic matter fractions. American Journal of Soil Science Society,1994,58:1130-1139.
    Watson R T, I. R. Noble B. Bolin, N. H. Ravindranath, D. J.Verardo & D. J. Dokken. Land use, land use change, and forestry:a special report of the IPCC. Cambridge:Cambridge University Press.2000,189-217.
    Weintraub M N, Schimel J P. Interactions between carbon and nitrogen mineralization and soil organic matter chemistry in Arctic Tundra soils. Ecosystems,2003.6 (2): 129-143.
    Whitbread A M. The effects of cropping system and management on soil organic matter and nutrient dynamics, soil structure and the Productivity of wheat. University of New England.1996.
    Whitbread A M, Lefroy R D B, Blair G J. A survey of the impact of cropping on soil physical and chemical properties in north-western New South Wales. Australian J. of Soil Res,1998,36:669-681.
    Xiao Huilin. Climate chance in relation to soil organic matter. Soil and Environment Science,1999,8(4):300-304.
    Xie X L, Sun B, Zhou H Z, et al. Organic carbon density and storage in soils of China and spatial analysis. Acta Pedologica Sinica,2004,41(1):35-43.
    Yakovchenko VP, Sikora L J, Millner PD. Carbon and nitrogen mineralization of added particulate and macro-organic matter. Soil Biology and Biochemistry,1998.30 (14): 2139-2146.
    Zech W, Senesi N, Guggenbergeri G, Kaiser K, Lehmann J, Miano T M, Miltner A, Schroth G. Factor controlling humification and mineralization of soil organic matter in the tropics. Geoderma,1997,79:117-161.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700