用户名: 密码: 验证码:
贵州茂兰岩溶山区土壤活性有机碳动态及对土壤质量的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
了解不同土地利用方式下土壤活性有机碳的大小和动态变化,对调节土壤养分流、维持土壤内在的生产力以及深入研究土壤碳循环的机理高度相关。基于它活跃的性质和重要作用,研究土壤活性有机碳组分对土地利用变化的响应规律成为当前土壤碳和养分循环方面的一个热点。岩溶地区同样属于生态环境脆弱区,却没有引起足够的重视,研究程度比较薄弱,由于石灰土的富钙、偏碱性,而且含有高浓度CO2的土壤环境是岩溶发育最为活跃的部位,土壤碳的动态变化与循环特征受到高钙环境胁迫的影响,碳转移有其自身的规律,因此,通过分析土壤碳库中对土地利用方式变化最为敏感、变化最为活跃的土壤活性有机碳主要组分(溶解有机碳DOC、微生物量碳MBC)的动态变化与环境因子、土壤呼吸、土壤营养元素之间的变化关系,可以为进一步研究和评价岩溶地区土地利用变化对土壤有机碳和土壤质量的影响提供基础数据。
     研究结果表明:
     (1)土壤DOC的动态变化受到植被、土壤温、湿度,土壤理化性质等多种因素的制约,这些因子之间相互作用,对DOC的产生有着较为复杂的影响,回归分析结果表明,在耕地中,土壤有机碳、土壤温度和土壤pH对土壤DOC的贡献率极大,而对于林地和草地的回归分析结果则显示土壤温度对土壤DOC的影响最为显著,不同土地利用方式下土壤活性有机碳对环境因子的响应也各不相同,这表明土壤溶解有机碳受众多因素的制约而呈现出一种动态平衡关系,进一步的机理仍需要进行深入研究。
     (2)不同的土地利用方式下上覆植被类型不同,其凋落物数量、质量及分解行为不同,有机质的输入量及质量也不相同,从而形成不同的土壤溶解有机碳含量差异,土壤有机碳的大小也存在较大差别。从全年平均值来看,林地土壤溶解有机碳分别比草地和耕地高25%、48%;从3月到8月,三者均随气温的上升呈增加的趋势,林地和耕地在8月均达到最大值,而草地则在10月达到最大值;林地和草地土壤微生物量碳分别高于耕地81%和45%,林地和草地在10月达到最大值。不同的土地利用方式导致土壤活性有机碳的差异较大,这说明岩溶生态系统中土地利用方式对土壤碳库的大小有较大影响。
     (3)林地的溶蚀能力在全年的各阶段均高于草地和黄豆地,这与林地有较好的保水能力和较低的pH值有关。土下50 cm处的溶蚀量也高于20 cm处,不同土地利用方式在春季的土下溶蚀量明显高于夏、秋、冬两季,这与自然保护区内全年降雨量几乎全部集中在4、5、6三月,而在全年的其它月份,降雨量明显减少而蒸发量增大有关。
     (4)从DOC占土壤总有机碳的比例来看,其大小顺序为:草地>洼地农田>坡耕地>林地。土壤溶液中DOC浓度和组成存在明显的空间变异性。4种不同土地利用方式下DOC占SOC的比例在土壤剖面中大体上呈先下降后上升的趋势,这与DOC随下渗水的迁移有关。方差分析结果表明,不同利用方式下土壤溶解有机碳含量产生明显的剖面分布差异。土层差异和土地利用方式对土壤溶解有机碳的影响均达到显著水平,林地各土层溶解有机碳含量较其它几种利用方式高,但从溶解有机碳占总有机碳的比例来看,草地在各个层位上均比其它土地利用方式为高,其中,林地的比例则最小,这表明土地利用方式不仅对土壤溶解有机碳含量的剖面分布产生影响,而且对溶解有机碳的组成和结构也有较大影响。
     (5)在土下20 cm和50 cm处,草地全氮含量均显著高于林地和黄豆地,而林地与黄豆地的全氮含量则相差不大。草地与林地和黄豆地的含氮量差异显著,而林地与黄豆地之间差异不显著。在土下20 cm处,全氮含量高的草地其碱解氮的含量却低于黄豆地和林地,除了在11月到次年的3月林地的碱解氮含量高于黄豆地外,全年的其余时间内黄豆的碱解氮含量均为最高。林地也在8月达到最高值,而草地最高值则出现在6月。土下50 cm处,不同土地利用方式下土壤碱解氮的含量变化趋势与土下20 cm处变化不大,峰值出现的月份相同。林地、耕地与草地土壤碱解氮的含量差异达显著水平,林地与耕地之间差异不显著。相关分析表明,黄豆地溶解有机碳含量与土壤碱解氮显著正相关,草地则呈正相关,而林地则呈现负相关关系。因此,土壤溶解有机碳对碱解氮的释放与活化作用较为复杂,可能与DOC的组成和结构有关。
     (6)在土下20 cm处,林地土壤全磷的含量较草地和黄豆地高。从全年来看,林地的全磷含量在全年的各月份均保持比较稳定,波动不大。黄豆地从3月到8月全磷含量一直呈上升趋势,8月到11月则下降,到了冬季则有缓慢上升,这可能与黄豆的生长季节有关。方差分析表明,林地与草地、黄豆地差异显著,草地与黄豆之间差异不显著。在土下50 cm处,三种土地利用方式的变化均不大。土下20 cm处土壤有效磷的含量明显高于土下50 cm处,但其月际动态变化均很相似,在春季呈上升趋势而在夏秋两季则略有下降,在冬季又有所上升。相关分析表明:土壤溶解有机碳与有效磷含量均为显著正相关,这说明溶解有机碳对有效磷有较好的活化作用。
     (7)黄豆地的全钾含量较高,而林地与草地全钾含量相差不大。这与每年黄豆地在每年春季施用草木灰有关。土下20 cm处土壤全钾含量明显高于土下50 cm处,林地与草地全钾含量相差不大。黄豆地在3月到8月其全钾含量呈上升趋势,从8月到次年三月则一直在降低。而林地则与此相反。土下20 cm处黄豆地、林地和草地的土壤速效钾的含量相差不大,且20 cm与50 cm处的变化趋势相同。相关分析表明:黄豆地、草地和林地中土壤钾的含量与土壤有效钾含量呈正相关。
     (8)全钙、全镁含量在各种土地利用方式下的全年的变化波动均不大,且在土下50 cm处的全钙含量均略高于土下20 cm处,这与当地全年的降雨量大,土壤中的Ca受到强烈的淋溶、淋洗,土壤中的Ca易向下层迁移有关。全镁含量在土下20 cm和50 cm处相差不大。林地和草地的全钙含量明显高于黄豆地,这说明随着土地利用方式由农地向草地和林地的转变,地表覆被不断增加,土壤酸性增强,促进了Ca的溶解。
     (9)石漠化地土壤与原始林地相比,土壤全N、P、K分别下降了78%、75%和47%,土壤速效N、P、K也分别下降了83%、78%和46%。值得注意的是,坡耕地土壤的化学性质与原始林地相比,各指标也有非常明显的下降,土壤质量接近于石漠化土壤,土质劣化现象比较严重,有机质、全N、P、K和速效N、P、K分别下降了348%、52%、53%、37%、60%、57%和30%。由此可见,在由林地、草地向坡耕地的转变过程中,随着植物种群的数量与种类不断下降,生物富集养分作用也在不断减弱,土壤质量不断退化。土壤主要营养元素的含量变化与土壤有机质的变化方向趋于一致,表明土壤有机质的大量淋失直接导致了土壤养分含量的降低。在我国西南岩溶地区,碳酸盐岩化学溶蚀强烈,残留物极少,成土十分缓慢,土层浅薄,母岩风化对土壤养分物质的补充极其微弱,因此,生物的富集作用对于土壤的形成、肥力的积累、补充和土壤结构的改善就有着重要的意义,一旦生物小循环被破坏,整个系统即处于无补充的完全输出状态,造成土壤肥力的丧失。
     (10)在石漠化的演替进程中,土壤有机质、氮、磷、钾、微生物量和腐殖质品质均有不同程度的下降,土壤质量的变化与石漠化的发展阶段具有方向一致性和阶段同步性的特点。运用聚类分析方法对岩溶石漠化进程中各演替阶段的土壤质量指标进行了较为全面的分析,并从中筛选出石漠化进程土壤质量退化的预警性指标。土壤微生物量碳、有机质、胡敏酸/富里酸的比值、速效氮、胡敏酸、全磷、微生物量氮、溶解有机碳、全钾、速效磷和速效钾在一定程度上可以较为准确地反映石漠化演替进程中土壤质量退化的特征,在建立石漠化的监测和预警体系时可以作为土壤质量退化方面的主要预警指标之一。
