用户名: 密码: 验证码:
水稻根系酚酸类化感物质分泌动态及其对土壤生理生化特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酚酸类物质是水稻化感作用形成的重要物质之一。本研究前期开发出一种有效的总酚酸测定试剂,并对该试剂的测定条件与方法进行优化。本研究使用该检测方法动态分析水稻根系分泌物中酚酸类物质的总量。使用该检测方法对标准样品酚酸进行检测的结果表明,在所测定的浓度范围内线形关系良好,相关系数符合性好,最低检出限在0.14μmol/L~0.61μmol/L之间,测定限在0.37μmol/L~1.00μmol/L之间,最低检出限和测定限已接近于液相色谱的相关指标数据。回收率分析结果表明,单一酚酸及混合酚酸的回收率在95.71%~122.52%范围内。可见,该检测方法具有操作简单、检测限低、检测速度快、测定条件限制少、显色范围宽且稳定性好等优点(专利申请号:2009103077540,作者排名第四)。
     此外,本研究运用此法动态检测不同化感潜力水稻根系酚酸类物质的释放总量,结果表明,两水稻品种的酚酸分泌总量随着时间的延长而增加,其中清种化感水稻PI312777酚酸分泌量比非化感水稻Lemont高。在移栽12天后化感水稻PI312777酚酸释放总量呈现出快速上升的趋势,而非化感水稻Lemont则是缓慢增长。进一步对两种水稻单株、每天的酚酸释放量进行曲线模拟结果表明,化感水稻PI312777酚酸的最小释放量为5.489μg/株·天,非化感水稻Lemont的最小释放量为1.791μg/株·天。以种植100天计算,化感水稻PI312777酚酸的最大释放量为19.451μg/株·天,而非化感水稻则为10.12μg/株·天。进一步以莴苣为受体分析不同酚酸类物质的化感潜力结果表明,不同酚酸类物质的化感潜力存在一定的差异,其表现为混合酚酸>对羟基苯甲酸>阿魏酸>水杨酸>香草酸。以混合酚酸为例,当混合酚酸的浓度在在0.3mg时对莴苣的抑制率可达50%以上。
     在此基础上,本研究进一步探讨外源添加单一酚酸类物质对土壤生理生化特性的影响及其在土壤中的降解速率。结果表明,酚酸类物质能够显著影响土壤微生物量碳(MBC)、土壤微生物呼吸强度(MBR),提高土壤微生物群落数量、土壤酶活性和土壤有效性氮、磷、钾含量。当不同酚酸处理后的第三天,土壤微生物量碳、微生物呼吸强度分别比对照提高了1.23~2.10倍和1.38~1.86倍。在微生物群落上,细菌数量则提高了1.43~3.54倍,真菌数量提高了1.16~1.50倍,放线菌数量提高了1.86~3.24倍。土壤酶方面,脲酶活性提高了1.58~2.66倍,蛋白酶活性提高了1.69~2.46倍,蔗糖酶活性提高了2.08~3.20倍。土壤营养物质循环中,有效氮增加了99%~168%,有效磷增加了135%~249%,有效钾增加了10%~15%。而不同酚酸对土壤各指标影响的大小趋势为对羟基苯甲酸>阿魏酸>香草酸>水杨酸>肉桂酸。此外,酚酸类物质在土壤中降解速率分析结果表明,酚酸处理后的第三天,土壤中酚酸含量下降了45%-75% ,第9天下降了55%-98%。从第3天到第9天,土壤剩余5种酚酸含量均明显下降,对羟基苯甲酸从132.3到2.65μg/g,阿魏酸从193.2到3.1μg/g,水杨酸从210.2到1.6μg/g,香草酸从271.3到32.3μg/g,肉桂酸从242.6到45.1μg/g。相关性分析结果表明,细菌数量、有效磷、钾含量与土壤中5种酚酸类物质的含量呈显著的正相关。放线菌数量、脲酶活性、有效氮含量与土壤中对羟基苯甲酸含量呈显著的正相关。真菌、放线菌数量、蛋白酶活性与土壤中阿魏酸含量呈显著的正相关。脲酶活性、蛋白酶活性、蔗糖酶活性、有效氮含量与水杨酸含量呈显著的正相关。放线菌数量、脲酶活性、蛋白酶活性、有效氮含量与香草酸含量和蛋白酶、蔗糖酶活性与肉桂酸含量均呈显著正相关。可见,酚酸类物质能有效刺激土壤微生物的增长,改变土壤酶活性,适当提高土壤有效营养物质的循环。
     综上,本研究开发了一种有效测定水稻根系分泌总酚酸含量的方法。本研究动态分析了水稻根系酚酸总量,并提出化感水稻种植后起化感作用的理论起始时间。其次本研究分析外源酚酸类物质对土壤生理生化特性的影响证实了,化感水稻分泌的酚酸类物质抑制了邻近杂草生长的同时,有利于改善自身生长的土壤环境,不仅起到抑草作用,还起到提高自身生存环境内所需营养物质循环的作用。总之,本研究为田间化感水稻栽培及深入揭示水稻化感作用形成的机理提供了一定的理论基础。
