用户名: 密码: 验证码:
水热法中发光材料的形貌控制合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料的物理和化学性质依赖于他们的形貌和尺寸。控制纳米材料的形状合成对研究纳米材料的性质与形貌和尺寸的关系有着重要的作用,是当前纳米材料学研究的热点之一。控制纳米材料的形貌的合成方法可以分为两类:通过控制纳米材料的生长参数来实现控制纳米材料形貌的目的;通过模板的限制作用控制纳米粒子的形貌。本文用这两种方法对控制纳米材料形貌做了研究,得到了若干很有意义的结果。
     本文的主要研究内容和结果摘要如下:
     将模板的优点和简单的水热法结合起来,在低温(150℃)下利用水热处理过程在纳米氧化铝模板孔洞中成功的制备了大面积、高填充率、致密的稀土氢氧化物Tb(OH)_3纳米线阵列。对其结构进行了表征,研究了其发光性质。对制备工艺进行了系统的阐述,提出了水热模板法合成Tb(OH)_3纳米线的生长机制。这种方法克服了以前使用诸如CVD,sol-gel,以及电化学沉积方法等结合模板法合成纳米材料结构存在的问题。水热模板法提供了合成多种类型的纳米线和纳米线阵列的新思维,拓宽了氧化铝模板辅助合成技术的应用范围。
     利用水热法,通过添加络合试剂Na_2H_2EDTA,以控制反应试剂的释放速度,降低晶体的生长速度,最终达到控制晶体的形貌目的,成功地合成了截角八面体YF_3微纳米晶体。对其结构进行了表征,对制备工艺进行了系统的阐述,提出了截角八面体YF_3微纳米晶体的生长机制。研究了不同的镧系元素氟化物的生长习性。发现不同晶体结构的镧系元素氟化物的最终形貌也不相同。对于这些合成与机制的研究是对控制大范围的微纳米粒子的几何学的基础,更重要的是对由下到上技术在未来器件上的成功的应用的基础。
     在已合成的截角八面体稀土氟化物微纳米晶体基础上,研究了稀土离子掺杂在截角八面体YF_3微纳米晶体中的光学性质。在研究过程中观测到了一些与文献报道不同的光学性质。室温下的光致发光显示,除了Eu~(3+)的红色特征发射峰外,在393nm激发条件下在445nm处还存在有来之于Eu~(2+)的4f~65d到4f~7跃迁的很强的蓝光发射带。结果显示在180℃下水热制备YF_3∶Eu材料时发生了氧化还原反应,在制备过程中一部分Eu~(3+)离子被还原到二价Eu~(2+)离子。YF_3∶Eu在390nm处的强的蓝光发射在未来将有很好的应用。我们可以通过调节激发波长来实现对Eu离子发光性质的调制。这种制备方法为其他氟化物纳米荧光体的制备提供了一种简单的途径。
     通过一种简单的、没有添加模板和有机添加物的水热方法首先成功的合成出了复杂的三维α-Mn花状分等级结构。相邻的花状结构可以进一步结合,最终相互之间自组装为相连的多孔连续网络状结构。选区电子衍射和高分辨透射电子显微镜照片显示这些纳米片是发育很好的单晶。研究表明在反应系统中先形成的复合体对最终产物的形貌有着至关重要的作用。我们的结果显示复杂的纳米结构材料也可以用化学的方法来合成。这种形成过程简单有效,为合成其他具有高的表面积和体积比的复杂结构提供了可能,同时对自然的和人为的复杂结构的潜在矿化机制的理解有所帮助。
As we all knew that nanomaterials exhibit a wide range of physical and chemical properties that depend sensitively on both size and shape, and are of both fundamental and technological interest. Nanomaterials shape control is one of the most important research points. There are two kinds of shape control method: controlling the growth kinetics and using a template. Here, we use these two methods to achieve shape control and get some new results.
     Hexagonal wurtzite structure Tb(OH)_3 nanowires with a uniform diameter have been synthesized on a large scale via a hydrothermal treatment based on the use of an anodic aluminum membrane (AAM) as template. Aligned Tb(OH)_3 nanowire arrays can be obtained by dissolving the template. Furthermore, a growth mechanism of the Tb(OH)_3 nanowires using hydrothermal-template synthesis technique has preliminarily been proposed. This approach greatly conquers the difficulties encountered in the template-based preparation methods used previously, such as the CVD, the sol-gel and the electrochemical deposition. The hydrothermal-template method opens up a new way to synthesize many other types of nanowires and nanowire arrays, and widen the applications of the AAM-assisted synthesis technique.
