用户名: 密码: 验证码:
磷基纳米复合材料的制备及其催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境污染和能源问题目前仍是困扰人类可持续发展的难题。近年来,磷基复合纳米材料在环境保护和清洁能源开发等方面显示出广泛的应用前景,已成为纳米科学领域的研究热点之一。利用液相法合成磷基纳米材料具有操作简单、效率高、适用范围广、合成颗粒质量好等优点,在合成中广为采用。然而,寻找一种简单方便的液相合成法实现微纳米材料尺寸、结构、形貌,尤其是具有特定晶面、特定取向的功能微纳米晶的可控合成仍是一个巨大的挑战。本课题以磷基复合材料作为研究对象,探索氟羟基磷灰石(FHAp)、银、Ag/FHAp以及Ag@Ag3PO4等几种磷基纳米材料的液相法可控制备。主要研究结果如下:
     (1)以EDTA和柠檬酸(CA)混合螯合剂作为有机修饰剂,通过改变反应条件,制备了一系列新颖形貌和结构的FHAp微纳米晶体,包括:具有高比例(0001)晶面的六方微米花,六方微米梭,六方柱,二十面体,六方微纳米棒等特殊微纳米结构。研究了反应体系的pH值、两种螯合剂的用量、氟离子的用量以及水热时间温度等因素对产品颗粒微结构的影响。弱酸性介质有利于具有规则形貌FHAp晶体的生长,碱性介质则有利于FHAp一维不规则纳米结构如纳米棒和纳米晶须的合成。通过控制Ca/EDTA摩尔比,FHAp产物的形貌由三维多晶自组装结构逐渐演变到一维单晶纳米结构。在此基础上,简单地控制所使用CA或氟离子的用量,实现了对一维FHAp六方微纳米晶体的形貌和尺寸的控制。氟离子对于具有规则形貌的一维FHAp六方形微纳米晶体的生成中起到了关键的作用。
     (2)展示了一种简单易行一步法水热合成FHAp中空微纳米材料。以EDTA和CA作为晶体生长控制剂,通过改变NaF前躯体的加入顺序,成功地合成出了几种具有规则几何外形以及分级FHAp中空微纳米结构。通过改变水热温度和反应初始溶液pH,实现了对FHAp中空微纳米颗粒形貌的调控。机理研究表明,具有规则几何外形的FHAp中空微纳米颗粒的形成可能与CaF2颗粒充当原位模板有关,Ostwald熟化机制可以用来解释FHAp分级中空微米结构的形成。此外,其他反应条件,例如螯合剂的用量,也可能是促使FHAp中空微纳米结构形成的重要因素。
     (3)利用EDTA作为螯合剂和还原剂,一步水热合成出FHAp微晶负载纳米银Ag/FHAp复合材料。HAp载体微粒尺寸在1-2μm之间,负载纳米Ag颗粒平均尺寸约为30 nm,分散性较好。通过改变AgN03前躯体使用量,合成出不同银负载量和尺寸的Ag/FHAp复合纳米材料。pH值对于Ag/FHAp复合纳米结构的形成起到了关键的作用,通过改变反应初始溶液的pH值,不仅可以调控FHAp载体微粒的形貌,还可以改变纳米银的负载量。紫外-可见吸收光谱分析表明所合成的不同纳米银负载量的Ag/FHAp复合纳米材料具有特征的银纳米颗粒的等离子共振吸收峰。
     (4)以EDTA为还原剂和螯合剂,水热制备出了亚微米级银颗粒。所合成的亚微米级银颗粒尺寸在200-500 nm之间,分散性较好。通过不同水热时间的样品形貌分析,发现该实验条件所得出的亚微米级银颗粒可能由纳米级银晶体聚集生长而成。通过改变水热反应时间,实现了亚微米级银颗粒的形貌和尺寸的可控。研究了所合成的亚微米级银颗粒催化硼氢化钠还原硝基苯酚反应的活性,结果表明,所合成的亚微米级银颗粒对该反应具有良好的催化活性。
     (5)通过沉淀法和光化学还原法制备出Ag@Ag3PO4复合纳米结构。制得的Ag@Ag3PO4复合光催化剂在可见光区域具有明显的吸收,光吸收阈值延伸到550 nm左右,表明其在可见光下具有潜在的光催化活性。利用罗丹明B评价了表面等离子体光催化材料降解有机物的催化活性。Ag@Ag3PO4复合光催化剂具有极高的可见光光催化活性,数分钟内罗丹明B时脱色率已接近100%,其光催化活性是氮掺杂的二氧化钛活性的数十倍。Ag@Ag3PO4高光催化活性可能与Ag3PO4舌性高以及纳米银具有表面等离子体共振吸收性质有关。重复使用实验表明Ag@Ag3PO4具有良好的稳定性。
Enviromnent and energy issues are still the bottleneck for the continuable development of human being. Nowadays, phosphorus-based nanocomposites have been attracted great interest in environmental protection and clean energy field. Solution-based methods have been intensively used in the syntheis of phosphorus-based nanomaterials, owing to its simplicity, effective, feasible, and versatility. Still, it remains a significant challenge to access micro-/nanomaterials with the controllable size, morphology, especially, the crystal factes or growth orientation. In this work, we developed some novel and easy solution-based mehods for the controlled-synthesis of phosphorus-based nanocomposites, such as F-substituted hydroxyapatite (FHAp), Ag/FHAp, and Ag@Ag3PO4. The details are as follows:
     (1) A facile strategy for the shape-controlled synthesis of FHAp microcrystals based upon using a combination of EDTA and citric acid (CA) was demonstrated. Novel, well-defined FHAp microcrystals of various shapes, such as hexagonal disks with predominant (0001) faces, hexagonal shuttles, hexagonal prisms, icosahedrons, and hexagonal microrods, were fabricated. The effects of the solution pH value, amount of chelating reagents and fluride ions and hydrothermal time and temperature were investigated in detail. It was found that the acidic medium is benifical for the formation of one-dimensional FHAp microstructures, while the basic reaction soluition favors the yield of three-dimensional (3D) FHAp microstructures. In this double-chelating-agent system, careful control over the Ca/EDTA molar ratio enabled a fine control over the morphology of FHAp particles from 3D polycrystalline microstructures to ID well-faceted single-crystal microrods. Based on this result, simply varying the concentration of CA and/or fluoride ions could allowe the shape-and size-control over 1D well-faceted FHAp microcrystals. F- ions were found to play a critical role in the formation of well-defined hexagonal microcrystals.