Phenolic acid compound was one of the mainly allelochemical in rice. In this paper, a new method was developed to determine the total content of phenolic acid in aqueous by colorimetric analysis. Strictly linear correlation between absorption and the total content of phenolic acid was found in all the test concentration range by using single and mixture of standard chemicals. The lowest limit of determination was between 0.14μmol/L and 0.61μmol/L, and the limit of determination was between 0.37μmol/L and 1.00μmol. The lowest limit of determination and limit of determination were similar to that of high performance liquid chromatography (HPLC) method. Furthermore, the recovery rate of single and mixture phenolic acid was reached 95.71% to 122.52%. The method described above for total phenolic acid determination has many benefits, such as low detection limits, fast detection speed, low detection condition limit, wide range of chromogenic and good stability, et al (Patent applications number: 2009103077540).
     In this way, the dynamics of total phenolic acid in rice root exudates was detected . The results showed that the total phenolic acids in root exduates of two rice(allelopathic rice PI312777 and non allelopathic rice Lemont) enhanced across the culturing periods, showing the total phenolic acids in root exduates of allelopathic rice PI312777 was more higher than non allelopathic rice Lemont. After the rice was cultured for 12 days in hydroponics, the total phenolic acid in root extract of allelopathic rice PI312777 increased rapidly, while that in non allelopathic rice Lemont increased slowly. The fixed curve of total phenolic acids released by different allelopathic rice per plant per day indicated that the lowest total phenolic acid released of allelopathic rice PI312777 was 5.489μg/plant·day, while non allelopathic rice was 1.791μg/plant·day. The peak of released phenolic acids was 19.451μg/plant·day for allelopathic rice PI312777 and 10.12μg/plant·day for non allelopathic rice Lemont, when the rice was plant about 100 days in theory. Additionally, the lettuce was employed as the reciever plant to evaluate the allelopathic potential of phenolic acids. The results indicated that the allelopathic potential of mixture and single phenolic acid was showed in the order from higher to lower, mixture phenolic acid > p-hydroxybenzonic acid > ferulic acid > salicylic acid > vanillic acid. As example, the inhibition rate of mixture phenolic acids to receiver plant was about 50% at the concentration of 0.3mg·kg-1.