Soil active organic carbon (SAC) refers to the fractions of organic carbons that are easy to move and to be oxidized and mineralized, and they are quite available to plants and soil microorganisms. Soil dissolved organic carbon (DOC) and microbial biomass carbon (MBC) are considered to be the useful indicators of SAC. Soil active organic carbon is involved in all biological and biochemical processes in soil, the minor change of SAC can be detected before the content of total organic carbon (TOC) in soil has changed, although it accounts for small fraction of TOC. The types of vegetation influence the size and quality of soil organic matter. Over the last several centuries, extensive areas of native vegetation of karst areas in Maolan, Guizhou Province have been converted to croplands and grasslands. The impacts of these land use changes on soil organic carbon (SOC) are unclear. In order to assess the impacts of land use changes on active soil organic carbon, we compared the DOC, MBC concentrations in adjacent plots of native forest, cropland, grassland with the same elevation, exposure and soil type. The results showed that the mean forest DOC were higher than that of grassland and cropland 25%, 48% respectively. From May to August, they all increased with the increase of temperature. The forest and cropland DOC reached the highest value in August while the grassland reached the peak value in October. The forest MBC was higher than that of grassland and cropland 81%, 45% respectively. Land use changes play an important role in the changes of DOC and MBC in soils. The relationship between active soil organic carbon and environmental factors is complicated which still needs to be further studied.
     The soil dissolved organic carbon plays an important role in the karst ecosystem. DOC is involved in all biological and biochemical processes in soil, the minor change of DOC can be detected before the content of total organic carbon(TOC) in soil has changed, although it accounts for small fraction of TOC. The types of vegetation influence the size and quality of soil dissolved organic carbon. The profile distribution of soil DOC under different land use patterns as affected by human practice is necessary for assessing the alteration of soil quality. 4 types of land use (forestry field, the grassland field, the depression field, the hillside maize field), which are widely distributed in karst area of Guizhou Province, southwest of China, were selected to investigate profile distribution of DOC. In each pedon at 0-75cm depth, soil samples were collected from 4-5layers. The results showed that the profile distribution of DOC was different under different land use patterns, indicating the significant effect of land use patterns on DOC.DOC in the forest field were higher than that of in the grassland field, the depression field and the hillside maize field. The soils under grassland field contained a larger proportion of DOC to organic carbon. The results obtained could potentially provide theoretic support for understanding the effects of land use change on soil DOC and establishment of sustainable land use patterns.