     (2) A facile single-step hydrothermal method was developed for the synthesis of FHAp hollow micro-/nanostructures. By using EDTA and CA as mixed chelating reagents and simple variation of F- ions addition order, FHAp hollow micro-/nanostructures with well-defined morphologies, including hollow hexagonal rods, hexagonal prisms, and hierarchical microstructures were synthesized in single step. It was found that CaF2 particles formed most likely acted as the in situ template for the formation of hollow FHAp crystals. Time-dependent experimental results indicated that Ostwald ripening process could be used to explain the formation mechanism of the hierarchical hollow FHAp microparticles. In addition, it is believed that other factors, for example, hydrothermal condition and chelating reagent, may promote the formation of hollow FHAp particles.
     (3) Silver-fluorapatite composite which consists of fluorapatite microcrystals (FHAp MPs) decorated with silver nanoparticles (Ag NPs) were prepared through a facile single-step hydrothermal method. The synthesis process involves the use of EDTA as both a chelating agent and a reducing agent, allowing the one-pot formation of Ag/FHAp composites. The Ag NPs prepared via this method exhibit monodispersed size distribution, around 30 nm, and essentially uniform dispersion on FHAp MPs supports with sizes of 1-2μm. We demonstrated that the population and size of Ag NPs in the Ag/FHAp composites can be tuned easily by varying the concentration of silver nitrate in the starting reaction solution, as well as by varying the pH value of solution. Additionally we also demonstrated that the resulting Ag/FHAp composites with different Ag loadings possess tunable surface plasmon resonance properties.
     (4) A facile, efficient, and environmentally friendly synthetic route was developed to fabricate silver submicron-sized particles by reducing silver nitrate with EDTA in aqueous solution. It was found that by varying the amount of EDTA utilized in the reaction medium and/or hydrothermal reaction time, the size of prepared silver particles can be readily controlled from 200 to 500 nm. Compared with silver nanoparticles, the as-synthesized submicron-sized silver particles were found to show a comparable catalytic activity towards the reduction of 4-nitrophenol to 4-aminophenol in the presence of an excess amount of NaBH4.
     (5) Novel Ag@Ag3PO4 composite photocatalysts were prepared by a simple precipitation and photoreduction methods. The as-prepared photocatalysts can absorb solar energy with a wavelength shorter than 550 nm. The photocatalytic activity of as-prepared samples was evaluated by photocatalytic decolorization of Rhodamine B (RhB) aqueous solution at ambient temperature under visible-light irradiation. The prepared Ag@Ag3PO4 composite photocatalysts exhibits an excellent visible-light photocatalytic activity for photocatalytic degradation of RhB in water, and their photocatalytic activity exceeds that of nitrogen-doped TiO2 by a factor of more than 10. The mechanism suggests that the high photocatalytic activity and excellent stability may result from the super sensitivity of Ag3PO4 to light and the surface plasmon resonance of Ag nanoparticles in the region of visible light. The composite photocatalysts maintain a high level even though used for five times.
引文
[1]张立德.纳米材料和纳米结构[M].北京:科学出版社,2000.
    [2]Arico AS, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices[J]. Nat. Mater.2005,4:366-77.
    [3]Duan XF, Lieber CM. General synthesis of compound semiconductor nanowires[J]. Adv. Mater.2000,12:298-302.
    [4]Shipway AN, Katz E, Willner I. Nanoparticle arrays on surfaces for electronic, optical, and sensor applications[J]. ChemPhysChem.2000,1:18-52.
    [5]Zeng J, Roberts S, Xia YN. Nanocrystal-based time-temperature indicators[J]. Chem. Eur. J. 2010,16:12559-12563.
    [6]Bruchez M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels[J]. Science 1998,281:2013-2016.
    [7]Roduner E. Size matters:why nanomaterials are different[J]. Chem. Soc. Rev.2006,35: 583-592.
    [8]Yang HG, Sun CH, Qiao SZ, et al. Anatase TiO2 single crystals with a large percentage of reactive facets[J]. Nature 2008,453:638-641.
    [9]Zhang Y, Deng B, Zhang Tierui, et al. Shape effects of Cu2O polyhedral microcrystals on photocatalytic activity. J. Phys. Chem. C 2010,114:5073-507.
    [10]Peng XG, Manna L, Yang WD, et al. Shape control of CdSe nanocrystals[J]. Nature 2000, 404:59-61.
    [11]Burda C, Chen X, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes[J]. Chem. Rev.2005,105:1025-1102.
    [12]Park J, An KJ, Hwang YS, et al. Ultra-large-scale syntheses of monodisperse nanocrystalsfJ]. Nat. Mater.2004,3:891-895.
    [13]Wang X, Zhuang J, Peng Q, et al. A general strategy for nanocrystal synthesis[J]. Nature 2005,437:121-124.
    [14]Cushing BL, Kolesnichenko VL, Connor CJO. Recent advances in the liquid-phase syntheses of inorganic nanoparticles[J]. Chem. Rev.2004,104:3893-3946.
    [15]Jun YW, Choi JS, Cheon JW. Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes[J]. Angew. Chem. Int. Ed.2006,45:3414-3439.
    [16]孙晓明.低维功能纳米材料的液相合成、表征与性能研究[D].清华大学.2005.
    [17]Yin YD, Alivisatos AP. Colloidal nanocrystal synthesis and the organic-inorganic interface[J]. Nature 2005,437:664-670.
    [18]Huang YX, Guo CJ. Synthesis of nanosized zirconia particles via urea hydrolysis[J]. Powder Technol.1992,72:101-104.
    [19]Xing GJ, Li YM, Li YL, et al. Morphology-controllable synthesis of SrMoO4 hierarchical crystallites via a simple precipitation method[J]. Mater. Chem. Phys.2011,127:465-470.
    [20]Wu RJ, Ma ZY, Gu ZG, et al. Preparation and characterization of CuO nanoparticles with different morphology through a simple quick-precipitation method in DMAC-water mixed solvent[J]. J. Alloys Compd.2010,504:45-49.
    [21]Azhari A, Sh. MS, Golestanifard F, et al. Phase evolution in Fe2O3/MgO nanocomposite prepared via a simple precipitation method[J]. Mater. Chem. Phys.2010,124:658-663.
    [22]Harrison MT, Kershaw SV, Rogach AL, et al. Wet chemical synthesis of highly luminescent HgTe/CdS core/shell nanocrystals[J]. Adv. Mater.2000,12:123-125.
    [23]Chen HL, Wu LJ, Zhang LH, et al. LiCoO2 concaved cuboctahedrons from symmetry-controlled topological reactions[J]. J. Am. Chem. Soc.2011,133:262-270.
