用户名: 密码: 验证码:
Rho GTPases及效应子IQGAP1在气道上皮细胞损伤修复中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分气道上皮细胞中机械划伤致IQGAP1磷酸化对损伤修复的影响
     实验背景:
     由于气道(气管和支气管)粘膜暴露于外界环境,易受到损伤。气道上皮受损后将立即启动修复过程,从而保持正常的肺功能。这个损伤修复过程需要气道上皮细胞伸展,迁移和增生最终覆盖受损区域。气道受损是气道疾病例如慢性支气管炎和COPD的重要的发病过程。因此气道上皮自身的修复能力是解决这些气道疾病的关键步骤。然而,参与气道上皮损伤修复的分子机制尚未完全明了。
     IQGAP1(IQ domain GTPase-activating protein)在许多细胞生命活动中是一个非常有意义的蛋白,但是尚未有人阐述其在气道上皮损伤修复中的作用。磷酸化作为翻译后的主要手段,参与调节蛋白质及细胞骨架的功能。有报导显示,IQGAP1丝氨酸残基能被高磷酸化,结果能促进神经元轴突外生性生长。PKC的一个新的亚型PKCε可能有助于IQGAP1的磷酸化。我们推测,在气道上皮损伤修复过程中IQGAP1磷酸化可能发挥重要作用。
     目的:
     使用目前广泛应用的刮伤气道上皮细胞的体外模型,初步探讨机械划伤后IQGAP1的磷酸化水平以及对损伤修复的影响。
     方法:
     建立机械划痕引起体外气道上皮损伤模型,采用损伤分析实验、免疫组化、western blot、免疫荧光共聚焦成像、免疫沉淀、瞬时转染等方法观测IQGAP1磷酸化、IQGAP1与PKCε在损伤前后的变化,并通过激活和抑制PKCε活性,观察对损伤愈合的影响。
     结果:
     形态学观察显示培养的气道上皮细胞呈现上皮细胞典型的铺路石状形态,其特点是立体的,稍微凸起的,细胞间紧密连接。在机械性损伤后,气道上皮细胞可成片状的单向迁移,且其迁移方向垂直于划痕方向。损伤6 h细胞形态即发生显著改变,形成具有特征性的极化形态学改变,损伤12 h更为显著。损伤24 h后迁移的气道上皮细胞能掩盖划线部分。
     本实验发现,IQGAP1在多种动物气道上皮细胞中表达丰富。它与微管骨架共定位,但能被微管解聚剂nocodazole破坏。机械划伤后,IQGAP1磷酸化水平迅速增加,在损伤后1小时达到峰值,持续9小时。过表达PKCε或添加PKC活化剂PMA,能促进IQGAP1磷酸化。相反,PKC抑制剂GF109203X能消除划伤引起的IQGAP1磷酸化。通过免疫荧光共聚焦和免疫共沉淀方法,我们发现机械划伤能加强IQGAP1与PKCε结合。损伤分析实验结果显示,刮擦24h后,正常对照组细胞划痕已经闭合,而过表达PKCε或PMA处理组细胞划痕提前愈合。相反,GF109203X处理组不仅没有闭合,而且其划痕宽度仍占原始划痕的32%,提示IQGAP1磷酸化介导了气道上皮细胞的划痕愈合。
     结论
     本实验表明,IQGAP1在气道上皮细胞中有丰富的表达,且PKCε介导的IQGAP1磷酸化参与了机械划伤引起的气道上皮细胞损伤愈合过程。
     第二部分IQGAP1以不依赖于Rac1和Cdc42的方式参与气道上皮损伤修复的增殖过程
     实验背景:
     香烟烟雾、大气污染、感染等多种致病因素在机体抵抗力降低时,都能引起气道上皮损伤,导致肺疾病的发生。气道损伤后立即启动修复过程,这是一个复杂的多步骤过程,包括细胞延伸、迁移和增殖。Rho GTPases是小G蛋白超家族的主要成员,其中RhoA,Rac1和Cdc42研究最为广泛。Rho GTPases在GTP结合的活化状态和GDP结合的失活状态间转换。通过与许多效应子的作用,如IQGAP1、PAK(p21 activated kinase)和WASP(Wiskott-Aldrich syndrome protein),Rho GTPases在组织形成、细胞极化和迁移过程中发挥重要作用。作为Rac1和Cdc42的效应子,IQGAP1能与细胞骨架成分、细胞黏附复合体及微管相关蛋白结合,参与了细胞黏附、极化和定向迁移过程。目前尚未有人阐述Rho GTPases及IQGAP1在肺上皮细胞中的作用。本研究推断上述信号可能在气道上皮细胞损伤修复中发挥作用,并探讨其可能的机制。
     目的:
     使用了体外损伤模型来研究Rho GTPases及IQGAP1的功能。检测上述因子在气道上皮不同损伤修复时期的动态表达变化,初步研究其在气道上皮损伤修复过程中的作用,继而为深入探讨损伤修复机制提供理论和实验依据。
     方法:
     在机械划伤单层细胞建立的体外损伤模型中,通过pull-down方法检测Rac1及Cdc42的活性。采用免疫细胞荧光、RT-PCR、荧光定量PCR、western blot、分离核浆蛋白、质粒瞬时转染和RNA干扰方法观测IQGAP1及相关因子在气道上皮损伤模型中的表达和分布变化,并探讨上述信号影响损伤修复的可能机制。
     结果:
     机械划伤能降低GTP结合的Rac1和Cdc42,但能促进IQGAP1 mRNA及蛋白表达。我们证实IQGAP1能结合组成性激活型Rac1(Rac1V12)和Cdc42(Cdc42V12),但不能结合显性负突变型Rac1(Rac1N17)和Cdc42(Cdc42N17)。在实验中我们应用了IQGAP1的突变体T1050AX2,该突变体在1050-1052位氨基酸均被丙氨酸替代,缺乏与Rho GTPases结合的能力。研究发现,划伤和过表达外源性IQGAP1(wild type和T1050AX2)都能使β-catenin核转位从而活化Tcf/Lef信号。同时,过表达上述外源性IQGAP1也能促进Tcf靶基因c-myc和cyclinD1表达。此外,刮伤可影响IQGAP1与β-catenin、adenmatous polyposis coli(APC)及cytoplasmic linker protein- 170(CLIP-170)之间的相互作用。通过小干扰RNA(siRNA)消除IQGAP1的表达可明显延迟损伤愈合。我们总结认为,IQGAP1信号参与了气道上皮细胞的损伤修复,且以不依赖于Rac1和Cdc42的方式介导了细胞增殖过程。
     结论:
     上述结果表明:(1)IQGAP1可能通过表达量上调参与气道上皮受损后启动的修复。(2)IQGAP1以不依赖于Rac1和Cdc42的方式促进β-catenin核转位,活化Tcf信号并诱导其靶基因c-myc和cyclin-D1表达。(3)划伤能减弱β-catenin与α-catenin的结合,但加强β-catenin与IQGAP1的结合。(4)机械损伤能增强IQGAP1与微管相关蛋白APC、CLIP-170之间的作用。(5)敲低IQGAP1能明显阻滞划痕愈合。
     本实验提示:IQGAP1可通过表达上调而活化β-catenin/Tcf信号途径,参与机械刮擦致气道上皮细胞的损伤以及损伤后修复过程。Rac1和Cdc42并不参与IQGAP1介导的细胞增殖过程,而磷酸化的IQGAP1有助于损伤愈合。这些结论对阐明呼吸系统疾病的发病机制及其逆转病变的进展具有重要意义。
Part I Effects of phosphorylation of IQGAP1 induced by mechanical scraching on wound and repair in airway epithelial cells
     Background:
     Airway (trachea and bronchi) epithelium is frequently injured because of its exposure to the external environment. After injury, the airway epithelium initiates a wound repair process to keep normal lung function, which requires spreading, migration, and eventually proliferation of airway epithelial cells into the injured area. Damage to airway epithelium is critical to the pathogenesis of airway disorders such as chronic bronchitis and COPD, so the ability of the airway epithelium to repair itself is an important step in the resolution of airway disease. However, the molecular mechanism involved in the injury and repair of airway epithelium has not been well understood.
     IQGAP1 (IQ domain GTPase-activating protein) is a key actor in a series of cell processes, but has not been identified in lung epithelial cells. Phosphorylation is a major post-translational method for regulating protein function, including that of the cytoskeleton. The serine residues of IQGAP1 are phosphorylated, which promote neurite outgrowth. PKCεmay be one of the candidates responsible for phosphorylation of IQGAP1. We suppose that phosphorylation of IQGAP1 may play roles in the process of injury and repair.
     Objective:
     In this study, we utilized a widely used model in vitro by scratching bronchial epithelial cells (BECs) and investigated the effects of phosphorylation of IQGAP1 in the process of wound closure.
     Method:
     We established an in vitro injury and repair model by scratching a monolayer of BECs. Then the following tests were undertaken: wound assays, immunohistochemistry, western blot, confocal laser sanning, immunoprecipitation, transient transfection and so on. We aimed to study phosphorylation of IQGAP1, the association between IQGAP1 and PKCεand the effects of PKCεfor wound closure after activation or inhibition its activity.
     Results:
     Cell morphological observation demonstrated cultured BECs showed a classic cobblestone epithelial morphology that was three-dimensional, slightly raised and closely adherent. After scratching, bronchial epithelial cells moved unidirectionally as sheets or groups, perpendicular to the direction of the wound. A polarized morphology developed 6 h following scratching and became pronounced after 12 h. The wound gap was approximately closed in 24 h after scratching.
     Our results showed that IQGAP1 was abundant in BECs of several species. It was colocalized with tubulin cytoskeleton, but was destroyed by microtubule disassembled reagent of nocodazole. Soon after scratching, phosphorylation of IQGAP1 increased and reached a maximum at 1 h, lasting for at least 9 h. Overexpression of PKCεor treatment with PMA (the PKC activator) increased the amounts of phosphorylation of IQGAP1. On the contrary, phosphorylation of IQGAP1 induced by scratching was blocked by GF109203X (the PKC inhibitor). We next found that scratching induced close association between IQGAP1 and PKCεby immunofluorescence and immunoprecipitation methods. Our data from wound assays suggested that the wound gap closed within 24 h in control, while overexpression of PKCεand treatment with PMA promoted wound closure. On the other hand, the group treated with GF109203X was shown to impair the wound closure and still had 32% of original width. These results suggested that phosphorylation of IQGAP1 mediated the process of wound closure in BECs.
     Conclusion:
     Our results showed that IQGAP1 was generously expressed in BECs and suggested that PKCεmediated phosphorylation of IQGAP1 was involved in the early stage of wound closure.