     We also compared the contents of major nutrient elements of soil under different land use patterns and the relationship with DOC. The results showed that under three land use patterns, different nutrient elements such as N,P,K have different evolve trends during the year studied. The contents of nutrient elements beneath 20cm of the soil always higher than that of beneath 50cm of the soil.
     And according to the analysis of the variation of pH, the contents and the composition of organic matter major nutrients(N,P,K) and the microbial biomass of the soils ,we found that the soil quality degenerated quickly with the development of karst rocky desertification. The method of hierarchical cluster analysis were used to evaluate the early warning indicators of soil quality degeneration in the process of karst rocky desertification.
引文
[1] Watson R T,Noble I R, Bolin N H , et al. Land use , land use change and forestry, a special report of the IPCC [C]. Cambridge : Cambridge University Press , 2000, 189- 217.
    [2] BLAIR G J, LERROY R D, SINGHE B P, et al. Development and use of a carbon management index to monitor changes in soil C pool size and turnover rate [C]. In: Cadisch, G. & K. J. Giller eds. Drive by nature: plant litter quality and decomposition. Wallinn Ford: CAIi International. 1997, 273- 281.
    [3] POST W M, KWON K C. Soil carbon sequestration and land use change: processes and potential [J]. Global Change Biology, 2000, 6: 317-327.
    [4] 周广胜,王玉辉.全球生态学[M].北京:气象出版社,2003,275-277.
    [5] 林心雄.中国土壤有机质状况及其管理[C].见:沈善敏,编.中国土壤肥力[M].北京:中国农业出版社,1998,111-153.
    [6] 黄昌勇.土壤学[M].北京:中国农业出版社,2000.
    [7] 陈桂秋,黄道友,苏以荣等.红壤丘陵区土地不同利用方式对土壤有机质的影响[J].农业环境科学学报,2005,24(2):256-260.
    [8] 李忠佩,林心雄,车玉萍.中国东部主要农田土壤有机碳库的平衡与趋势分析[J].土壤学报,2002,39(3).
    [9] 李大通,罗雁.中国碳酸盐分布面积测量[J].中国岩溶,1983,2(2):147-150.
    [10] 龙健,邓启琼,江新荣等.西南喀斯特地区退耕还林(草)模式对土壤肥力质量演变的影响[J].应用生态学报,2005, 7,1279-1284.
    [11] 潘根兴,曹建华.表层带岩溶作用:以土壤为媒介的地球表层生态系统过程-以桂林峰丛洼地岩溶系统为例[J].中国岩溶,1999,18(4):287-296.
    [12] 王绍强,刘纪远.土壤碳蓄积量变化的影响因素研究现状[J].地球科学进展,2002,17(4):528-534.
    [13] 曹建华,潘根兴,袁道先. 柠檬酸对石灰岩溶蚀动力模拟及岩溶意义[J]. 中国岩溶,2001,20(1),1-4.
    [14] 徐香兰等.黄土高原地区土壤有机碳估算及其分布规律分析[J].水土保持学报,2003,17(3):13-15.
    [15] Batjes N H. Total carbon and nitrogen ins oils of the world[J].European Journal of Soil Science,1996,47:151-163.
    [16] Carter M R. Microbial biomass as an index for tillage-induced changes in soil biological properties[J].Soil Tillage Res.,1986,7:29-40.
    [17] Dalal R C, Henderson P A, Guasby J M. Organic matter and microbial biomass in a Vertisol after 20 years of zero-tillage[J]. Soil Biology and Biochemistry,1991,23:435-441.
    [18] Gregorich E G, Janzen H H. Storage of soil carbon in the light fraction and macroorganic matter. In: Carter M R, Stewart B A.Eds.,Advances in soil science. Structure and organic matters to ragein agriculture soils. CRCLewis Publishers,Boca Raton,1996.167-190.
    [19] Hart B S, August J A, West A W .Long-term consequences of top soil mining on select biological and physical characteristics of two New Zealand loessial soils under grazed pasture[J].Land Degrad Rehab.,1989,1:77-88.
    [20] Janzen H H. Soil organic matter characteristics after long-term cropping to various spring wheat rotations[J].Can.J.Soil Sci.,1987,67:845-856.
    [21] Jardine P M, Weber N L, McCarthy J F. Mechanisms of dissolved organic carbon adsorption on soil[J]. Soil Sci.Soc.Am.J.,1989,53:1378-1385.
    [22] Jobbgy E G, Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation[J].Ecological Applications,2000,10:423-436.
    [23] Kalbit Z K, Soliner S, Park J H, et al. Controls on the dynamics of dissolved organic matter in soil :a review[J]. Soil Science,2000,165(4):277-304.
    [24] Ladd J N, Amato M, Li-KaiZ, et al. Differential effects of rotation, plant residue and nitrogen fertilizer on microbial biomass and organic matter in an Australian alfisol[J].Soil Biology and Biochemistry,1994,26:821-831.