    [24]Lian JB, Duan XC, Ma JM, et al. Hematite (α-Fe2O3) with various morphologies:ionic liquid-assisted synthesis, formation mechanism, and properties [J]. ACS Nano.2009,3: 3749-3761.
    [25]Song RQ, Xu AW, Yu SH. Layered copper metagermanate nanobelts:Hydrothermal synthesis, structure, and magnetic properties [J]. J. Am. Chem. Soc.2007,129:4152-4153.
    [26]Yang H, Liu ZH. Facile synthesis, shape evolution, and photocatalytic activity of truncated cuprous oxide octahedron microcrystals with hollows[J]. Cryst. Growth Des.2010,10: 2064-2067.
    [27]Hu MJ, Lu Y, Zhang S, et al. High yield synthesis of bracelet-like hydrophilic Ni-Co magnetic alloy flux-closure nanorings[J]. J. Am. Chem. Soc.2008,130:11606-11607.
    [28]Gou XL, Cheng FY, Shi YH, et al. Shape-controlled synthesis of ternary chalcogenide ZnIn2S4 and CuIn(S,Se)2 nano-/microstructures via facile solution route[J]. J. Am. Chem. Soc. 2006,128:7222-7229.
    [29]Dinh CT, Nguyen TD, Kleitz F, et al. Shape-controlled synthesis of highly crystalline titania nanocrystals[J]. ACS Nano 2009,3:3737-3743.
    [30]Ye JF, Liu W, Cai JG, et al. Nanoporous anatase TiO2 mesocrystals:additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior[J]. J. Am. Chem. Soc.2011,133:933-940.
    [31]Wang XL, Feng ZC, Fan DY, et al. Shape-controlled synthesis of CdS nanostructures via a solvothermal method[J]. Cryst. Growth Des.2010,10:5312-5318.
    [32]Niederberger M. Nonaqueous sol-gel routes to metal oxide nanoparticles[J]. Acc. Chem. Res. 2007,40:793-800.
    [33]Park NG, Kim K, Ko MJ, et al. Two-step sol-gel method-based TiO2 nanoparticles with uniform morphology and size for efficient photo-energy conversion devices[J].Chem. Mater. 2010,22:1958-1965.
    [34]Lu Y, Yin YD, Mayers BT, et al. Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach[J]. Nano Lett.2002,2:183-186.
    [35]尹荔松,沈辉.微乳技术制备纳米微粒的研究进展[J].功能材料.1999,5:484-485.
    [36]成国祥,沈锋,张仁柏,等.反相胶束微反应器及其制备纳米微粒的研究进展[J].化学通报.1997,3:14-19.
    [37]Bagwe RP, Khilarm KC. Effects of the intermicellar exchange rate and cations on the size of silver chloride nanoparticles formed in reverse micelles of AOT[J]. Langmuir 1997,13: 6432-6438.
    [38]Bagwe RP, Khilar KC. Effects of intermicellar exchange rate on the formation of silver nanoparticles in reverse microemulsions of AOT[J]. Langmuir 2000,16:905-910.
    [39]Jing LH, Yang CH, Qiao RR, et al. Highly fluorescent CdTe@SiO2 particles prepared via reverse microemulsion method[J]. Chem. Mater.2010,22:420-427.
    [40]Yang YH, Jing LH, Yu XL, et al. Coating aqueous quantum dots with silica via revers microemulsion method:Toward size-controllable and robus fluorescent nanoparticles[J]. Chem. Mater.2007,19:4123-4128.
    [41]Chen D, Li JJ, Shi CS, et al. Properties of core-shell Ni-Au nanoparticles synthesized through a redox-transmetalation method in reverse microemulsion[J]. Chem. Mater.2007,19: 3399-3405.
    [42]Bagwe RP, Yang CY, Hilliard LR, et al. Optimization of dye-doped silica nanoparticles prepared using a reverse microemulsion method[J]. Langmuir 2004,20:8336-8342.
    [43]Lou XW, Archer LA, Yang ZC. Hollow micro-/nanostructures:synthesis and applications[J]. Adv. Mater.2008,20:3987-4019.
    [44]Xie JM, Jiang DL, Chen M, et al. Recent patents in fabrication of hollow micro/nanostructures[J]. Recent Patents Mater. Sci.2009,2:117-130.
    [45]Caruso F. Hollow capsule processing through colloidal templating and self-assembly[J]. Chem. Eur. J.2000,6:413-419.
    [46]王文寿,甄良,徐成彦,等.液相法合成空心无机微纳米结构的研究[J].化学进展.2008,20:679-689.
    [47]Caruso F, Caruso RA, Moehwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating[J]. Science 1998,282:1111-1114.
    [48]Titirici MM, Antonietti M, Thomas A. A generalized synthesis of metal oxide hollow spheres using a hydrothermal approach[J]. Chem. Mater.2006,18:3808-3812.
    [49]Mayers B, Jiang XC, Sunderland D, et al. Hollow nanostructures of platinum with controllable dimensions can be synthesized by templating against selenium nanowires and colloids[J]. J. Am. Chem. Soc.2003,125:13364-13365.
    [50]Lou XW, Archer L A. A general route to nonspherical anatase TiO2 hollow colloids and magnetic multifunctional particles[J]. Adv. Mater.2008,20:1853-1858.
    [51]Zeng HC. Ostwald ripening:A synthetic approach for hollow nanomaterials[J]. Current Nanoscience 2007,3:177-181.
    [52]Yang HG, Zeng HC. Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening[J]. J. Phys. Chem. B 2004,108:3492-3495.
    [53]Liu B, Zeng HC. Symmetric and asymmetric Ostwald ripening in the fabrication of homogeneous core-shell semiconductors[J]. Small 2005,1:566-571.
    [54]Yin Y, Rioux RM, Erdonmez CK, et al. Formation of hollow nanocrystals through the nanoscale kirkendall effect[J]. Science 2004,304:711-714.
    [55]Jiao SH, Xu LF, Jiang K, et al. Well-defined non-spherical copper sulfide mesocages with single-crystalline shells by shape-controlled Cu2O crystal templating[J]. Adv. Mater.2006,18: 1774-1777.
    [56]Cao HL, Qian XF, Wang C, et al. High symmetric 18-facet polyhedron nanocrystals of Cu7S4 with a hollow nanocage[J]. J. Am. Chem. Soc.2005,127:16024-16025.
    [57]Cao H, Qian X, Zai J, et al. Conversion of Cu2O nanocrystals into hollow Cu2-xSe nanocages with the preservation of morphologies[J]. Chem. Commun.2006,21:4548-4550.