     The analysis of soil physiological and biochemical characteristics showed that 5 kind of phenolic acids, such as p-hydroxybenzonic acid, ferulic acid, salicylic acid, vanillic acid, and cinnamic acid, were employed to evaluate the effect of exogenetic phenolic acids on the microbial community, enzyme activities and nutrients available in paddy soil. The results showed that the application of phenolic acids could significantly enhance the soil microbial biomass carbon(MBC), soil microbial respiration rate(MBR), enrich soil microbial populations, impulse the soil enzyme activities, as well as be beneficial to available nutrients (nitrogen, phosphorous and potassium). After the soil was treated with phenolic acids, the highest promoting effect was found in the third day. showing that the soil MBC was ca 1.23 to 2.10 times, and the MBR was ca 1.38 to 1.86 times as higher as the control, and they were declined respectively later on The population of bacteria was ca 1.43 to 3.54 times as higher as the control, and it was ca 1.16 to 1.50 times for fungi, ca 1.86 to 3.24 times for actinomycete, respectively. The activity of urease was ca 1.58 to 2.66 times as higher as the control, and it was 1.69 to 2.46 times for protease, 2.08 to 3.20 times for sucrase. The contents of available nitrogen and phosphorus in the soils were significantly increased by 99% to 168% and 135% to 249%, and the contents of available potassium were enhanced by a range of 10%-15%. The promoting effect of exogenous phenolic acids showed in the order from higher to lower as p-hydroxybenzonic acid > ferulic acid > vanillic acid > salicylic acid > cinnamic acid. In addition, the residuals of the phenolic acids in the soil showed that the concentration of phenolic acid was decreased by 45%-75% detected on days 3, and further decreased by 55%-98% on days 9. From the third to the ninth day, the residuals of the five phenolic acids in soil were significantly decreased from 132.3 to 2.65μg/g, 193.2 to 3.1μg/g, 210.2 to 1.6μg/g, 271.3 to 32.3μg/g, and 242.6 to 45.1μg/g for p-hydroxybenzonic acid, ferulic acid, salicylic acid, vanillic acid and cinnamic acid, respectively, significant difference was also found among the five allelochemicals at the same incubating stages. Correlation analysis indicated that all the bacteria, available phosphorus and potassium were significantly positively correlated with the five exogenous phenolic acids, while the actinomycete, urease, and nitrogen had significantly positive correlation with p-hydroxybenzonic acid, the fungi, actinomycete, and protease had significant correlation with ferulic acid, the urease, protease, sucrase and available nitrogen were significantly positively correlated with salicylic acid, the actinomycete, urease, protease, and nitrogen had significantly positive correlation with vanillic acid. The protease and sucrase had significantly positive correlation with cinnamic acid. It suggested that phenolic acids are useful carbon resource to establish soil microbial community, enhance the activities of soil enzyme, and accelerate the cycling of nutrient in soil.
     In summary, we developed a effectively method to detect the total phenolic acid content in rice root exduates. Further, we used this method to detect the total content of phenolic acids released by different allelopathic potential rice. In addition, we analysed the effect of phenolic acid on soil physiological and biochemical characteristics , confirmed that allelopathic rice released phenolic acid not only inhibited the growth of company weed, but also benifitial to the nutrient cycling in the soil.
引文
1.林文雄.水稻化感作用[M].厦门:厦门大学出版社, 2005. 1-50.
    2. Rice E L. Allelopathy (2nd eds) [M]. Academic Press: Orlando, FL, USA, 1984.
    3. Rizvi S J V and Rizvi V. A discipline called allelopathy [A]. In: S J V Rizvi, V Rizvi, eds. Allelopathy: Basic and Applied Aspects [C]. Chapman and Hall, London, 1992. 1-8.
    4.李绍文.生态生物化学[M].北京:北京大学出版社. 2001.
    5. Weston L A. History and current trends in the use of allelopathy for weed management [A]. In: J D I Harper, M An, H Wu, et al. eds. Proceedings of the 4th World Congress on Allelopathy [C]. Charles Sturt University, Austrilia: The Regional Institute Limited, NSW, 2005. 15-21.
    6. Mallik A. Allelopathy: Advances, Challenges and Opportunities [A]. In: J D I Harper, M An, H Wu, et al. eds. Proceedings of 4th World Congress on Allelopathy, International Allelopathy Society [C]. Charles Sturt University, Austrilia: The Regional Institute Limited, NSW, 2005. 3-11.
    7. Putnam A R, and Duke W O. Biological suppression of weeds: evidence for allelopathy in accessions of cucumber [J]. Science, 1974, 185: 370-372.
    8. Dilday R H, Yan W G, Moldenhauer K A K, et al. Allelopathic activity in rice for controlling major aquatic weeds [A]. In: Olofsdotter M eds. Allelopathy in rice. Proceedings of Workshop on Allelopathy in Rice [C]. Manila (Phhilippines): IRRI, 1998. 7-26.