     Part II IQGAP1 is involved in the proliferation process of injury and repair in BECs independent of Rac1 and Cdc42
     Background:
     Airway epithelium is repeatedly subjected to injury by cigarette smoke, pathogens, toxicants and infection. Immediately after injury, the airway epithelium initiates a multiple wound healing process to keep normal lung function, which involves so much signaling pathways and factors including cell extension, migration and proliferation. Rho GTPases are main branches of the Ras small GTPase superfamily, in which RhoA, Rac1 and Cdc42 are widely studied. Most GTPases cycle between the GTP-bound active and GDP-bound inactive forms. Through the effectors such as IQGAP1, PAK (p21 activated kinase) and WASP (Wiskott-Aldrich syndrome protein), Rho GTPases play critical roles in many processes, such as organization, chemotaxis and injury and healing. As an effector of Rac1 and Cdc42, IQGAP1 is an integral protein of cytoskeletal organization and interacts with cytoskeleton, cell adhesion complex and microtubule associated proteins (MAPs), thus IQGAP1 is considered to play roles in cell adhesion, polarization and migration. The mechanisms of Rho GTPases and their effector IQGAP1 are poor known in the process of airway epithelium. We supposed that Rho GTPases-IQGAP1 signal regulated the process of injury and repair in BECs and discussed the possible mechanism.
     Objective:
     We aim to study whether and how Rac1, Cdc42 and IQGAP1 work in injury and repair of BECs in vitro. The dynamic expressions of these factors during different stages of injury and repair were detected and their roles involved in the process were discussed. This study may bring theoretical and experimental evidences for further exploring the mechanism of injury and repair.
     Methods:
     In the model of injury and repair by scratching a monolayer of BECs in vitro, we detected the activities of Rac1 and Cdc42 by pull down assay. Next, we observed and examined the localizations and expressions of IQGAP1 and related factors in the model of injury and repair by immunofluorescence, RT-PCR, fluorescence quantitative PCR, western blot, isolation of cytoplasmic and nuclear proteins, transient transfection and RNA interference methods.
     Results:
     We found that scratching decreased GTP-bound Rac1 and Cdc42, but increased the amounts of IQGAP1 in both mRNA and protein at different time points. Next, we confirmed that IQGAP1 interacted with constitutively active Rac1 (Rac1V12) and Cdc42 (Cdc42V12) rather than dominant negative Rac1 (Rac1N17) and Cdc42 (Cdc42N17). Overexpressions of wild type (WT) IQGAP1 and its mutant (T1050AX2), which was mutated at 1050-1052 amino acids instead for alanine and was defective to interact with Rho GTPase, induced translocation ofβ-catenin from the cytoplasm into the nucleus. These results activated Tcf/Lef and induced expressions of its target genes of c-myc and cyclin D1. As similar, scratching increased the amounts of c-myc and cyclin D1. On the other hand, scratching altered the associations of IQGAP1 withβ-catenin, adenmatous polyposis coli (APC) and cytoplasmic linker protein-170 (CLIP-170). Depletion of IQGAP1 by small interference RNA (siRNA) blocked the wound closure. We conclude that IQGAP1 signal is involved in injury and repair and promotes cell proliferation in a manner independent of Rac1 and Cdc42 in the process of BECs.
     Conclusion:
     Our results indicated that: (1) Increasing amounts of IQGAP1 should play role in the process of wound closure. (2) IQGAP1 promotedβ-catenin translocation, activated Tcf and induced expressions of its target genes of c-myc and cyclin-D1 in a manner independent of Rac1 and Cdc42. (3) Scratching induced weak associations betweenα- andβ-catenin, but strong associations between IQGAP1 andβ-catenin. (4) IQGAP1 was shown to have strong associations with APC and CLIP-170 after scratching. (5) Depletion of IQGAP1 blocked the scratched wound closure.
     Our data suggested that: The process of wound closure in airway epithelial cells involves several coordinated events that are dependent on up-regulating of IQGAP1. The participation of Rac1 or Cdc42 is not necessary for this effect, but phosphylation of IQGAP1 is important at the early stage of injury and repair. These results may help to elucidate the mechanisms of the diseases in respiratory system and arrest their progression.
引文
1.管茶香,张长青,秦晓群,等.血管活性肠肽对支气管上皮细胞趋化迁移的影响及机制.生理学报2002, 2: 103-106.
    2.许丽,张珍祥,徐永健.香烟烟雾提取物对气道上皮细胞增殖和FIP200表达的影响.第四军医大学学报2005, 25: 1754-1757.
    3. Dohar JE, Stod SE. Respiratory mucosa wound healing and its management. An Overview. Otolaryngol Clin North Am 1995, 28: 897-912.
    4. Prie S, Cadienx A, Sirois P. Removol of guinea pig bronchial and tracheal epithelium potentiates the contractions to leukotrienes and histamine. Eicosanoids 1990, 3: 29-37.
    5. Spurzem JR, Veys T, Devasure J, et al. Ethanol treatment reduces bovine bronchial epithelial cell migration. Alcohol Clin Exp Res 2005, 29: 485-492.
    6. Puchelle E, Zahm JM, Tournier JM, et al. Airway epithelial repair, regeneration, and remodeling after injury in chronic obstructive pulmonary disease. Proc Am Thorac Soc 2006, 3: 726-733.
    7. Zahm JM, Chevillard M, Puchelle E. Wound repair of human surface respiratory epithelium. Am J Respir Cell Mol Biol 1991, 5: 242-248.