    [58]Cui FZ, Li Y, Ge J. Self-assembly of mineralized collagen composites[J]. Mater. Sci. Eng. R Rep.2007,57:1-27.
    [59]Astala R, Stott MJ. First principles investigation of mineral component of bone:CO3 substitutions in hydroxyapatite[J]. Chem. Mater.2005,17:4125-4133.
    [60]刘莹.功能性纳米轻基磷灰石的制备、表征及性能研究[D].吉林大学.2009.
    [61]Ma GB, Liu XY. Hydroxyapatite:Hexagonal or Monoclinic? [J]. Cryst. Growth Des.2009,9: 2991-2994.
    [62]LeGeros RZ. Calcium phosphates in oral biology and medicine. Basel, Switzerland:Karger AG,1991.
    [63]Elliott JC. Structure and chemistry of the apatites and other calcium orthophosphates. Amsterdam:Elsevier,1994.
    [64]Chen DM, Fu YF, Gu GZ, et al. Preparation and solubility of the solid solution of strontium substituted hydroxyapatite[J]. Chin. J. Biomed. Eng.2001,20:278-280.
    [65]Christoffersen J, Christoffersen MR, Kolthoff N, et al. Effects of strontium ions on growth and dissolution of hydroxyapatite and on bone [J]. Bone 1997,20:47-54.
    [66]Astala R, Calderin L, Yin X, et al. Ab initio simulation of Si-doped hydroxyapatite [J]. Chem. Mater.2006,18:413-422.
    [67]Pietak AM, Reid JW, Stott MJ, et al. Silicon substitution in the calcium phosphate bioceramics[J]. Biomaterials 2007,28:4023-4032.
    [68]Wei M, Evans JH, Bostrom T, et al. Synthesis and characterization of hydroxyapatite, fluoride-substituted hydroxyapatite and fluorapatite[J]. J. Mater. Sci.:Mater. Med.2003,14: 311-320.
    [69]Cuzron MEJ. Combined effect of trace elements and fluorine on caries[J]. J. Dent. Rea.1970, 49:526-528.
    [70]de Leeuw NH. Resisting the onset of hydroxyapatite dissolution through the incorporation of fluoride[J]. J. Phys. Chem. B 2004,108:1809-1811.
    [71]Suchanek W, Yoshimura M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants[J]. J. Mater. Res.1998,13:94-117.
    [72]Cavalli M, Gnappi G, Montenero A, et al. Hydroxy-and fluorapatite films on Ti alloy substrates:Sol-gel preparation and characterization[J]. J. Mater. Sci.2001,36:3253-3260.
    [73]Qu HB, Wei M. The effect of fluoride contents in fluoridated hydroxyapatite on osteoblast behavior[J]. Acta Biomater.2006,2:113-119.
    [74]Yoon BH, Kim HW, Lee SH, et al. Stability and cellular responses to fluorapatite-collagen composites[J]. Biomaterials 2005,26:2957-2963.
    [75]Zhang YJ, Wang JH, Yin J, et al. Enhanced catalytic activities and characterization of ruthenium-grafted halogenous hydroxyapatite nanorod crystallites[J]. J. Phys. Chem. C 2010, 114:16443-16450.
    [76]Fujishiro Y, Yabuki H, Kawamura K, et al. Preparation of needle-like hydroxyapatite by homogeneous precipitation under hydrothermal conditions[J]. J. Chem. Tech. Biotechnol. 1993,57:349-353.
    [77]Fujishiro Y, Fujimoto A, Sato T, et al. Coating of hydroxyapatite on titanium plates using thermal dissociation of calcium-EDTA chelate complex in phosphate solutions under hydrothermal conditions[J]. J. Collid. Interf. Sci.1995,173:119-127.
    [78]Liu DX, Savino K, Yates MZ. Microstructural engineering of hydroxyapatite membranes to enhance proton conductivity[J]. Adv. Funct. Mater.2009,19:1-7.
    [79]Chen H, Sun K, Tang Z, et al. Synthesis of fluorapatite nanorods and nanowires by direct precipitation from solution[J]. Cryst. Growth Des.2006,6:1504-1508.
    [80]Chen H, Tang Z, Liu J, et al. Acellular synthesis of a human enamel-like microstructure[J]. Adv. Mater.2006,18:1846-1851.
    [81]Neira IS, Kolen'ko YV, Lebedev OI, et al. An effective morphology control of hydroxyapatite crystals via hydrothermal synthesis[J]. Cryst. Growth Des.2009,9:466-474.
    [82]Zhang CM, Yang J, Quan ZW, et al. Hydroxyapatite nano-and microcrystals with multiform morphologies:Controllable synthesis and luminescence properties[J]. Cryst. Growth Des. 2009,9:2725-2733.
    [83]Wu YJ, Tseng YH, Chan JCC. Morphology control of fluorapatite crystallites by citrate ions[J]. Cryst. Growth Des.2010,10:4240-4242.
    [84]Kumar R, Prakash K H, Cheang P, et al. Temperature driven morphological changes of chemically precipitated hydroxyapatite nanoparticles[J]. Langmuir 2004,20:5196-5200.
    [85]Diegmueller JJ, Cheng XG, Akkus O. Modulation of hydroxyapatite nanocrystal size and shape by polyelectrolytic peptides[J]. Cryst. Growth Des.2009,9:5220-5226.
    [86]Liu YK, Hou DD, Wang GH. A simple wet chemical synthesis and characterization of hydroxyapatite nanorods[J]. Mater. Chem. Phys.2004,86:69-73.
    [87]Wu YJ, Bose S. Nanocrystalline hydroxyapatite:Micelle templated synthesis and characterization[J]. Langmuir 2005,21:3232-3234.
    [88]Zhai Y, Cui FZ, Wang Y. Formation of nano-hydroxyapatite on recombinant human-like collagen fibrils[J]. Curr. Appl. Phys.2005,5:429-432.
    [89]Diegmueller JJ, Cheng XG, Akkus O. Modulation of hydroxyapatite nanocrystal size and shape by polyelectrolytic peptides[J]. Cryst. Growth Des.2009,9:5220-5226.
    [90]Gonzalez-McQuire R, Chane-Ching JY, Vignaud E, et al. Synthesis and characterization of amino acid-functionalized hydroxyapatite nanorods[J]. J. Mater. Chem.2004,14: 2277-2281.
    [91]Lim GK, Wang J, Ng SC, et al. Formation of nanocrystalline hydroxyapatite in nonionic surfactant emulsions[J]. Langmuir 1999,15:7472-7477.
    [92]Lim GK, Wang J, Ng SC, et al. Nanosized hydroxyapatite powders from microemulsions and emulsions stabilized by a biodegradable surfactant[J]. Mater. Chem.1999,9:1635-1639.