     Highly uniform and monodisperse YF3 nano- and submicro-sized truncated octahedra are successfully prepared in large quantities using a facile hydrothermal approach assisted by a capping reagent, ethylenediamine tetraacetic acid disodium salt (Na_2H_2EDTA). The formation mechanism of the YF3 truncated octahedra is discussed. Our study shows that the results for different rare earth fluorides are similar to each other, but the images have some differences due to different crystal structures. These synthetic and mechanistic studies may be the basis for controlling the geometry of a wide range of nano/micro particles, and more importantly, for the success of bottom-up approaches toward future devices.
     Highly uniform and monodisperse Eu:YF_3 nano- and submicro-sized truncated octahedra are successfully prepared in large quantities using a facile hydrothermal approach assisted by a capping reagent, ethylenediamine tetraacetic acid disodium salt (Na_2H_2EDTA). The photoluminescence spectra at room temperature show that except for the characteristic red emission peaks of Eu~(3+), an intense blue emission band centered at about 445 nm originating from the 4f~65d to 4f~7 configuration in Eu~(2+) is also observed when excited at 393 nm, which is quite different from those reported previously. The results reveal that there should be a redox reaction during hydrothermal preparation of YF_3:Eu at 180°C, and some of the Eu~(3+) ions should have been reduced to the divalent state in the preparation process. The intense 390-nm emission for YF_3:Eu may be found applications in the near future. This preparation method provides a simple route to synthesize other fluoride nanophosphors.
     Complex 3Dα-MnS flowerlike hierarchical architectures with 1-2μm in diameter built up of ultrathin nanosheets have been synthesized firstly by a simply hydrothermal method free from templates or matrixes and organic additives. Adjacent flowerlike architectures can further expand and eventually self-assembled themselves into interconnected porous continuous networks. Studies show that the formation of complexes in the reaction system is vital to the morphology of the final product. The simplicity of the fabrication process described herein would open up the possibility of being further explored to create other complex forms with extremely high surface-to volume ratio and brings new insights into the underlying mineralization mechanisms of complex nanoarchitectures in the natural and synthetic world.
引文
[1] R. P. Feynman, Science, 1991, 254, 1300.
    [2] 张立德,牟季美,纳米材料和纳米结构,科学出版社,2001.
    [3] 王世敏,许祖勋,傅晶,纳米材料制备技术,化学工业出版社,2001.
    [4] C. Suiyanarayana, F. H. Froes, Metall. Trams., 1992, A23, 1071.
    [5] A. D. Yoffe, Advancees in Physics, 1993, 2, 173.
    [6] M. Mark, et al., Catal. Today, 1991, 8,467.
    [7] H. F. Schaefer, R. Wurschum, Phys. Left, 1987, A119, 370.
    [8] 裘式纶,瞿庆洲,肖丰收,张宗涛,化学研究与应用,1998,10(4),331.
    [9] S.C. Tsang, Y K. Chen, P.J. Harris, Nature, 1994, 372, 159.
    [10] 李新勇,李树本,化学进展,1996,8(3),231.
    [11] V. G. Gryaznov, L. I. Trusov, Prog. Mater. Sci., 1993, 37(4), 289.
    [12] Y. Zhu, R. Birringer, U. Herr, H. Gleiter, Phys. Rev., 1987, B35, 9085.
    [13] H. Gleiter, Prog. Mater. Sci., 1989, 33,223.
    [14] J. Epperson, R. Siegel, Mater. Res. Soc. Syrup. Proc., 1989, 132, 15.
    [15] D. Li, D. Ping, Q. Ye, X. Wu, Mater. Lett., 1993, 18(1-2), 29.
    [16] L. E. Brus, J. Phys. Chem., 1985, 80, 4403.
    [17] L. E. Brus, J. Phys. Chem., 1986, 89, 2555.
    [18] P.Ball, L. Garwin, Nature, 1992, 355,762.
    [19] Q. Li, G. Zeng, S. Xi, Chinese Chemical Bulletin, 1995, 6, 129.
    [20] P. Ball, L, Garwin, Nature, 1992, 355,761.
    [21] Y. Ping, G. C. Hdjinanayis, et al. Appl. Phys., 1990, 67, 4502.
    [22] A. Hagfeidt, M. Gratzel, Chem. Rev., 1995, 95, 49.
    [23] R. Kubo, J. Phys. Soc. Jpn., 1962, 17, 975.
    [24] A. Henglein, Chem. Rev. 1989, 891,861.
    [25] H. Weller, A. Eychmuler, et al., Advances in Photochemistry, Vol 20, John Wiley & Sons. Inc., 1995.
    [26] Y. Wang, N. J. Herron, J. Phys. Chem., 1991, 95, 525.