    [25] Liang B C, MacKenzie A F , Schnitzer M, et al .Management-induced change in labile soil organic matter under continuous corn in eastern Canadian soils[J].Bio.Fertil.Soils,1998,26:88-94.
    [26] 林滨,陶澎、曹军等.伊春河流域土壤与沉积物中水溶性有机物的含量与吸着系数[J].中国环境科学,1996,16(4):307-310
    [27] 陶澎、曹军.山地土壤表层水溶性有机物淋溶动力学模拟研究.中国环境科学:1996,16:410-414.
    [28] MarumotoT. Nitrogen and microbial biomass in arable soils. In:WadaH,TsuruSeds.Soil biomass[J].Hakuyusya,Tokyo,1984,115-140.
    [29] McDowell W H, Likens G E. Origin,composition,and flux of dissolved organic carbon in the Hubbard Brook Valley[J].Ecol.Monogr,1988,58:177-195.
    [30] Zsolnay W B, Cannon K R, Robertson J A, et al. Dynamics of soil microbial biomass and water-soluble organic C in Breton L after 50 years of cropping to two rotations[J].Can. J.Soil Sci.,1986,66:1-19.
    [31] Kaiser B G, Hunt H W, Woodmansee R G, et al. PHOENIX,A model of the dynamics of carbon and nitrogen ingrass land soils. In F.E. ClarkandT. Rosswall, eds. Terrestrial nitrogen cycles.Ecol.Bull.,1981,33:49-115.
    [32] McKnight D, Thruman E M,Wershaw R L. Biogeochemistry of aquatic humic substances in Thoreau's Bog,Concord,Massachusetts[J].Ecology,1985,66:1339-1352.
    [33] Chapman P J. Denitrification and its relation to soluble carbon. M.Sc.Thesis.Department of Soil Sci. University of Alberta,Edmonton,Alta,1983.100.
    [34]Schoenau D S, Brooks P C, Christensen B T. Measurement of soil microbial biomass provides an early indication o f changes in total soil organic matter due to straw in corporation[J].Soil Biology and Biochemistry,1987,19:159-164.
    [35] Michel R G, Wank W T S. Fluxes of dissolved organic nutrients in a deciduous forest[J]. Ecology,1991,72:254-266.
    [36] McDowell . Chemistry and transport of soluble humic substances in forested watersheds of the Adirondack Pack, New York [J]. Geochim Acta, 1985(49):1697-1705
    [37] Zsolnay J O, Dalal R C, Barron P F. Spectro scopic investigations of cultivation effects on organic matter of vertisols[J].Soil Sci.Soc.Am.J.,1986,50:354-359.
    [38]Theodorou C. Nitrogen transformations in particle size fractions from a second rotation pine forest soil[J]. Commun. Soil Sci. Plant Anal.,1990,21:407-413.
    [39] Kalbitz J O, Vallis I, Mayers R J. Decomposition of soil organic nitrogen. In: E. F.Henzelled. Advances in nitrogen cycling in agricultural ecosystems[J].CAB Int.,Wallingford,England,1988.134-144.
    [40] Qualls G P, Ross D J. Biochemical methods to estimate soil microbial biomass: current developments and applications. In: Soil organic matter dynamics and sustain ability of tropical agriculture, eds K. Mulongoyand R.Merckx.Wiley-Sayce.Leuven,1993.21-17.
    [41] Leenheer J A. Comprehensive approach preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters[J]. Environ.Sci. Techno1.1981,15:578-587
    [42] Murphy DvMacdonald,AJ,Sockdale EA,et al. Souble organic nitrogen in agricultural soils [J]. Biol. fertil. Soils. 2000, 30(5/6):374-387
    [43] Cronan C S. Comparative effects of precipitation acidity on three forest soils. Carbon cycling responses[J]. Plant and Soil, 1985,88:101-102.
    [44] Vance G F, David M B. Dissolved organic carbon and sulfate sorption by spodosol mineral horizons[J]. Soil Science,1992,154(2):138-144
    [45] 沈宏,曹志洪,胡正义.土壤活性有机碳的表征及其生态效应[J].生态学杂志,1999,18(3):32-38
    [46] 王清奎,汪思龙,冯宗炜,黄 宇.土壤活性有机质及其与土壤质量的关系[J].生态学报. 2005,25(3):513-519
    [47] Cronan C S,Aiken G R. Chemistry and transport of soluble humic substances in forested watersheds of the Adirondack Pack, New York [J]. Geochim Acta, 1985(49):1697-1705
    [48] 李淑芬,俞元春,何晟.土壤有机碳的研究进展[J].土壤与环境,2002,11(4):422-429
    [49] Pohlman A A,Mccoll J G. Souble organics from forest litter and their role in metal dissolution [J] .Soil Sci. Am. , 1988(52):265-271
    [50] Burdige D J.Gardner K G. Molecular weight distribution of dissolved organic carbon in marine sediment pore waters [J].Marine Chemistry, 1998(62):45-64
    [51] Frank Hagedorn,Peter Blaser,rolf Siegwolf.Elevated atmospheric CO2 and increased N deposition effects on dissolved organic carbon-clues from δ13C signature [J].Soil Biology and Biochemistry, 2002(34):355-366
    [52] 杨 玉 盛 , 郭 剑 芬 , 陈 光 水 等 . 森 林 生 态 系 统 DOM 的 来 源 \ 特 性 及 流 动 [J]. 生 态 学报,2003,23(3):547-558
    [53] Chapman P J, Edwards A C- et al., Cresser M S. The nitrogen composition of streams in upland Scotland: some regional and seasonal differences. Science of the Total Environment,2001, 265( I -3 ):65-83.