    [93]Bose S, Saha SK. Synthesis and characterization of hydroxyapatite nanopowders by emulsion technique[J]. Chem. Mater.2003,15:4464-4469.
    [94]Cao MH, Wang YH, Guo CX, et al. Preparation of ultrahigh-aspect-ratio hydroxyapatite nanofibers in reverse micelles under hydrothermal conditions [J]. Langmuir 2004,20: 4784-4786.
    [95]Jillavenkatesa A, Hoelzer DT, Condrate RA. An electron microscopy study of the formation of hydroxyapatite through sol-gel processing[J]. J. Mater. Sci.1999,34:4821-4830.
    [96]Kim S, Kumta PN. Sol-gel synthesis and characterization of nanostructured hydroxyapatite powder[J]. Mater. Sci. Eng. B 2004,111:232-236.
    [97]Kuriakose TA, Kalkura SN, Palanichamy M, et al. Synthesis of stoichiometric crystalline hydroxyapatite by ethanol-based sol-gel technique at low temperature [J]. J. Cryst. Growth 2004,263:517-523.
    [98]Bigi A, Boanini E, Rubini K. Hydroxyapatite gels and nanocrystals prepared through a sol-gel process[J]. J. Solid State Chem.2004,177:3092-3098.
    [99]Wang F, Li MS, Lu YP, et al. A simple sol-gel technique for preparing hydroxyapatite nanopowders[J]. Mater. Lett.2005,59:916-919.
    [100]Liu DM, Yang QZ, Troczynski T, et al. Structural evolution of sol-gel-derived hydroxyapatite[J]. Biomaterials 2002,23:1679-1687.
    [101]Tsukahara Y, Higashi A, Yamauchi T, et al. In situ observation of nonequilibrium local heating as an origin of special effect of microwave on chemistry[J]. J. Phys. Chem. C 2010, 114:8965-8970.
    [102]Hu Y, Liu Y, Qian HS, et al. Coating colloidal carbon spheres with CdS nanoparticles: Microwave-assisted synthesis and enhanced photocatalytic activity[J]. Langmuir 2010,26: 18570-18575.
    [103]Yamauchi T, Tsukahara Y, Yamada K, et al. Nucleation and growth of magnetic Ni-Co (core-shell) nanoparticles in a one-pot reaction under microwave irradiation[J]. Chem. Mater. 2011,23:75-84.
    [104]Siddharthan A, Seshadri SK, Kumar TSS. Rapid synthesis of calcium deficient hydroxyapatite nanoparticles by microwave irradiation. Trends Biomater. Artif. Organs 2005, 18:110-113.
    [105]Liu JB, Li KW, Wang H, et al. Rapid formation of hydroxyapatite nanostructures by microwave irradiation[J]. Chem. Phys. Lett.2004,396:429-432.
    [106]Wang HN, Li YB, Zuo Y, et al. Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering[J]. Biomaterials 2007,28:3338-3348.
    [107]Arts JJC, Verdonschot N, Schreurs BW, et al. The use of a bioresorbable nano-crystalline hydroxyapatite paste in acetabular bone impaction grafting[J]. Biomaterials 2006,27: 1110-1118.
    [108]Dorozhki SV. Calcium orthophosphates[J]. J. Mater. Sci.2007,42:1061-1095.
    [109]魏海刚,李蜀光,王富森.羟基磷灰石人工骨在鞍鼻畸形整复中的应用[J].中国美容医学.2003,5:529-530.
    [110]何斌,蒋电明,欧云生.纳米羟基磷灰石/聚酰胺66人工椎体置入与椎体重建[J].中国组织工程研究与临床康复.2010,47:8889-8892.
    [111]崔福斋,李艳.发展我国具有自主知识产权的外科植入物[J].中国医疗器械信息.2006,12:4-7.
    [112]张士成,李世普,陈芳.磷灰石超微粉对癌细胞作用的初步研究[J].武汉工业大学学报,1996,18:5-8.
    [113]Li SP, Zhang SC, Chen WJ, et al. Effects of hydroxyapatite ultrafine powder on colony formation and cytoskeletons of MGC-803 cell[J]. Bioceramics 1996,9:225-227.
    [114]Han YC, Li SP, Wang X, et al. Influence of apatite nanoparticles on cancer cells[J]. Nanoscience 2006,11:102-106.
    [115]Yin MZ, Han YC, Bauer I, et al. Effect of hydroxyapatite nanoparticles on the ultrastructure and function of hepatocellular carcinoma cells in vitro[J]. Biomed. Mater.2006,1:38-41.
    [116]Sokolova V. Epple M. Inorganic nanoparticles as carriers of nucleic acids into cells[J]. Angew. Chem. Int. Ed.2008,47:1382-1395.
    [117]Wang KW, Zhu YJ, Chen XY, et al. Flower-like hierarchically nanostructured hydroxyapatite hollow spheres:Facile preparation and application in anticancer drug cellular delivery[J]. Chem. Asian J.2010,5:2477-2482.
    [118]Kandori K, Mizumoto S, Toshima S, et al. Effects of heat treatment of calcium hydroxyapatite particles on the protein adsorption behavior[J]. J. Phys. Chem. B 2009,113: 11016-11022.
    [119]Doat A, Pelle F, Gardant N, et al. Synthesis of luminescent bioapatite nanoparticles for utilization as a biological probe[J]. J. Solid State Chem.2004,177:1179-1187.
    [120]Neumeier M, Hails LA, Davis SA, et al. Synthesis of fluorescent core-shell hydroxyapatite nanoparticles[J]. J. Mater. Chem.2011,21:1250-1254.
    [121]Lebugle A, Pellrs F, Charvillat C, et al. Colloidal and monocrystalline Ln3+ doped apatite calcium phosphate as biocompatible fluorescent probes[J]. Chem. Commun.2006,1: 606-608.
    [122]Tsuchida T, Yoshioka T, Sakuma S, et al. Synthesis of biogasoline from ethanol over hydroxyapatite catalyst[J]. Ind. Eng. Chem. Res.2008,47:1443-1452.
    [123]Zahouily M, Abrouki Y, Rayadh A, et al. Fluorapatite:efficient catalyst for the Michael addition[J]. Tetra. Lett.2003,44:2463-2465.
    [124]Sebti S, Nazih R, Tahir R, et al. Fluorapatite:new solid catalyst of the Knoevenagel reaction in heterogeneous media without solvent[J]. Appl. Catal. A-Gen.2000,197:L187-L190.