    8. Zahm JM, Kaplan H, Herard AL, et al. Cell migration and proliferation during the in vitro wound repair of the respiratory epithelium. Cell Motil Cytoskeleton 1997, 37: 33-43.
    9. Zahm JM, Pierrot D, Chevillard M, et al. Dynamics of cell movements during the wound repair of human surface respiratory epithelium. Biorheology 1992, 29: 459-465.
    10. Noritake J, Watanabe T, Sato K, et al. IQGAP1: a key regulator of adhesion and migration. J Cell Sci 2005, 118: 2085-2092.
    11. Weissbach L, Settleman J, Kalady MF, et al. Identification of a human rasGAP-related protein containing calmodulin-binding motifs. J Biol Chem 1994, 269: 20517-20521.
    12. Gavert N, Ben-Ze’ev A. Beta-Catenin signaling in biological control and cancer. J Cell Biochem 2007, 102: 820-828.
    13. Galjart N, Perez F. A puls-end raft to control microtubule dynamics and function. Curr Opin Cell Biol 2003, 15: 48-53.
    14. Brown MD, Sacks DB. IQGAP1 in cellular signaling: bridging the GAP. Trends Cell Biol 2006, 16: 242-249.
    15. Bear JE, Loureiro JJ, Libova I, et al. Negative regulation of fibroblast motility by Ena/VASP proteins. Cell 2000, 101: 717-728.
    16. Gertler FB, Niebuhr K, Reinhard M, et al. Mena, a relative of VASP and Drosophila Enabled, is implicated in the control of microfilament dynamics. Cell 1996, 87: 227-239.
    17. Li Z, McNulty DE, Marler KJ, et al. IQGAP1 promotes neurite outgrowth in a phosphorylation- dependent manner. J Biol Chem 2005, 280: 13871-13878.
    18. Grohmanova K, Schlaepfer D, Hess D, et al. Phosphorylation of IQGAP1 modulates its binding to cdc42, revealing a new type of Rho-GTPase regulator. J Biol Chem 2004, 279: 48495-48504.
    19. Desai LP, Aryal AM, Ceacareanu B, et al. RhoA and Rac1 are both required for efficient wound closure of airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2004, 287: L1134-1144.
    20. Etienne-Manneville S, Hall A. Integrin-mediated Cdc42 activation controls cell polarity in migrating astrocytes through PKC zeta. Cell 2001, 106: 489–498.
    21. Etienne-Manneville S, Hall A. Cdc42 regulates GSK3βand adenomatous polyposis coli to control cell polarity. Nature 2003, 421: 753-756.
    22. Zhu M, Tian D, Li J, et al. Glycogen synthase kinase 3βandβ-catenin are involved in the injury and repair of bronchial epithelial cells induced by scratching. Exp Mol Pathol 2007, 83: 30-38.
    23. J.萨姆布鲁克, D.W.拉塞尔.分子克隆实验指南,第3版,黄培堂等译.北京:科学出版社, 2003: 1-146.
    24. D.L.斯佩克特, R.D.戈德曼,莱因万德.细胞实验指南,黄培堂等译.北京:科学出版社, 2001: 10-12.
    25. Tsuji T, Aoshiba K, Nagai A. Cigarette smoke induces senescence in alveolar epithelial cells. Am J Respir Cell Mol Biol 2004, 31: 643-649.
    26. Mayo JJ, Kohlhepp P, Zhang D, et al. Effects of sham air and cigarette smoke on A549 lung cells: implications for iron-mediated oxidative damage. Am J Physiol Lung Cell Mol Physiol 2004, 286: L866-876.
    27. Liu MG, Li NP, Wu RL, et al. Dynamic changes of adenomatous polyposis coli protein and glycogen synthase kinase 3βin the repair of the injured airway epithelial cells in smoking mice. Acta Physiologica Simica 2006, 58: 255-261.
    28.洪渊智,李娜萍,吴人亮,等.β-连环素及相关蛋白在脂多糖致急性肺损伤小鼠气道上皮的表达.华中科技大学学报(医学版)2007, 36: 421-424.
    29.马燕,李娜萍,吴人亮,等. CLIP-170在肺纤维化小鼠气道上皮损伤与修复中表达及其意义.华中科技大学学报(医学版)2007, 36: 1-4.
    30. Gundersen GG, Cook TA. Microtubules and signal transduction. Curr Opin Cell Bio 1999, 11: 81–94.
    31. Hemmings HC, Nairn AC, McGuinness TL, et al. Role of protein phosphorylation in neuronal signal transduction. FASEB J 1989, 3: 1583-1592.
    32. Scheuer T. Structure and function of voltage-gated sodium channels: regulation by phosphorylation. Biochem Soc Trans 1994, 22: 479-482.
    33. Raggiaschi R, Gotta S, Terstappen GC. Phosphoproteome analysis. Biosci Rep 2005, 25: 33-44.
    34. Stannard C, Soskic V, Godovac-Zimmermann J. Rapid changes in the phosphoproteome show diverse cellular responses following stimulation of human lung fibroblasts with endothelin-1. Biochemistry 2003, 42: 13919–13928.
    1. Park Kwon-Sik, Wells JM, Zorn AM, et al. Transdifferentiation of ciliated cells during cepair of the respiratory epithelium. Am J Respir Cell Mol Biol 2006, 34: 151–157.
    2. Tsuji T, Aoshiba K, Nagai A. Cigarette smoke induces senescence in alveolar epithelial cells. Am J Respir Cell Mol Biol 2004, 31: 643-649.