    9. Hassan S M, Aidy I R, Bastawisi A O, et al. Weed management using allelopathic rice varieties in Egypt [A]. In: Olofsdotter M eds. Allelopathy in rice. Proceedings of Workshop on Allelopathy in Rice [C]. Manila (Phhilippines): IRRI, 1998. 27-37.
    10. Narwal S S. Allelopathy in weed management. In: S S Narwal eds. Allelopathy Update, volume 2: Basic and Applied Aspects [M], 1999. 203-254.
    11. Semidey N. Allelopathic crops for weed management in cropping system [A]. In: S S Narwal eds. Allelopathy Update, volume 2: Basic and Applied Aspects [C], 1999. 271-284.
    12. Duke S O, Dayan F E, Rimando A M, et al. Chemicals from nature for weed management[J]. Weed Science, 2002, 50: 138-151.
    13. Scheffler B E, Duke S O, Dayan F E, et al. Crop allelopathy: enhancement through biotechnology[J]. Recent Advances in Phytochemistry, 2001, 35: 257-274.
    14. Macias F A. Allelopathy in the search for natural herbicide model [A]. In: Inderjit, K M M Dakshini, F A Einhellig, eds. Allelopathy: Organisms, processes, and application [C]. ACS Symp Ser, 1995. 310-329.
    15. Duke S O, Dayan F E, and Romagni J. Natural products as sources for new mechanisms of herbicidalaction[J]. Crop Protection, 2000, 19: 572-575.
    16. Olofsdotter M, Jensen L B, Courtois B. Improving crop competitive ability using allelopathy-an example from rice[J]. Plant Breeding, 2002, 121: 1-9.
    17. Wu H, Pratley J, and Lemerle D. Crop Cultivars with Allelopathy Capability[J]. Weed Research, 1999, 39: 171-180.
    18. Mattice J, Skulman B, and Dilday R H. Chemica]aspects of rice alIelopathy for weed control [A]. In: Norman R J, and Beyrouty C A, eds. Rice Research Studiesr[C]. Arkansast, USA:Arkansas Agricultural Experiment Station, 1999. l02-107.
    19. Lin W X, and Kim K U. Allelopathic potential in rice and its possible modes of action on barnyardgrass (Echinochloa crus-galli)[A]. In: Narwal S S, Itanl C J, Hoagl R E, eds. Allelopathy in Ecologieal Agriculture and Forestry[C]. Jodhpur, India: Scientific Publishers, l998. 18-21.
    20. Chou C H, and Lin H J. Autointoxication mechanism of Oryza saliva L. Phytotoxic effects of decomposing rice residues in soil[J]. J Chem Ecol, l976, 2(3): 353-367.
    21. Kuwatsuka S, and Shindo H. Behavior of phenolic substances in the decaying process of plants I. Identification and quantitative determination of phenolic acids in rice straw and its decayed product by gas chromatography[J]. Soil Sci PIant Nutr, 1973,19(3): 219-227.
    22.王利文,潘志华.农作系统内异株克生现象研究的进展[J].作物杂志, 1999, (1): 3-6.
    23. Bouillant M L, Jacoud C, and Zanella I. Identification of 5-(12 heptadecenv1)-resorcinl in rice root exudats[J]. Phytochemistry, 1994, 36(3): 769-771.
    24. Mattice J, Lavy T, Skulman B, and Dilday R H. Searching for allelochemicals in rice that control ducksalad[G]. In: Olofsdotter M eds. Allelopathy in rice [C]. Manila:IRRI, 1998. 81-98.
    25.何华勤.水稻化感作用的潜力及其机制研究[D].福州:福建农林大学, 2000.
    26. Einhetlig F A. Interaction involving altetopathy in cropping system[J]. Agwon. J., 1996, 8: 886-893.
    27. Einhellig F A. Interactions among allelochamicats and other stress factors of the plant environment[J]. ACS. Symp. Ser, 1987, 330: 343-357.
    28. Tsutomu Ohno. Oxidation of Phenolic acid derivatives by soil and its relevance to allelopathic activity[J]. J. Environ. Qual, 2001, 30: 1631-1635.
    29. Rimando A M, Olofsdotter M, and Duke S O. Searching for rice allelochemicals. An example of bioassays-guided isolation [J]. Agr. J, 2001, 93: 16-20.