    [54] Yunsheng Lou, Zhongpei Li,Taolin Zhang, Yongchao Liang.CO2 emissions from subtropical arable soils of China[J]. Soil Biology & Biochemistry .2004(36): 1835–1842
    [55] FredWrall J K, Munch J C, Fisher W B. Soil microbial properties and the assessment of available soil organic matter in a Haplic luvisol after several years of different cultivation and crop rotation[J]. Soil Biol. Biochem.1995, 28:479-488.
    [56] 李淑芬,俞元春,何晟.南方森林土壤溶解有机碳与土壤因子的关系[J].浙江林学院学报,2003,20(2):119-123
    [57] Williams, B.L., Silcock, D., Impact of NH4NO3 on microbial biomass C and N and extractable DOM in raised bog peat beneath Sphagnum capillifolium and S. recurvum [J]. Biogeochemistry .2000(49): 259–276.
    [58]Ross,Marin K,Wolfgang Zech.Sorption of dissolved organic carbon in soils:effects of soil sample storge,soil-to-solution ratio and temperature[J].Geodema.2001(99):317-328
    [59] Liechty, H O, E Kuuseoks, G D Mroz.Dissolved organic carbon in northern hardwood stands with differing acid inputs and temperature regimes [J].Environment Quality, 1995(24):927-933
    [60] Schaaf W , M Weisdorfer, R F Huettl. Soil solution chemistry and element bugets of three Scots Pine ecosystems along a deposition gradient in North-Eastern Germany [J]. Water Air Soil Pollution, 1995(85):1197-1202
    [61] Chapman P J, B Reynolds, H S Wheater.The seasonal variation in soil water acid neutralizing capacity in peaty podzols in mid-Walea [J].Water Air Soil Pollution.1995 (85):1089-1094
    [62] Mope B, E Matzner Fluxes and dynamic of dissolved organic nitrogen and carbon in a spruce (Picea abies Karst.) forest ecosystem[J]. Eur. J. Soil Sci., 1999(50):579-590
    [63] Cronan C S,S Lakshman,H H Patterson.Effects of disturbance and soil amendments on dissolved organic carbon and organic acidity in red pine forest floors [J].Environ.Qual, 1992(21):457-463
    [64] Garica F O, Rice C W. Microbial biomass dynamics in tall grass prairie[J]. Soil Sci.Soc.Am.J.1994,58:816-823
    [65] Haynes. R J, Francis G S. Changes in microbial biomass C, soil carbohydrate. Composition and aggregate stability induced by growth of selected crop and forage. Species under field conditions[J]. Journal of soil science, 1993,44:665-675.
    [66] Pregitzer, K.S., Zak, D.R., Burton, A.J., Ashby, J.A., MacDonald, N.W., Chronic nitrate additions dramatically increase the export of carbon and nitrogen from northern hardwood ecosystems [J]. Biogeochemistry, 2004 (68):179–197
    [1] 王绍强,陈育峰. 陆地表层碳循环模型研究及其趋势[J].地理科学进展,1998, 17(4): 64-72.
    [2] 郭旭东,傅伯杰,陈利顶等. 低山丘陵区土地利用方式对土壤质量的影响――以河北省遵化市为例[J]. 地理学报,2001, 56(4) : 447- 456.
    [3] PARTON W J, SCHIMEL D S, COLE C V. Analysis of factors controlling soil organic matter levels in great plains grasslands [J]. Soil Science Society of American Journal,1987, 51: 1173- 1179.
    [4] BLAIR G J, LERROY R D, SINGHE B P, et al. Development and use of a carbon management index to monitor changes in soil C pool size and turnover rate [C]. In: Cadisch, G. & K. J. Giller eds. Drive by nature: plant litter quality and decomposition. Wallinn Ford: CAIi International. 1997, 273- 281.
    [5] POST W M, KWON K C. Soil carbon sequestration and land use change: processes and potential [J]. Global Change Biology, 2000, 6: 317-327.
    [6] 李大通,罗雁. 中国碳酸盐分布面积测量[J].中国岩溶,1983,2(2):147- 150.
    [7] 顾朝林. 北京市土地利用/覆被变化机制研究[J]. 自然资源学报, 1999, 14(4): 307- 312.
    [8] 史培军,陈晋,潘耀忠。深圳市土地利用变化机制分析[J]. 地理学报, 2000, 55(2): 151- 160.
    [9] 摆万奇. 深圳市土地利用动态趋势分析[J]. 自然资源学报, 2000, 15(2), 112- 116.
    [10] 杨桂山. 土地利用/覆被变化与区域经济发展――长江三角洲近 50 年来耕地数量变化研究的启示[J]. 地理学报, 2004, 59(S1), 41- 46.
    [11] 康慕谊,江源,石瑞香. NECT 样带 1984-1996 土地利用变化分析[J]. 地理科学, 20(2), 115-120.
    [12] 曹建华,袁道先,潘根兴. 岩溶生态系统中的土壤[J].地球科学进展,2003,18(1):37- 44.
    [13] 曹建华,袁道先等. 受地质条件制约的中国西南岩溶生态系统[M]. 北京:地质出版社, 2005:16- 23.