    3. Mayo JJ, Kohlhepp P, Zhang D, et al. Effects of sham air and cigarette smoke on A549 lung cells: implications for iron-mediated oxidative damage. Am J Physiol Lung Cell Mol Physiol 2004, 286: L866-876.
    4. Dohar JE, Stod SE. Respiratory mucosa wound healing and its management. An Overview. Otolaryngol. Clin North Am 1995, 28: 897-912.
    5. Prie S, Cadienx A, Sirois P. Removol of guinea pig bronchial and tracheal epithelium potentiates the contractions to leukotrienes and histamine. Eicosanoids 1990, 3: 29-37.
    6. Puchelle E, Zahm JM, Tournier JM, et al. Airway epithelial repair, regeneration, and remodeling after injury in chronic obstructive pulmonary disease. Proc Am Thorac Soc 2006, 3: 726-733.
    7. Zahm JM, Chevillard M, Puchelle E. Wound repair of human surface respiratory epithelium. Am J Respir Cell Mol Biol 1991, 5: 242-248.
    8. Zahm JM, Kaplan H, Herard AL, et al. Cell migration and proliferation during the in vitro wound repair of the respiratory epithelium. Cell Motil Cytoskeleton 1997, 37: 33-43.
    9. Zahm JM, Pierrot D, Chevillard M, et al. Dynamics of cell movements during the wound repair of human surface respiratory epithelium. Biorheology 1992, 29: 459-465.
    10. Burridge K, Wennerberg K. Rho and Rac take center stage. Cell 2004, 116: 167-179.
    11. Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature 2002, 420: 629-635.
    12. Wennerberg K, Der CJ. Rho-family GTPases: it’s not only Rac and Rho (and I like it). J Cell Sci 2004, 117: 1301-1312.
    13. Raftopoulou M, Hall A. Cell migration: Rho GTPases lead the way. Dev Biol 2004, 265: 23-32.
    14. Nelson WJ. Adaptation of core mechanisms to generate cell polarity. Nature 2003, 422: 766-774.
    15. Ridley AJ, Schwartz MA, Burridge K, et al. Cell migration: Integrating signals from front to back. Science 2003, 302: 1704-1709.
    16. Etienne-Manneville S. Cdc42-the centre of polarity. J Cell Sci 2004, 117: 1291-1300.
    17. Futaka M, Nakagawa M, Kaibuchi K. Roles of Rho-family GTPases in cell polarization and directional migration. Curr Opin Cell Biol 2003, 15: 590-597.
    18. Noritake J, Watanabe T, Sato K, et al. IQGAP1: a key regulator of adhesion and migration. J Cell Sci 2005, 118: 2085-2092.
    19. Erickson JW, Cerione RA, Hart MJ. Identification of an actin cytoskeletal complex that includes IQGAP and the Cdc42 GTPase. J Biol Chem 1997, 272: 24443-24447.
    20. Roy M, Li Z, Sacks DB. IQGAP1 binds ERK2 and modulates its activity. J Biol Chem 2004, 279: 17329-17337.
    21. Roy M, Li Z, Sack DB. IQGAP1 is a scaffold for mitogen-activated protein kinase signaling. Mol Cell Biol 2005, 25: 7940-7952.
    22. Hart MJ, Callow MG, Souza B, et al. IQGAP1, a calmodulin-binding protein with a rasGAP-related domain, is a potential effector for cdc42Hs. EMBO J 1996, 15: 2997-3005.
    23. Weissbach L, Bernards A, Herion DW. Binding of myosin essential light chain to the cytoskeleton-associated protein IQGAP1. Biochem Biophys Res Commun 1998, 251: 269-276.
    24. Mbele GO, Deloulme JC, Gentil BJ, et al. The zinc- and calcium- binding S100B interacts and co-localizes with IQGAP1 during dynamic rearrangement of cell membranes. J Biol Chem 2002, 277: 49998-50007.
    25. Kuroda S, Fukata M, Nakagawa M, et al. Role of IQGAP1, a target of the small GTPases Cdc42 and Rac1, in regulation of E-cadherin-mediated cell-cell adhesion. Science 1998, 281: 832-835.
    26. Li Z, Kim SH, Higgins JM, et al. IQGAP1 and calmodulin modulate E-cadherin function. J Biol Chem 1999, 274: 37885-37892.
    27. Watanabe T, Wang S, Noritake J, et al. Interaction with IQGAP1 links APC to Rac1, Cdc42 and actin filaments during cell polarization and migration. Dev Cell 2004, 7: 871-883.
    28. Fukata M, Watanabe T, Noritake J, et al. Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170. Cell 2002, 109: 873-885.
    29. Fukata M, kuroda S, Fujii K, et al. Regulation of cross-linking of actin filament by IQGAP1, a target for Cdc42. J Biol Chem 1997, 272: 29579-29583.
    30. Briggs MW, Li Z, Sacks DB. IQGAP1-mediated stimulation of transcriptional co-activation byβ-catenin is modulated by calmodulin. J Biol Chem 2002, 277: 7453-7465.
    31.许三林,吴人亮,陈春莲,等.上皮钙黏附素在吸烟小鼠呼吸道上皮损伤修复中表达的影响.中华结核和呼吸杂志1999, 22: 417-419.
    32.陈芳,吴人亮,王曦,等.香烟烟雾提取物对培养猪气道上皮细胞β-连环素及酪氨酸磷酸化的影响.中华医学杂志2001, 81: 406-410.