    [125]Sebti S, Tahir R, Nazih R, et al. Hydroxyapatite as a new solid support for the Knoevenagel reaction in heterogeneous media without solvent[J]. Appl. Catal. A-Gen.2002,228:155-159.
    [126]Xu J, White T, Li P, et al. Hydroxyapatite foam as a catalyst for formaldehyde combustion at room temperature[J]. J. Am. Chem. Soc.2010,132:13172-13173.
    [127]Tsuchida T, Kubo J, Yoshioka T, et al. Reaction of ethanol over hydroxyapatite affected by Ca/P ratio of catalys[J]. J. Catal.2008,259:183-189.
    [128]Kaneda K, Mizugaki T. Development of concerto metal catalysts using apatite compounds for green organic syntheses[J]. Energy Environ. Sci.2009,2:655-673.
    [129]Mitsudome T, Mikami Y, Mori H. et al. Supported silver nanoparticle catalyst for selective hydration of nitriles to amides in water[J]. Chem. Commun.2009,22:3258-3260.
    [130]Mitsudome T, Arita S, Mori H. et al. Supported silver-nanoparticle-catalyzed highly efficient aqueous oxidation of phenylsilanes to silanols[J]. Angew. Chem. Int. Ed.2008,47: 7938-7940.
    [131]Sun H, Su F, Ni J, et al. Gold Supported on hydroxyapatite as a versatile multifunctional catalyst for the direct tandem synthesis of imines and oxime[J]. Angew. Chem. Int. Ed.2009, 48:1-5.
    [132]Smiciklas I, Onjia A, Raicevic S, et al. Factors influencing the removal of divalent cations by hydroxyapatite[J]. J. Hazard.Mater.2008,152:876-884.
    [133]Wang YJ, Chen JH, Cui YX, et al. Effects of low-molecular-weight organic acids on Cu (II) adsorption onto hydroxyapatite nanoparticles[J]. J. Hazard. Mater.2009,162:1135-1140.
    [134]Feng Y, Gong JL, Zeng GM, et al. Adsorption of Cd (Ⅱ) and Zn (Ⅱ) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents[J]. Chem. Eng. J.2010,162: 487-494.
    [135]孙玉绣,周松,杨华.羟基磷灰石纳米粒子制备及其对Pb2+离子的吸附性能[J].环境化学.2010,29:1059-1062.
    [136]Wei W, Sun R, Cui J, et al. Removal of nitrobenzene from aqueous solution by adsorption on nanocrystalline hydroxyapatite[J]. Desalination 2010,263:89-96.
    [137]潘家永,林开利,成荣明,等.纳米羟基磷灰石粉体的制备及其对苯酚吸附研究[J].水处理技术,2007,33:20-22.
    [138]Nishikawa H. High active type of hydroxyapatite for photocatalytic decomposition of dimethyl sulfide under UV irradiation[J]. J. Mol. Catal. A-Chem.2004,207:149-153.
    [139]Nishikawa H, Omamiuda K. Photocatalytic activity of hydroxyapatite for methyl mercaptane[J]. J. Mol. Catal. A-Chem.2002,179:193-200.
    [140]Reddy MP, Venugopal A, Subrahmanyam M. Hydroxyapatite photocatalytic degradation of calmagite (an azo dye) in aqueous suspension[J]. Appl. Catal. B-Environ.2007,69:164-170.
    [141]Wiley B, Sun Y, Xia Y. Synthesis of silver nanostructures with controlled shapes and properties[J]. Acc. Chem. Res.2007,40:1067-1076.
    [142]Kumar A, Vemula PK, Ajayan PM, et al. Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil[J]. Nat. Mater.2008,7:236-241.
    [143]Huang T, Xu XHN. Synthesis and characterization of tunable rainbow colored colloidal silver nanoparticles using single-nanoparticle plasmonic microscopy and spectroscopy[J]. J. Mater. Chem.2010,20:9867-9876.
    [144]Sun YG, Xia YN. Shape-controlled synthesis of gold and silver nanoparticles[J]. Science 2002,298:2176-2179.
    [145]Xin BF, Jing LQ, Ren ZY, et al. Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO2[J]. J. Phys. Chem. B 2005,109:2805-2809.
    [146]Sun SM, Wang WZ, Zhang L, et al. Ag@C core/shell nanocomposite as a highly efficient plasmonic photocatalyst[J]. Catal. Comm.2009,11:290-293.
    [147]Toledo-Antonio JA, Cortes-Jacome MA, Angeles-Chavez C, et al. Highly quasi-monodisperse Ag nanoparticles on titania nanotubes by impregnative aqueous ion exchange[J]. Langmuir 2009,25:10195-10201.
    [148]Chen H, Chen S, Quan X, et al. Fabrication of TiO2-Pt coaxial nanotube array schottky structures for enhanced photocatalytic degradation of phenol in aqueous aolution[J]. J. Phys. Chem. C 2008,112:9285-9290.
    [149]Awazu K, Fujimaki M, Rockstuhl C, et al. A plasmonic photocatalyst consisting of silver nanoparticles ermbedded in titanium dioxide[J]. J. Am. Chem. Soc.2008,130:1676-1680.
    [150]Jin R, Cao YW, Mirkin CA, et al. Photoinduced conversion of silver nanospheres to nanoprisms[J]. Science 2001,294:1901-1903.
    [151]Jin RC, Cao YC, Hao EC, et al. Controlling anisotropic nanoparticle growth through plasmon excitation[J]. Nature 2003,425:487-490.
    [152]Cui XQ, Li CM, Bao HF, et al. Hyaluronan-assisted photoreduction synthesis of silver nanostructures:From nanoparticle to nanoplate[J]. J. Phys. Chem. C 2008,112: 10730-10734.
    [153]Wu XM, Redmond PL, Liu HT, et al. Photovoltage mechanism for room light conversion of citrate stabilized silver nanocrystal seeds to large nanoprisms[J]. J. Am. Chem. Soc.2008, 130:9500-9506.
    [154]Wang P, Huang BB, Qin XY, et al. Ag@AgCl:A highly efficient and stable photocatalyst active under visible light[J]. Angew. Chem. Int. Ed.2008,47:1-4.
    [155]Wang P, Huang BB,Zhang XY, et al. Highly efficient visible-light plasmonic photocatalyst Ag@AgBr[J]. Chem. Eur. J.2009,15:1821-1824.
    [156]Kokubo T, Kim HM, Kawashita M. Novel bioactive materials with different mechanical properties[J]. Biomaterials 2003,24:2161-2175.
    [157]Liu TY, Chen SY, Liu DM, et al. On the study of BSA-loaded calcium-deficient hydroxyapatite nano-carriers for controlled drug delivery[J]. J. Controlled Release 2005,107: 112-121.