    [14] 潘根兴,曹建华. 表层带岩溶作用:以土壤为媒介的地球表层生态系统过程-以桂林峰丛洼地岩溶系统为例[J]. 中国岩溶,1999, 18(4):287- 296.
    [15] 潘根兴,曹建华,何师意等. 土壤碳作为湿润亚热带表层岩溶作用的动力机制:系统碳库及碳转移特征[J]. 南京农业大学学报,1999, 22(3):49- 52.
    [16] 冉景丞,何师意,曹建华等. 亚热带喀斯特森林土壤 CO2 排放量动态研究[J].贵州科学,2002,20(2),42- 47.
    [17] 鲁如坤. 土壤农业化学析[M]. 北京:中国农业科技出版社,2000.
    [18] 沈宏,曹志宏,胡正义. 土壤活性有机碳的表征及其生态效应[J].生态学杂志,1999, 18(3):32- 38.
    [19] WANDER M M, TRAINA S J, STINNER B R, et al. The effect of organic and conventionalmanagements on biologically active soil organic matter fractions [J]. Soil Science Society of American Journal 1994, 58: 1 130- 1 139.
    [20] COLEMAN D C, REID C P P, COLE C C. Biological strategies of nutrient cycling in soil systems [J]. Advances in Ecological Research, 1983, 13: 1- 55.
    [21] WATSON R T,NOBLE I R, BOLIN N H , et al. Land use , land use change and forestry, a special report of the IPCC [C]. Cambridge : Cambridge University Press , 2000, 189- 217.
    [22] CHANTIGNY M H, ANGERS D A, PREVOST D, et al. Dynamic of soluble organic C and C-mineralization in cultivated soils with varying N feitilization [J].Soil Biology and Biochemistry, 1999, 31: 543- 550
    [23] 曹建华,潘根兴,袁道先. 岩溶地区土壤溶解有机碳的季节动态及环境效应[J].生态环境,2005,(14)2:224-229
    [24] 张金波, 宋长春,杨文燕. 小叶章湿地表土水溶性有机碳季节动态变化及影响因素分析[J]. 环境科学学报,2005, 25(10):1397- 1402.
    [25] 张甲坤,陶澍, 曹军. 土壤水溶性有机物与富里酸分子量分布的空间结构特征[J]. 地理研究,2001, 20(1):76- 82
    [26] WANG F L, BETTANY J R. Influence of freeze-thwa and flooding on the loss of soluble organic carbon and carbon dioxide from soil [J]. Journal of Environment Quality,1993, 22:709- 714
    [27] 陶澍,曹军.山地土壤表层水溶性有机物淋溶动力学模拟研究[J].中国环境科学,1996, 16(6): 410- 414
    [28] DALAL R C, HENDERSON P A, GUASBY J M. Organic matter and microbial biomass in a Vertisol after 20 years of zero-tillage [J]. Soil Biology and Biochemistry, 1991, 23: 435- 441.
    [29] CHIRENJE T, RIVERO C, MA L Q. Leachability of Cu and Ni in wood ash-amended soil as impacted by humic and fulvic acid [J]. Geoderma, 2002, 108(1-2): 31- 47
    [30] ANDERSON T, DOMSCH K H. Ratios of microbial biomass carbon to total organic carbon in arable soils[J]. Soil Science Society of American Journal, 1989, 21: 471- 479
    [31] VANCE G F, DAVID M B. Dissolved organic carbon and sulfate sorption by spodosol mineral horizons [J]. Soil Science, 1992, 154: 136- 144
    [32] JARDINGP M, WEBER N L, MCCARTHY J F. Mechanisms of dissolved organic carbon adsorption on soil [J]. Soil Science Society of American Journal, 1989, 53: 1378- 1385.
    [33] ESPELETA J F, EISSENSTAT D M. Responses of citrus fine roots to localized soil drying: a comparison of seedings with adult fruiting trees [J]. Tree Physiology, 1998, 18(2): 13- 119
    [34] ESWARAN H, VANDENBERG E, REICH P. Organic C in soils of the world [J]. Soil Science Society of American Journal, 1993, 57: 192- 194
    [35] LIANG B C, MACKENZIEACK A F , SCHNITZER M, et al. Management-induced change in labilesoil organic matter under continuous corn in eastern Canadian soils [J].Biology Fertilization of Soils, 1998, 26: 88-94.
    [36] HART B S, AUGUST J A, WEST A W. Long-term consequences of top soil mining on select biological and physical characteristics of two New Zealand loessial soils under grazed pasture [J].Land Degradation and Rehabilitation, 1989, 1: 77-88.
    [37] GESTCL. Storage of soil carbon in the light fraction and macroorganic matter [C]. In: Carter M R, Stewart B A. Eds., Advances in soil science. Structure and organic matters to ragein agriculture soils. CRCLewis Publishers, Boca Raton, 1996, 167-190.
    [38] 何振立.土壤微生物量及其在养分循环和环境质量评价中的意义[J].土壤,1997,(2), 61-69
    [39] LADD J N, AMATO M, KAIZ L, et al. Differential effects of rotation, plant residue and nitrogen fertilizer on microbial biomass and organic matter in an Australian alfisol[J].Soil Biology and Biochemistry, 1994, 26: 821- 831.
    [40] BLAIRl G J,LEFROY R D B. Soil C fractions based on their degree ofoxilation and the development of a C management index for agricultural systems [J].Australia Journal of Agriculture Research.,1995, 46: 1459- 1466.