    33. Chen WS, Wu RL, Tian D, et al. Role of glycogen synthase kinase 3 in squamous differentiation of pig airway epithelial cells: A primary study. Acta Physiologica Sinica 2005, 57: 467-472.
    34. Tian D, Zhu M, Chen WS, et al. Role of glycogen synthase kinase 3 in squamous differentiation induced by cigarette smoke in porcine tracheobronchial epithelial cells. Food Chem Toxicol 2006, 44: 1590-1596.
    35. Liu MG, Li NP, Wu RL, et al. Dynamic changes of adenomatous polyposis coli protein and glycogen synthase kinase 3βin the repair of the injured airway epithelial cells in smoking mice. Acta Physiologica Sinica 2006, 58: 255-261.
    36.马燕,李娜萍,吴人亮,等. CLIP-170在肺纤维化小鼠气道上皮损伤与修复中表达及其意义.华中科技大学学报(医学版)2007, 36: 1-4.
    37.洪渊智,李娜萍,吴人亮,等.β-连环素及相关蛋白在脂多糖致急性肺损伤小鼠气道上皮的表达.华中科技大学学报(医学版)2007, 36: 421-424.
    38. Zhu M, Li J, Tian D, et al. Spatial-temporal distribution of glycogen synthase kinase 3βand adenomatous ployposis coli protein are involved in the injury and repair of airway epithelial cells induced by scratching. Acta Physiol Sinica 2007, 59: 197-203.
    39. Zhu M, Tian D, Li J, et al. Glycogen synthase kinase 3βandβ-catenin are involved in the injury and repair of bronchial epithelial cells induced by scratching. Exp Mol Pathol 2007, 83: 30-38.
    40. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (- Delta Delta CT) method. Methods 2001, 25: 402-408.
    41. Fukata M, Nakagawa M, Itoh N, et al. Involvement of IQGAP1, an effector of Rac1 and Cdc42 GTPases, in cell-cell dissociation during cell scattering. Mol Cell Biol 2001, 21: 2165-2183.
    42. Korinek B, Barker N, Morin PJ, et al. Constitutive transcriptional activation by aβ-catenin-Tcf complex in APC-/- colon carcinoma. Science 1997, 275: 1784-1787.
    43. Shih IM, Yu J, He TC, et al. Theβ-catenin binding domain of adenomatous polyposis coli issufficient for tumor suppression. Cancer Res 2000, 60: 1671-1676.
    44. Cheon SS, Nadesan P, Poon R, et al. Growth factors regulate Beta-catenin-mediated TCF- dependent transcriptional activation in fibroblasts during the proliferative phase of wound healing. Exp Cell Res 2004, 293: 267-274.
    45. Tetsu O, Mccormick F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 1999, 398: 422-426.
    46. He TC, Sparks AB, Rago C, et al. Identification of c-MYC as a target of the APC pathway. Science 1998, 281: 1509-1512.
    47. Adam EC, Holgate ST, Fildew CJ, et al. Role of carbohydrates in repair of human respiratory epithelium using an in vitro model. Clin Exp Allergy 2003, 33: 1398-1404.
    48. Sacco O, Silvestri M, Sabatini F, et al. Epithelial cells and fibroblasts: structural repair and remodeling in the airways. Paediatr Respir Rev 2004, 5: S35-40.
    49. Kholmanskikh SS, Koeller HB, Wynshaw-Boris A, et al. Calcium-dependent interaction of Lis1 with IQGAP1 and cdc42 promotes neuronal motility. Nat Neurosci 2006, 9: 50-57.
    50. Cheon SS, Wei Q, Gurung A, et al. Beta-catenin regulates wound size and mediates the effect of TGF-beta in cutaneous healing. FASEB J 2006, 20: 692-701.
    51. Natsume H, Sasaki S, Kitagawa M, et al.β-Catenin/Tcf-1 -mediated transactivation of cyclin D1 promoter is negatively regulated by thyroid hormone. Biochem Biophys Res Commun 2003, 309: 408-413.
    52. Li S, Wang Q, Chakladar A, et al. Gastric hyperplasia in mice lacking the putative Cdc42 effector IQGAP1. Mol Cell Biol 2000, 20: 697-701.
    1. Weissbach L, Settleman J, Kalady MF, et al. Identification of a human rasGAP-related protein containing calmodulin-binding motifs. J Biol Chem 1994, 269: 20517-20521.
    2. Noritake J, Watanabe T, Sato K, et al. IQGAP1: a key regulator of adhesion and migration. J Cell Sci 2005, 118: 2085-2092.
    3. Brown MD, Sacks DB. IQGAP1 in cellular signaling: bridging the GAP. Trends Cell Biol 2006, 16: 242-249.
    4. McCallum SJ, Wu WJ, Cerione RA. Identification of a putative effector for Cdc42Hs with high sequence similarity to the RasGAP-related protein IQGAP1 and a Cdc42Hs binding partner with similarity to IQGAP2. J Biol Chem 1996, 271: 2173221737.
    5. Li S, Wang Q, Chakladar A, et al. Gastric hyperplasia in mice lacking the putative cdc42 effector IQGAP1. Mol Cell Biol 2000, 20: 697-701.
    6. Kuroda S, Fukata M, Kobayashi K, et al. Identification of IQGAP as a putative target for the small GTPases, cdc42 and Rac1. J Biol Chem 1996, 271: 23363-23367.
    7. Bashour A, Fullerton AT, Hart MJ, et al. IQGAP1, a Rac-and cdc42-binding protein, directly binds and cross-links microfilaments. J Cell Biol 1997, 137: 1555-1566.