    [27] L. E. Brus, J. Phys. Chem., 1985, 80, 4403
    [28] L. E. Brus, J. Phys. Chem., 1986, 89, 2555.
    [29] A. J. Legget, S. Chakravarty, et ah, Rev. Mod. Phys., 1987, 59, 1.
    [30] S. Linderoth, S. Morup, J. Appl. Phys., 1990, 67, 4996.
    [31] A. J. Leggett, S. Chakravarty, Phys. Chem. Lett., 1990, 65, 783.
    [32] T. Takagahara, Phys. Rev. B, 1993, 47(8), 4569.
    [33] K. A. Littau, P. J. Szajowski, A. J. Muller, et al., J. Phys. Chem., 1993, 97(6), 1224.
    [34] Y. Kanernitsu, Appl. Phys. Lett., 1992, 18, 2187.
    [35] Y. Masumoto, J. Lumin., 1994, 60, 256.
    [36] R. N. Bhargagra, D. Gallagher, Phys. Rev. Lett., 1994, 15(10), 1234.
    [37] A. I. Ekimov, A. I. L. Efroc, A. A. Onushchenko, Solid State Commun., 1985, 56, 921.
    [38] R. Roussignool, D. Ricard, Phys. Rev. Lett., 1989, 62, 312.
    [39] X. Ai, H. Fei, Y. Yang, et al., J. Lumin., 1994, 60-1,364.
    [40] Y. Wang, Acc. Chem. Res., 1991, 24(5), 133.
    [41] T. Takagahara, Phys. Rev. B, 1993, 47(8), 4569.
    [42] K. S. Suslick, S. B. Choe, A. A. Cichowlas, Nature, 1991, 353,414.
    [43] C. C. Kock, Nanostructured Lett., 1993, 2, 109.
    [44] K. R.Venkatachari, et al., J. Mater. Res., 1995, 10, 248.
    [45] V. L. Kuzrretsov et al., Carbon, 1991, 29, 665.
    [46] 王大志等,材料学报,1995,10(3),281.
    [47] R. W. Siegles, et al., J. Mater. Res., 1996, 11, 1199.
    [48] W. Chang, et al., Nanostructured Materials, 1994, 4, 507.
    [49] J. L. Shi, et al., J. Eur. Ceram. Soc., 1993, 13,265.
    [50] J. M. McHale, et al., J. Mater. Res., 1996, 11, 1199.
    [51] T. W. Shaw, et al., J. Am. Cer. Soc., 1986, 69(2), 979.
    [52] J. A. Switzer, M. L. Shane, R. Phillios, Science, 1990, 247, 444.
    [53] Kaiharak et al., J. Am. Chem. Soc., 1983, 105, 2574.
    [54] Y. J. Zhu, Y. T. Qian, J. Mater. Chem., 1994, 4, 1619.
    [55] P. D. Ramesh, et al., J. Mater. Res., 1994, 9, 3025.
    [56] P. S. Joachin, et al., Adv. Mater., 2002, 14(24), 1827.
    [57] Y. L.Wang, Y. N. Xia, Nano Lett., 2004, 4, 2047.
    [58] S. W. Chung, D. S. Ginger, M. W. Morales, et al., Small, 2005, 1, 64.
    [59] M. D. Kempe, N. R. Scruggs, et al., Nature Materials, 2004, 177.
    [60] Y. N. Xia, P. D. Yang, Y. G. Sun, et al., Adv. Mater., 2003, 15, 353.
    [61] J. L. Liu, T. W. Odom, C. M. Liber, Ace. Chem. Res., 1999, 32, 435.
    [62] C. M. Liber, Solid State Commun., 1998, 107, 607.
    [63] H. Dai, E. W. Wong, Y. Z. Lu, C. M. Liber, Nature, 1995, 375, 769.
    [64] D. Routkevitch, T. Bigioni, M. Moskovits, J. M. Xu, J. Phys. Chem., 1996, 100, 14037.
    [65] C. R. Martin, Science, 1994, 266, 1961.
    [66] A. M. Morates, C. M. Liber, Science, 1998, 279, 208.
    [67] P. Yang, C. M. Liber, Science, 1996, 273, 1836.
    [68] M. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, et.al., Science, 2001, 292,189.
    [69] P. Yang, C. M. Liber, J. Mater. Res., 1997, 12,291.
    [70] Z. W. Pen, Z. R. Dai, Z. L. Wang, Science, 2001, 291, 1947.
    [71] N. Wang, Y. H. Tang, Y. F. Zhang, et al., Phys. Rev. B, 1998, 12, R16024.