    [41] JANZEN H H. Soil organic matter characteristics after long-term cropping to various spring wheat rotations[J].Canada Journal of Soil Science, 1987, 67: 845-856.
    [42] JOBBGY E G, JACKSON R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation [J].Ecological Applications, 2000, 10: 423- 436.
    [43] JENKINSON A, RAYNER J H. The turnover of soil organic matter in some of the Rothamsted classical experiments[J].Soil Science,1977, 123: 298- 305.
    [1] 沈宏,曹志宏,胡正义.土壤活性有机碳的表征及其生态效应[J].生态学杂志,1999, 1(3):32-38.
    [2] Boyer J N, Groffman P M. Bio-availability of water extractable organic carbon fractions in forest and agricultural soil profiles[J]. Soil Biol Biochem, 1996,28:783-790.
    [3] Dosskey MqBertsch P M. Transport of dissolved organic matter through a sandy forest soil[J].Soil Sci. Soc. Am. J. 1997, 61:920-927.
    [4] Liang B C, MacKenzie A F, Schnitzer M, et al. Management-induced change in labile soil organic matter under continuous corn in eastern Canadian soils[J]. Biol. Fertil. Soils. 1998.,26:88-94.
    [5] 陶澎,曹军.山地土壤表层水溶性有机物淋溶动力学模拟研究[J].环境科学,1996, 16(6): 410-414.
    [6] Oliva P, Viers J, Dupre B, et al.. The effect of organic matter on chemical weathering: study of a small tropical watershed: nsimi-zoetele site, Cameroon[C]. Geochimica et Cosmochimica Acta, 1999,63(23-24):4013-4035.
    [7] Louise M D, Gwyn S q John H, et a1. Management influences on soil microbial communities and their function in botanically diverse hay meadows of northern England and Wales[J]. Soil Biol.Biochem. 2000,32:253-256.
    [8] Stefan A ,McBride M B, Norvell W A, et al. Copper solubility and speciation of in situ contamination soils: effects of copper level, pH and organic matter[J]. Water Air and Soil Pollution, 1997,100: 133-140.
    [9] Kuiters A T, Mulder W. Water soluable organic matter in forest soil . I. Complexing;, properties and implications for soil equilibrium[J]. Plant and Soil, 1993,152 ,215—224.
    [10] Dalal R C, Henderson P A, Guasby J M. Organic matter and microbial biomass in a Vertisol after 20 years of zero-tillage[J]. Soil Biology and Biochemistry,1991,23:435-441.
    [11] Burford J R,Bremmer, J M . Relation between denitrification capacities of soils and total water soluble and readily decomposable soil organic matter[J]. Soil Boil Biochem ,1975,7: 389- 394
    [12] Martinez C E, Jalobson A, Mcbride M B. Thermally induced changes in metal solubility of contaminated soils is linked to mineral recrystallization and organic matter transformations[J].Environmental Science&Technology, 2001,35(5):908-916
    [13] Watson, R. T.,I. R. Noble, B Bolin N H , et al. Land use ,land use change and forestry, a special report of the IPCC[M]. Cambridge : Cambridge University Press , . 2000.,189-217.
    [14] Raber B, Kogel K I, Stein C, Klem D. Partitioning of polycyclic aromatic hydrocarbons to dissolved organic matter from different soils[J]. Geoderma, 1998,36(1): 79-97
    [15] Kuiters A T. Dissolved organic matter in forest soils: Sources, complexing properties and action on herbaceous plants[J]. Chem. Ecol. 1993.,8:171-184
    [16] Zhou L X, Yang H, Shen Q R, et al. Fractionation and characterization of dissolved organic matter derived from sewage sludge and composted sludge[J].Environmental.Technology, 2000.,21(7):765-771.
    [17] Christ M J, David M B.1996b. Temperature and moisture effects on the production of dissolved organic carbon in a spodosol[J]. Soil BioL Biochem., 28(9): 1191-1199
    [1] 王洪杰,李宪文,史学正等. 不同土地利用方式下土壤养分的分布及其与土壤颗粒组成关系.水土保持学报,2003,17 (2): 44-46.
    [2] 王清奎,泪思龙,高洪等.土地利用方式对土壤有机质的影响.生态学杂志,2005,24 (4):360-363.
    [3] 吴建国,张小全,徐德应.土地利用变化对生态系统碳汇功能影}响的综合评价.中国工程科学,2003,5 (9):65-71.
    [4] 吴建国,张小全,徐德应.土地利用变化对土壤有机碳贮量的影响.应用生态学报,2004,15 (4):593一 599.
    [5] 于兴修,杨桂山,王瑶.土地利用/覆被变化的环境效应研究进展与动向.地理科学,2004, 24 (5):627-633.