    30. Chung S T, and Baoehen I. Qualitative and quantitative determination of the allelochemical sphere of germinating mung bean [G]. In: Putman AR, Chung ST, eds. The science of allelopathy [C]. 1986.l13-132.
    31.林文雄,何华勤,郭玉春,梁义元,陈芳育.水稻化感作用及其生理生化特性的研究[J].应用生态学报, 2001, 12(6): 87l-875.
    32.熊君,林文雄,周军建,吴敏鸿,陈祥旭,何华勤,郭玉春,梁义元.不同供氮条件下水稻的化感抑草作用与资源竞争分析[J].应用生态学报, 2005, 16(5): 885-889.
    33.熊君.低氮胁迫下水稻化感潜力变化的机理分析[D].福州:福建农林大学, 2008.
    34.王海斌,何海斌邱龙,等.低磷诱导水稻化感抑草能力增强的分子生理特性[J].应用与环境生物学学报, 2009, 15(3): 289-294.
    35.王海斌,何海斌,熊君,等.低钾胁迫对水稻化感潜力变化的影响[J].生态学报, 2008, 28(12): 6219-6227.
    36. H.B. WANG, H.B. He, C.Y. YE, et al. The Molecular physiological mechanism of increased weed suppressive ability of allelopathic rice mediated by low phosphorus stress[J]. Allelopathy Journal, 2010, 25(1): 239-248.
    37. Bob B.Buchanan, Wilhelm Gruissem, and Russell L. Jones. Biochemistry & Molecular Biology of Plants[M]. American Society of Plant Physiologists, 2002. 988-1023.
    38.王丽珠,吴棱,姚元根,酒石酸亚铁分光光度法测定茶多酚[J].光谱实验室, 1997, 14(3): 52 -54.
    39.王文杰.高锰酸钾滴定法测定茶多酚有关用剂的特性研究[J].福建茶叶, 2002, (1): 15-17.
    40.郎惠云,廖晓玲,董发听.间接原子吸收法测定茶叶中茶多酚的含量[J].西北大学学报, 2003, 33(6): 683-685.
    41.杨雁芳,艾铁民.紫外分光光度法测定松果菊提取物中多酚[J].中草药, 2005, 36(11): 1649-1650.
    42.张淑香,高子勤,刘海玲.连作障碍与根际微生态研究Ⅲ·土壤酚酸物质及其生物学效应[J].应用生态学学报, 2000, 11(5): 741-744.
    43.国家环保局.水和废水监测分析方法[M].北京:中国环境科学出版社, 1989. 407 -412.
    44.李改枝,赵慧,张强.酚类化合物在水环境中的污染、吸附及降解[J].内蒙古石油化工, 2001, 27: 39-40.
    45. Shela G, Marina Z, and Ratiporn H. Comparative content of total polyphenols and dietary fiber in tropical fruits and persimmon [J]. Journal of Nutritional Biochemistry, 1999, 10(6): 367-371.
    46. Silvina B L, and Balz F. Relevance of apple polyphenols as antioxidants in human plasma:Contrasting in vitro and in vivo effects [J]. Free Radical Biology & Medicine, 2004, 36(2): 201-211.
    47.曹炜,索志荣. Folin-Ciocalteu比色法测定蜂蜜中总酚酸的含量[J].食品与发酵工业, 2003, 29(12): 80~82.
    48.王晓瑜,高晓黎,买尔旦·马合木提.新疆石榴皮多酚类物质提取实验研究[J].中国民族民间医药杂志, 2008, 17(1): 8-10.
    49.曹艳萍,代宏哲,曹炜,韩志萍. Folin-Cionaileu比色法测定红枣总酚[J].安徽农业科学,2008, 36(4): 1299-1302.
    50.罗芳. Folin-酚试剂法蛋白质定量测定[J].黔南民族师范学院学报, 2005, 3: 46-47,72.
    51.陈荣山,陆锦池,刘长辉,郭徐魁,王海斌,何海斌. 4-氨基安替比林比色法的局限性[J].农产品加工·学刊, 2009, 1: 19-21.