    [72] R. P. Kalakodimi, K. Kazumichi, M. Norio, Chem. Mater., 2004, 16(10), 1845.
    [73] A. Stein, S. W. Keller, T. E. Mallouk, Science, 1993, 208, 263.
    [74] W. E. Buhro, K. M. Hickman, T. J. Trentler, Adv. Mater., 1996, 8, 685.
    [75] X. G. Peng, L. Manna, W. D. Yang, et al., Nature, 2000, 404, 59.
    [76] S. H. Yu, J. Ceram. Soc. Jpn., 2001, 109, S65.
    [77] S. H. Yu, M. Yoshimura, Adv. Mater., 2002, 14, 196.
    [78] E. Dujardin, S. Mann, Adv. Mater., 2002,14,775.
    [79] A. P. Alivisaos, Science, 2000, 289, 736.
    [80] A. Chemseddine, T. Mortz, Eur. J. Inorg. Chem., 1999, 235.
    [81] W. S. Shi, H. Y. Peng, Y. F. Zheng, N.Wang, et al., Adv. Mater., 2000, 12, 1343.
    [82] R. S. Wagner, W. C. Ellis, Appl. Phys. Lett., 1964, 4, 89.
    [83] X. F. Duan, C. M. Lieber, Adv. Mater., 2000, 12, 298.
    [84] X. F. Duan, C. M. Lieber, J. Am. Chem. Soc., 2000, 122, 188.
    [85] Y. Wu, R Yang, Chem. Mater., 2000, 12, 605.
    [861 Z.Yu; Z. M.Yang, S. Wang, et al Chem. Vapor. Depos., 2005.11(10). 433.
    [87] T. P. Leervad Pedersen, J. S Jensen, J. Chevaltier. et al.. Appl. Phys. A-Mater., 2005.81 (8), 1591.
    [88] X. P. Shen, H. J. Liu, X. Fan, et al.. J. Cryst. Growth. 2005. 276(3-4). 471.
    [89] L. Armelao. D. Barreca, G. Bottaro. et al. J. Nanosci. Nanotechno., 2005.5(5), 781.
    [90] Y. Wu, R Yang, J. Am. Chem. Soc., 2001, 123, 3165.
    [91] T. J. Trentler, K. M. Hickman, S. C. Geol, A. M. Viano, R C. Gibbons, W. E. Buhro, Science,1995, 270, 1791.
    [92] 施尔畏,夏长泰,王步国,仲维卓,无机材料学报,1996,11,193.
    [93] 苏勉曾,谢高阳,申泮文等译,固体化学及其应用,复旦大学出版社,1989.
    [94] M. Guo, P.Diao. S. M. Cai, Appl. Surf. Sci., 2005, 249(1-4), 71.
    [95] J. H. Lee. M. Kang, S. J. Choung, et al., Water. Res., 2004, 38(3). 713.
    [96] T. Zhang. C. G. Jin. T. Qian, X. L,. Lu, et al., J. Mater. Chem., 2004, 14, 2784.
    [97] K. Yanagisawa, M. Nishioka, J. Nucl. Sci. Tech., 1986, 23,550.
    [98] K. Yanagisawa, M. Nishioka, J. Nucl. Sci. Tech., 1989, 26, 395.
    [99] R. E. Morris, S. J. Weigel, Chem. Soc. Rev., 1997, 26(4), 309.
    [100] W. S. Sheldrick, M. Wachhold, Angew. Chem. Int. Ed. Engl., 1997, 36, 206.
    [101] Z. H Li, J. H. Zcng, Y. D. Li, SMALL, 2007.3(3). 438.
    [102] S. Bison.as. S. Kar, S. Chaudhuri. J. Cryst. Growth., 2007. 299(1). 94.
    [103] Y. C. Zhang, G. Y. Wang, X. Y. Hu, et al. Mater. Res. Bull., 2006, 41(10), 1817.
    [104] S. Kar. A. Dev, S. Chaudhuri. J. Phys. Chem. B. 2006, 110(36), 17848.
    [105] G. F. Zou. H. Li, Y. G. Zhang, et al.. Nanotcchology. 2006, 17(11), S313.
    [106] A. R. Roosen, W. C. Carter, Physica A, 1998, 261,232.
    [107] E. Matijevic, Chem. Mater., 1993, 5,412.
    [108] Y. G. Sun, Y. D. Yin, B. B. Mayers, T. Herricks, Y. N. Xia, Chem. Mater., 2002, 14, 4736.
    [109] K. K. Caswell, C. M. Bender, C. J. Murphy, Nano Lett., 2003, 3,667.
    [110] J. F. Banfield, S. A. Welch, H. Zhang, T. T. Ebert, R. L. Penn, Science, 2000, 289, 751.