    [6] Guggenberger G, W Zech.Composition and dynamics of dissolved organic carbohydrates and lignin-degradation products in two coniferous forests, N E Bavaria, Germany [J]. Soil Biol.Biochem.1994, 26:19-27
    [7] Guggenberger G, K Kaiser, W Zech. Mobilization and immobilization of dissolved organic matter in forest soils [J]. Z. Pflanzernaehr.Bodenkd, 1998(161):401-408
    [8] Homann P S,D F Grigal.Molecular weight distribution of soluble organics from laboratory-manipulated soils [J].Soil Sci. Soc.Am.J., 1992(56):1305-1310
    [9] Cronan C S,S Lakshman,H H Patterson.Effects of disturbance and soil amendments on dissolved organic carbon and organic acidity in red pine forest floors [J]. Environ.Qual, 1992(21):457-463
    [10] Stuanes A O,O J Kjonass.Soil solution chemistry during four years of NH4NO3 addition to a forested cathment at G?rdsj?n, Sweden [For] Ecol. Manage, 1998(101):215-226
    [11] Lindahl B, Taylor A F S,Finlay R D.Defining nutritional constraints on carbon cycling in boreal forests-towards a less phtocentric perspective [J].Plant and Soil, 2002(242):123-135
    [12] Hannamaria Potila,Tytti Sarjala.Seasonal fluctuation in microbial biomass and activity along a natural nitrogen gradient in a drained peatland [J]. Soil biology and Biochemistry, 2004(36):1047-1055
    [13] 沈其荣.土壤肥料科学通论[M].北京:高等教育出版社,2001:156-157
    [14] 李睿.DOM 对紫色土中养分有效性的影响[D].2005,西南师范大学
    [15] 俞元春,李淑芬.江苏下蜀林区土壤溶解有机碳与土壤因子的关系[J].土壤,2003,35(5):424-428
    [16] 苏维持.贵州岩溶山区生态系统的脆弱性及其对策[J].中国水土保持科学,2004,2(3):64-69.
    [17] 倪进治,徐建民,谢正苗.土壤生物活性有机碳库及其表征指标的研究.植物营养与肥料学[J] 2001,(7):56^6360.
    [18] 沈宏,曹志洪.长期施肥对不同农田生态系统土壤有效碳库及碳素有效率的影响.热带亚热带土壤科学[J],1998,7(1): l }5
    [19] 倪进治,徐建民,谢正苗,等.不同有机肥料对土壤生物活性有机质组分的动态影响.植物营养与肥料学报[J],2001,7(4):374^-378
    [20] 李淑芬,俞元春,何晟.南方森林土壤溶解有机碳与土壤因子的关系[J].浙江林学院学报,2003,20(2):119-123
    [21] Wang Z P, Delaue R D. Methane production from anaerobic soil amended with rice straw and nitrogen[J]. Fertilizer. Fertil Res, 1992, 33:115-121.
    [22] YahiK, MinamiK. Effects of organic matter application on methane emission from someJapanese paddy fields[J]. Soil Sci Plant Nutr, 1990, 36:599-610.
    [23] Schutx H, Hozapeel-Pschom, A three-year contionuoux record on the influence of daytime, season, and feitilizer treatment on merhane emission rates from an Italian rice paddy.J GepiysRes[J], 1989, 94.
    [24] QualIs,R.G, Wank, W T S. Fluxes of dissolved organic nutrients in a deciduous forest.Ecology[J],1991,72:254-266.
    [1]王世杰,季宏兵,欧阳自远等. 碳酸盐岩风化成土作用的初步研究[J]. 中国科学(D 辑), 1999, 29( 5): 441-449.
    [2]曹建华,袁道先等. 受地质条件制约的中国西南岩溶生态系统[M].北京:地质出版社,2005: 16-23.
    [3]袁道先. 论岩溶环境系统[J]. 中国岩溶,1988 , 7(3): 179-186.
    [4]熊康宁,黎平,周忠发等. 岩溶石漠化的遥感 GIS 典型研究—以贵州省为例[M]. 北京:地质出版社, 2002.
    [5]苏维词. 贵州岩溶山区的土壤侵蚀性退化及其防治[J]. 中国岩溶,2001, 20 ( 3 ) : 217-223
    [6]袁道先. 中国岩溶学[M]. 北京: 地质出版社,1993
    [7] 蒋忠诚. 广西弄拉峰丛石山生态重建经验及生态农业结构优化[J]. 广西科学,2001, 8(4): 308-312
    [8]王世杰. 岩溶石漠化-中国西南最严重的生态地质环境问题[J]. 矿物岩石地球化学通报,2003, 22(2), 120-125.
    [9]李阳兵,谢德体,魏朝富等. 西南岩溶山地生态脆弱性研究[J]. 中国岩溶,2002, 21(1): 25-29.
    [10]鲁如坤. 土壤农业化学析[M]. 北京: 中国农业科技出版社,2000.
    [11]李援越,祝小科,朱守谦. 黔中退化岩溶群落自然恢复生态学过程研究—自然恢复演替系列构建. 见: 朱守谦,主编.岩溶森林生态研究(Ш)[M]. 贵阳: 贵州科技出版社,2003 ,233-237.
    [12]苏永中,赵哈林. 科尔沁沙地不同土地利用和管理方式对土壤质量性状的影响[J]. 应用生态学报,2003, 14(10) : 1681-1686
    [13]黄昌勇. 土壤学[M]. 北京:中国农业出版社,2000
    [14]杨胜天, 朱启疆. 贵州典型岩溶环境退化与自然恢复速率[J].地理学报, 2000, 55(4): 459-465.
    [15]王清奎, 汪思龙, 冯宗炜.土壤活性有机质及其与土壤质量的关系[J]. 生态学报,2005(3), 513-519
    [16]何振立. 土壤微生物量及其在养分循环和环境质量评价中的意义[J].土壤,1997,(2), 61-69
    [17]刘净.我国土壤中锌含量的分布规律[J].中国农业科学,1994, 27 ( 1):30- 37.
    [18]郑昭佩, 刘作新. 土壤质量及其评价[J]. 应用生态学报,2003, 14( 1): 131--134

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700