    52.何海斌,王海斌,陈荣山.一种水体总酚测定试剂及其制备方法和使用[P].中国专利: 2009103077540, 2009-09-25.
    53.孔垂华,徐效华,胡飞,陈雄辉,凌冰,谭中文.以特征次生物质为标记评价水稻品种及单植株的化感潜力[J].科学通报, 2002, 47(3): 203-206.
    54. Olofsdotter M, Malou R, Artemio M, and Wang D. Why phenolic acids are unlikely primary allelchemicals in rice[J]. Journal of Chemical Ecology, 2002, 28(1): 229-242.
    55.林文雄,何海斌,熊君,等.水稻化感作用及其分子生态学研究进展[J].生态学报, 2006, 26(8):2687-2694.
    56.何光训.土壤酚类物质引起植物中毒的植物生理原因[J].浙江林学院学报, 1992, 9(3):339-344.
    57.胡开辉,罗庆国,汪世华,等.化感水稻根际微生物类群及酶活性变化[J].应用生态学报, 2006, 17(6): 1060-1064.
    58.陈慧,郝慧荣,熊君,等.地黄连作对根际微生物区系及土壤酶活性的影响[J].应用生态学报, 2007, 18(12): 2755-2759.
    59.薛成玉,吴凤芝,王洪成,等.浅论酚酸与土壤微生物之间的相互作用[J].龙江农业科学, 2005, (3):45-47.
    60. Qu X H, and Wang J G. Effect of amendments with different phenolic acids on soil microbial biomass, activity, and community diversity [J]. Applied Soil Ecology, 2008, 39: 172-179.
    61. Wang M L, Gu Y, and Kong C H. Effect of rice phenolic acids on microorganisms and enzyme activities of non-flooded and flooded paddy soils [J]. Allelopathy Journal, 2008, 22: 311-320.
    62. Q.M. Lin, Y.G. Wu, H.L. Liu, Modification of fumigation extraction methods for measuring soil microbial biomass carbon[J]. Chinese Journal of Ecology, 1999, 18: 63-66.
    63. StotzkyG, Broder M W, Doyle J D, and Jones R A. Selected methods for the detection and assessment of ecological effects resulting from the release of genetically engineered microorganisms to the terrestrial environment[J], Advances in Applied Microbiology, 1993, 38: 1-98.
    64. Research Center of Microbe, Institute of Soil Science, Chinese Academic Science. Research methods of soil microbe [M]. Beijing China Science Press, 1985. 260-275.
    65. S.D. Bao. Analysis of Soil and Agrichemistry [M]. Beijing: China Agriculture Press, 2000. 8-57.
    66.何海斌.稗草胁迫下水稻化感潜力变化的机理分析[D].福州:福建农林大学, 2009.
    67.熊明彪,何建平,宋光煜.根分泌物对根限微生物生态分布的影响[J].土壤通报, 2002, 33(2): 145-148.
    68.王敬国,张福锁,庞欣.不同供氮水平对根际微生物量氮及微生物活度的影响[J].植物营养与肥料学报, 2000, 6(4): 476-480.
    69.罗明,张国建.不同用量的氮磷化肥对棉田土壤微生物区系及活性的影响[J].土壤通报, 2000, 31(2): 66-69.
    70.蔡艳,薛泉宏,陈占全,等.青海省保护地辣椒根际土壤和根表放线菌研究[J].应用与环境生物学报, 2003, 9(1): 92-96.
    71.邹莉,袁晓颖,李玲,等.连作对大豆根部土壤微生物的影响研究[J].微生物学杂志, 2005, 25(2): 27-30.
    72.邱莉萍,刘军,王益权,等.土壤酶活性与土壤肥力的关系研究[J].植物营养与肥料学报, 2004, 10(3): 277-280.
    73.吴凤芝,赵风艳,谷思玉.保护地黄瓜连作对土壤生物化学性质的影响[J].农业系统科学与综合研究, 2002, 18(1): 20-22.
    74.熊浩仲,王开运,杨万勤.川西亚高山冷杉林和白桦林土壤酶活性季节动态[J].应用与环境生物学报, 2004, 10(4): 416-420.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700