    [158]Yang P, Quan Z, Li C, et al. Bioactive, luminescent and mesoporous europium-doped hydroxyapatite as a drug carrier[J]. Biomaterials 2008,29:4341-4347.
    [159]Kaneda K, Mizugaki T. Development of concerto metal catalysts using apatite compounds for green organic syntheses[J]. Energy Environ. Sci.2009,2:655-673.
    [160]Li L, Liu Y, Tao J, et al. Surface modification of hydroxyapatite nanocrystallite by a small amount of terbium provides a biocompatible Fluorescent probe[J]. J. Phys. Chem. C 2008, 112:12219-12224.
    [161]Kandori K, Kuroda T, Togashi S, et al. Preparation of calcium hydroxyapatite nanoparticles using microreactor and their characteristics of protein adsorption[J]. J. Phys. Chem. B 2011, 115:653-659.
    [162]Roeder RK, Sproul MM, Turner CH. Hydroxyapatite whiskers provide improved mechanical properties in reinforced polymer composites[J]. J. Biomed. Mater. Res.2003,67A:801-812.
    [163]Zhang HG, Zhu QS, Wang Y. Morphologically controlled synthesis of hydroxyapatite with partial substitution of fluorine [J]. Chem. Mater.2005,17:5824-5830.
    [164]Seoa DS, Lee JK. Synthesis of hydroxyapatite whiskers through dissolution reprecipitation process using EDTA [J]. J. Cryst. Growth 2008,310:2162-2167.
    [165]Martins MA, Santos C, Almeida MM, et al. Hydroxyapatite micro- and nanoparticles: nucleation and growth mechanisms in the presence of citrate species[J]. J. Colloid Interface Sci.2008,318:210-216.
    [166]Zeng J, Zhang Q, Chen JY, et al. A comparison study of the catalytic properties of Au-based nanocages, nanoboxes, and nanoparticles[J]. Nano Lett.2010,10:30-35.
    [167]Yavuz MS, Cheng YY, Chen JY, et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light[J]. Nature Mater.2009,8:935-939.
    [168]Wang ZY, Luan DY, Boey FYC, et al. Fast formation of SnO2 nanoboxes with enhanced lithium storage capability[J]. J. Am. Chem. Soc.2011,133:4738-4741.
    [169]Yang YJ, Qi LM, Lu CH, et al. Morphosynthesis of rhombododecahedral silver cages by self-assembly coupled with precursor crystal templating[J]. Angew. Chem, Int. Ed.2005,44: 598-603.
    [170]Zhao FH, Lin WJ, Wu MM, et al. Hexagonal and prismatic nanowalled ZnO microboxes[J]. Inorg. Chem.2006,45:3256-3260.
    [171]Ye LN, Guo W, Yang Y, et al. Directing the architecture of various MoS2 hierarchical hollow cages through the controllable synthesis of surfactant/molybdate composite precursors [J]. Chem. Mater.2007,19:6331-6337.
    [172]Ma MY, Zhu YJ, Li L, et al. Nanostructured porous hollow ellipsoidal capsules of hydroxyapatite and calcium silicate:preparation and application in drug delivery[J]. J. Mater. Chem.2008,18:2722-2727.
    [173]Hui J, Xiang G, Xu X, et al. Monodisperse F-substituted hydroxyapatite single-crystal nanotubes with amphiphilic surface properties[J]. Inorg. Chem.2009,48:5614-5616.
    [174]Sun XM, Li YD. Colloidal carbon spheres and their Core/shell structures with noble metal nanoparticles[J]. Angew. Chem. Int. Edit.2004,43:597-601.
    [175]Yates MZ, Liu DX. Fabrication of size-tunable TiO2 tubes using rod-shaped calcite templates[J]. Langmuir 2007,23:10333-10341.
    [176]Mayers B, Jiang XC, Sunderland D, et al. Hollow nanostructures of platinum with controllable dimensions can be synthesized by templating against selenium nanowires and colloids[J]. J. Am. Chem. Soc.2003,125:13364-13365.
    [177]Sun ZC, Bai F, Wu HM, et al. Hydrogen-bonding-assisted self-assembly:monodisperse hollow nanoparticles made easy[J]. J. Am. Chem. Soc.2009,131:13594-13595.
    [178]Wang Q, Huang WH, Wang DP, et al. Preparation of hollow hydroxyapatite microspheres[J]. J. Mater. Sci.:Mater. Med.2006,17:641-646.
    [179]Sun RX, Chen KZ, Lu YP. Fabrication and dissolution behavior of hollow hydroxyapatite microspheres intended for controlled drug release[J]. Mater. Res. Bull.2009,44:1939-1942.
    [180]Ma MG, Zhu JF. Solvothermal synthesis and characterization of hierarchically nanostructured hydroxyapatite hollow spheres[J]. Eur. J. Inorg. Chem.2009,36:5522-5526.
    [181]He WH, Tao JH, Pan HH, et al. A size-controlled synthesis of hollow apatite nanospheres at water-oil interfaces[J]. Chem. Lett.2010,39:674-675.
    [182]Talapin DV, Lee JS, Kovalenko MV, et al. Prospects of colloidal nanocrystals for electronic and optoelectronic applications[J]. Chem. Rev.2010,110:389-458.
    [183]Xia Y, Xiong Y, Lim B, et al. Shape-controlled synthesis of metal nanocrystals:simple chemistry meets complex physics? [J]. Angew. Chem., Int. Ed.2009,48:60-103.
    [184]Daniel MC, Astruc D. Gold nanoparticles:assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology[J]. Chem. Rev.2004,104:293-346.
    [185]Aslan K., Wu M, Lakowicz JR, et al. Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms[J]. J. Am. Chem. Soc. 2007,129:1524-1525.
    [186]Rashid MH, Mandal TK. Synthesis of silver nanoprisms in DMF[J]. Nano Lett.2002,2: 903-905.
    [187]Carmon F, Barreau F, Delhaes P, et al. An experimental model for studying the effect of anisotropy on percolative conduction[J]. J. Phys. Lett.1980,41:531-533.
    [188]Bonacina L, Callegari A, Bonati C, et al. Time-resolved photodynamicas of triangular-shaped silver nanoparticles [J]. Nano Lett.2006,6:7-10.
    [189]Andersson M, Pedersen JS, Palmqvist AEC. Silver nanoparticle formation in microemulsions acting both as template and reducing agent[J]. Langmuir 2005,21: 11387-11396.