    8. Roy M, Li Z, Sacks DB. IQGAP1 is a scaffold for mitogen-activated protein kinase signaling. J Biol Chem 2005, 25: 7940-7952.
    9. Ho YD, Joyal JL, Li Z, et al. IQGAP1 integrates Ca2+/calmodulin and cdc42 signaling. J Biol Chem1999, 274: 464-470.
    10. Weissbach L, Bernards A, Herion DW. Binding of myosin essential light chain to the cytoskeleton-associated protein IQGAP1. Biochem Biophys Res Commun 1998, 251: 269-276.
    11. Mbele GO, Deloulme JC, Gentil BJ, et al. The zinc- and calcium-binding S100B interacts and co-localizes with IQGAP1 during dynamic rearrangement of cell membranes. J Biol Chem 2002, 277: 49998-50007.
    12. Fukata M, Kuroda S, Nakagawa M, et al. Cdc42 and Rac1 regulate the interaction of IQGAP1 withβ-catenin. J Biol Chem 1999, 274: 26044-26050.
    13. Kuroda S, Fukata M, Nakagawa M, et al. Role of IQGAP1, a target of the small GTPases Cdc42 and Rac1, in regulation of E-cadherin-mediated cell-cell adhesion. Science 1998, 281: 832-835.
    14. Fukata M, Watanabe T, Noritake J, et al. Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170. Cell 2002, 109: 873-885.
    15. Watanabe T, Wang S, Noritake J, et al. Interaction with IQGAP1 links APC to Rac1, Cdc42 and actin filaments during cell polarization and migration. Dev Cell 2004, 7: 871-883.
    16. Kholmanskikh SS, Koeller HB, Wynshaw-Boris A, et al. Calcium-dependent interaction of Lis1 with IQGAP1 and cdc42 promotes neuronal motility. Nat Neurosci 2006, 9: 50-57.
    17. Suzuki K, Chikamatsu Y, Takahashi K, et al. Requirement of protein phosphatase 2A for recruitment of IQGAP1 to Rac-bound beta1-integrin. J Cell Physiol 2005, 203: 487-492.
    18. Phillips-Mason PJ, Gates TJ, Major DL, et al. The receptor protein tyrosine phosphatase PTPμinteracts with IQGAP1. J Biol Chem 2006, 281: 4903-4910.
    19. Erickson JW, Cerione RA, Hart MJ. Identification of an actin cytoskeletal complex that includes IQGAP and the cdc42 GTPase. J Biol Chem 1997, 272: 24443-24447.
    20. Ruiz-Velasco R, Lanning CC, Williams CL. The activation of Rac1 by M3 muscarinic acetylcholine receptors involves the translocation of Rac1 and IQGAP1 to cell junctions and changes in the composition of protein complexes containing Rac1, IQGAP1, and actin. J Biol Chem 2002, 277: 33081-33091.
    21. Ren JG, Li Z, L.Crimmins D, et al. Self-association of IQGAP1 characterization and functionalsequelae. J Biol Chem 2005, 280: 34548-34557.
    22. Joyal JL, Annan RS, Ho YD, et al. Calmodulin modulates the interaction between IQGAP1 and cdc42. J Biol Chem 1997, 272: 15419-15425.
    23. Noritake J, Fukata M, Sato K, et al. Positive role of IQGAP1, an effector of Rac1, in actin-meshwork formation at sites of cell-cell contact. Mol Biol Cell 2004, 15: 1065-1076.
    24. Briggs MW, Li Z, Sacks DB. IQGAP1-mediated stimulation of transcriptional co-activation byβ-catenin is modulated by calmodulin. J Biol Chem 2002, 277: 7453-7465.
    25. Akhmanova A, Hoogenroad C C. Microtubule plus-end-tracking proteins: mechanisms and function. Curr Opin Cell Biol 2005, 17: 47–54.
    26. Yamaoka-Tojo M, Ushio-Fukai M, Hilenski L, et al. IQGAP1, a novel vascular endothelial growth factor receptor binding protein, is involved in reactive oxygen species-dependent endothelial migration and proliferation. Circ Res 2004, 95: 276-283.
    27. Grohmanova K, Schlaepfer D, Hess D, et al. Phosphorylation of IQGAP1 modulates its binding to cdc42, revealing a new type of Rho-GTPase regulator. J Biol Chem 2004, 279: 48495-48504.
    28. Li Z, McNulty DE, Marler KJ, et al. IQGAP1 promotes neurite outgrowth in a phosphorylation-dependent manner. J Biol Chem 2005, 280: 13871-13878.
    29. Bahl S, Mohan Raj BK, Corbett S, et al. LPS stimulation alters cdc42-IQGAP1 binding in human monocytes. J Surg Res 2006, 130: 174
    1. Ridley AJ, Schwartz MA, Burridge K, et al. Cell migration: Integrating signals from front to back. Science 2003, 302: 1704-1709.
    2. Rodriguez OC, Schaefer AW, Mandato CA, et al. Conserved microtubule-actin interactions in cell movement and morphogenesis. Nat Cell Biol 2003, 5: 599-609.
    3. Vaughan KT. Surfing, regulation and capturing: are all microtubule-tip-tracking proteins created equal? Trends Cell Biol 2004, 14: 491-496.
    4. Akhmanova A, Hoogenroad CC. Microtubule plus-end-tracking proteins: mechanisms and function. Curr Opin Cell Biol 2005, 17: 47-54.
    5. Peterz F, Diamantopoulos GS, Stalder R, et al. CLIP-170 highlights growing microtubule ends in vivo. Cell 1999, 96: 517-527.
    6. Brunner D, Nurse P. CLIP-170-like tip1p spatially organizes microtubular dynamics in fission yeast. Cell 2000, 102: 695-704.
    7. Lansbergen G, Komarova Y, Modesti M, et al. Conformational changes in CLIP-170 regulate its binding to microtubules and dynactin localization. J Cell Biol 2004, 166: 1003-1014.
    8. Arnal I, Heichette C, Diamantopoulos GS, et al. CLIP-170/tubulin-curved oligomers coassemble at microtubule ends and promote rescues. Curr Biol 2004, 14: 2086-2095.
    9. Wittmann T, Desai A. Microtubule cytoskeleton: A new twist at the end. Curr Biol 2005, 15: R126-R129.
    10. Zumbrunn J, Kinoshita K, Hyman AA, et al. Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3βphosphorylation. Curr Biol 2001, 11: 44-49.
    11. Mogensen MM, Tucker JB, Mackie JB, et al. The adenomatous polyposis coli protein unambiguously localizes to microtubule plus ends and is involved in establishing parallel arrays of microtubule bundles in highly polzrized epithelial cells. J Cell Biol 2002, 157: 1041-1048.
    12. Tirnauer JS, Grego S, Salmon ED, et al. EB1-microbubule interactions in Xenopus egg-extracts: Role of EB1 in microtubule stabilization and mechanisms of targeting to microtubules. Mol Biol Cell 2002, 13: 3614-3626.
    13. Bu W, Su LK. Characterization of functional domains of human EB1 family proteins. J Biol Chem 2003, 278: 49721-49731.
    14. Vaughan KT. TIP maker and TIP marker; EB1 as a master controller of microtubule plus ends. J Cell Biol 2005, 171: 197-200.
    15. Akhmanova A, Hoogenraad CC, Drabek K, et al. CLASPs are CLIP-115 and -170 associating proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts. Cell 2001, 104: 923-935.
    16. Mimori-Kiyosue Y, Grigoriev I, Lansbergen G, et al. CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex. J Cell Biol 2005, 168: 141-153.
    17. Galjart N, Perez F. A plus-end raft to control microtubule dynamics and function. Curr Opin Cell Biol 2003, 15: 48-53.
    18. Culver-Hanlon TL, Lex SA, Stephens AD, et al. A microtubule-binding domain in dynactin increases dynein processivity by skating along microtubules. Nat Cell Biol 2006, 8: 264-270.
    19. Kholmanskikh SS, Koeller HB, Wynshaw-Boris A, et al. Calcium-dependent interaction of Lis1 with IQGAP1 and Cdc42 promotes neuronal motility. Nat Neurosci 2006, 9: 50-57.
    20. Nakamura M, Zhou XZ, Lu KP, et al. Critical role for the EB1 and APC interaction in the regulation of microtubule polymerization. Curr Biol 2001, 11: 1062-1067.
    21. Louie RK, Bahmanyar S, Siemers KA, et al. Adenomatous polyposis coli and EB1 localize in close proximity of the mother centriole and EB1 is a functional component of centrosome. J Cell Sci 2004, 117: 1117-1128.
    22. Green RA, Wollman R, Kaplan KB, et al. APC and EB1 function together in mitosis to regulate spindle dynamics and chromosome alignment. Mol Biol Cell 2005, 16: 4609-4622.
    23. Honnappa S, John CM, Kostrewa D, et al. Structural insights into the EB1-APC interaction. EMBO J 2005, 24: 261-269.
    24. Ligon LA, Shelly SS, Tokito M, et al. The microtubule plus-end proteins EB1 and dynactin have differential effects on microtubule polymerization. Mol Biol Cell 2003, 14: 1405-1417.
    25. Carvalho P, Tirnauer JS, Pellman D, et al. Surfing on microtubule ends. Trends Cell Biol 2003, 13:
    229-237.
    26. Burridge K, Wennerberg K. Rho and Rac take center stage. Cell 2004, 116: 167-179.
    27. Etienne-Manneville S, Hall A. Cdc42 regulate GSK3βand adenomatous polyposis coli to control cell polarity. Nature 2003, 421: 753-756.
    28. Czuchra A, Wu XW, Meyer H, et al. Cdc42 is not essential for filopodium formation, directed migration, cell polarization and mitosis in fibroblastoid cells. Mol Biol Cell 2005, 16: 4473-4484.
    29. Wittmann T, Waterman-Storer CM. Spatial regulation of CLASP affinity for microtubules by Rac1 and GSK3βin migrating epithelial cells. J Cell Biol 2005, 169: 929-939.
    30. Etienne-Manneville S, Hall A. Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCζ. Cell 2001, 106: 489-498.
    31. Wen Y, Eng CH, Schmoranzer J. EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration. Nat Cell Biol 2004, 6: 820-830.
    32. Fukata M, Watanabe T, Noritake J, et al. Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170. Cell 2002, 109: 873-885.
    33. Watanabe T, Wang S, Noriake J, et al. Interaction with IQGAP1 links APC to Rac1, Cdc42 and actin filaments during cell polarization and migration. Dev Cell 2004, 7: 871-883.
    34. Vicente-Manzanares M, Webb DJ. Cell migration at a glance. J Cell Sci 2005, 118: 4917-4919.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700