    [190]Sun Y, Mayers B, Xia Y. Transformaion of silver nanospheres into nanobelts and triangular nanoplates through a thermal process[J]. Nano Lett.2003,3:675-679.
    [191]Liu X, Luo J, Zhu J. Size effect on the crystal structure of silver nanowires[J]. Nano Lett. 2006,6:408-412.
    [192]Velikov KP, Zegers G.E, van Blaaderen A. Synthesis and characterization of large colloidal silver particles[J]. Langmuir 2003,19:1384-1389.
    [193]Wang JH, Qi LM, Zhang DB, et al. Dextran-controlled crystallization of silver microcrystals with novel morphologies[J]. Cryst. Growth Des.2004,4:1371-1375.
    [194]Zhang DE, Zhang XJ, Ni XM, et al. Fabrication and characterization of Fe3O4 octahedrons via an EDTA-assisted route[J]. Cryst. Growth Des.2007,7:2117-2119.
    [195]Lee NS, Sheng RS, Morris MD, et al. The active species in surface-enhanced Raman scattering of flavins on silver colloids[J]. J. Am. Chem. Soc.1986,108:6179-6183.
    [196]Bright RM, Musick MD, Natan MJ. Preparation and characterization of Ag colloid monolayers[J]. Langmuir 1998,14:5695-5701.
    [197]Li XH, Wang J, Zhang Y, et al. Surfactantless synthesis and the surface-enhanced raman spectra and catalytic activity of differently shaped silver nanomaterials[J]. Eur. J. Inorg. Chem.2010,12:1806-1812.
    [198]Lu Y, Mei Y, Drechsler M, et al. Thermosensitive core-shell particles as carriers for Ag nanoparticles:modulating the catalytic activity by a phase transition in networks[J]. Angew. Chem. Int. Ed.2006,45:813-816.
    [199]Steffan M, Jakob A, Claus P, et al. Silica supported silver nanoparticles from a silver(I) carboxylate:Highly active catalyst for regioselective hydrogenation[J]. Catal. Commun.2009, 10:437-441.
    [200]Beier MJ, Hansen TW, Grunwaldt JD. Selective liquid-phase oxidation of alcohols catalyzed by a silver-based catalyst promoted by the presence of ceria[J]. J. Catal.2009,266:320-330.
    [201]Rameshbabu N, Sampath Kumar TS, Prabhakar TG, et al. Antibacterial nanosized silver substituted hydroxyapatite:synthesis and characterization[J]. J. Biomed. Mater. Res. Part A 2007,80:581-591.
    [202]Diaz M, Barba F, Miranda M, et al. Synthesis and antimicrobial activity of a silver-hydroxyapatite nanocomposite[J]. J. Nanomater.2009,2009:498-505.
    [203]Ertl G, Knozinger H, Weitkamp J. Preparation of solid catalysts. Weinheim:Wiley/VCH, 1999.
    [204]Moulder JF, Stickle WF, Sobol PE, et al. Handbook of X-ray photoelectron spectroscopy, 2nd ed. Waltham, MA:PerkinElmer Corp.,1992.
    [205]Xin BF, Jing LQ, Ren ZY, et al. Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO2[J]. J. Phys. Chem. B 2005,109:2805-2809.
    [206]Kumar PA, Reddy MP, Ju LK, et al. Novel silver loaded hydroxyapatite catalyst for the selective catalytic reduction of NOx by propene[J]. Catal. Lett.2008,126:78-83.
    [207]Shen J, Shan W, Zhang Y, et al. Gas-phase selective oxidation of alcohols:In situ electrolytic nano-silver/zeolite film/copper grid catalyst[J]. J. Catal.2006,237:94-101.
    [208]Ichikawa Y, Ogata S, Torimoto T, et al. Hybridization of silver nanoparticles on hydroxyapatite in an aqueous solution[J]. J. Ceram. Soc. Japan 2009,117:294-298.
    [209]Kato H, Asakura K, Kudo A. Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high Crystallinity and surface nanostructure[J]. J. Am. Chem. Soc.2003,125:3082-3089.
    [210]Maeda K, Takata T, Hara M, et al. GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting[J]. J. Am. Chem. Soc.2005,127:8286-8287.
    [211]Kato H, Kobayashi H, Kudo A. Role of Ag+ in the band structures and photocatalytic properties of AgMO3 (M:Ta and Nb) with the perovskite structure[J]. J. Phys. Chem. B 2002, 106:12441-12447.
    [212]Xu H, Li HM, Xu L, et al. Enhanced photocatalytic activity of Ag3VO4 loaded with rare-earth elements under visible-light irradiation[J]. Ind. Eng. Chem. Res.2009,48: 10771-10778.
    [213]Shi HF, Li ZS, Kou JH, et al. Facile synthesis of single-crystalline Ag2V4O11 nanotube material as a novel visible-light-sensitive photocatalyst[J]. J. Phys. Chem. C 2011,115: 145-151.
    [214]Ouyang SH, Li ZS, Ouyang Z, et al. Correlation of crystal structures, electronic structures, and photocatalytic properties in a series of Ag-based oxides:AgAlO2, AgCrO2, and Ag2CrO4[J]. J. Phys. Chem. C 2008,112:3134-3141.
    [215]Ouyang SX, Kikugawa N, Chen D, et al. A systematical study on photocatalytic properties of AgMO2 (M=Al, Ga, In):Effects of chemical compositions, crystal structures, and electronic structures[J].J. Phys. Chem. C 2009,113:1560-1566.
    [216]Yi ZG, Ye JH, Kikugawa N, et al. An orthophosphate semiconductor with photooxidation properties under visible-light irradiation[J]. Nat. Mater.2010,9:559-564.
    [217]Umezawa N, Shuxin OY, Ye JH. Theoretical study of high photocatalytic performance of Ag3PO4[J]. Phys. Rev. B.2011,83:035202-035208.
    [218]Ide Y, Matsuoka M, Ogawa M. Efficient visible-light-induced photocatalytic activity on gold-nanoparticle-supported layered titanate[J]. J. Am. Chem. Soc.2010,132:16762-16764.
    [219]Zeng HB, Liu PS, Cai WP, et al. Controllable Pt/ZnO porous nanocages with improved photocatalytic activity[J]. J. Phys. Chem. C 2008,112:19620-19624.
    [220]Xin BF, Jing LQ, Ren ZY, et al. Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO2[J]. J. Phys. Chem. B 2005,109:2805-2809.
    [221]Hu C, Peng T, Hu XX, et al. Plasmon-induced photodegradation of toxic pollutants with Ag-AgI/Al2O3 under visible-light irradiation[J]. J. Am. Chem. Soc.2010,132:857-862.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700