    [111] R. L. Penn, J. F. Banfield, American Mineralogist, 1998, 83, 1077.
    [112] A. Chemseddine, T. Moritz, Eur. J. Inorg. Chem., 1999, 235.
    [113] X. W. Lou, H. C. Zeng, J. Am. Chem. Soc., 2003, 125, 2697.
    [114] R. L. Penn, A. T. Stone, D. R. Veblen, J. Phys. Chem. B., 2001, 105, 4690.
    [115] R. L. Penn, J. F. Banfield, Science, 1998, 281,969.
    [116] H. G. Yang, H. C. Zeng, Angew. Chem. Int. Fd., 2004, 43, 5930.
    [117] C. Pacholski, A. Kornowski, H. Weller, Angew. Chem. Int. Ed., 2002, 41, 1188.
    [118] X. W. Lou, H. C. Zeng, J. Am. Chem. Soc., 2003, 125, 2697.
    [119] B. Liu, H. C. Zeng, J. Am. Chem. Soc., 2003, 125, 4430.
    [120] B. Liu, H. C. Zeng, J. Am. Chem. Soc., 2004, 126, 8124.
    [121] E. Olson, G. C. Spalding, A. M. Goldman, M. J. Rooks, Appl. Phys. Lett., 1994, 65, 2740.
    [122] G. Y. Zhao, C. L. Xu. D. J. Guo, et al.. J. Power. Sources., 2006, 162 (1), 492.
    [123] G. Fasol, Science, 1998, 280, 545.
    [124] M. P. Zach, K. H. Ng, R. M. Penner, Science, 2000, 290, 2120.
    [125] H. J. Kim, Y. Roh, B. Hong, J. Vac. Sci. Twchnol. A. 2006, 24(4), 1327.
    [126] C. N. R. Rao, A. Govindaraj, F. L. Deepak, et al., Appl. Phys. Lett., 2001, 78 (13), 1853.
    [127] M. E. Spahr, P. Bitterli, R. Nesper, et al., Angew. Chem. Int. Ed., 1998, 37(9), 1263.
    [128] X. R. Zhang, X. Y. Yuan, Y. Zhang. et al., Chem. Lett., 2005. 34(7), 896.
    [129] A. Goldbach, L. Iton, M. Grimsditch, et al., J. Am. Chem. Soc., 1996, 118(8), 2004.
    [130] W. Han, S. Fan, Q. Li, Y. Hu, Science, 1997, 277, 1287.
    [131] H. Masuda, K. Fukuda, Science, 1995, 268, 1466.
    [132] J. Choi, G. Sauer, K. Nielsch, R. B. Wehrspohn, U. Gosele, Chem. Mater., 2003, 15, 776.
    [133] Z. H. Hua, R. S. Chen. C. L. Li. et al.. J. Alloy. Compd. 2007, 427(1-2), 199.
    [134] M. C. Hsu, I. C. Leu, Y. M. Sun, et al., J. Solid. State. Chem., 2006. 179(5), 1421.
    [135] S. Kato, H. Kitazawa, G. Kido, J. Magn. Magn. Mater., 2004, 272, 1666.
    [136] C. G. Jin, G. W. Jiang, W. F. Liu, W. L. Cai, L. Z. Yao, Z. Yao, X. G. Li, J. Mater. Chem., 2003, 13, 1743.
    [137] C. G. Jin, X. Q. Xiang, C. Jia, W. F Liu, W. L. Cai, L. Z. Yao, X, G. Li, J. Phys. Chem. B, 2004, 108, 1844.
    [138] D. Xu, Y. Xu, D. Chen, G. Guo, L. Gui, Y. Tang, Adv. Mater., 2000, 12, 520.
    [139] M. J. Zheng, L. D. Zhang, G. H. Li, W. Z. Shen, Chem. Phys. Lett., 2002, 363, 123.
    [140] Y. H. Wang, C. H. Ye, X. S. Fang, L. D. Zhang, Chem. Lett., 2004, 33, 166.
    [141] C. R. Martin, Science. 1994, 266, 1961.
    [142] L. T. Qu, G. Q. Shi, X. F. Wu, B. Fan, Adv. Mater., 2004, 16, 1200.
    [143] S. H. Zhang, Z. X. Xie, Z. Y. Jiang, X. Xu, J. Xiang, R. B. Huang, L. S. Zheng, Chem. Commun., 2004, 7, 1106.
    [144] X. Y. Yuan, G. S. Wu, T. Xie, B. Y. Geng, Y. Lin, G.W. Meng, L. D. Zhang, Solid State Sciences, 2004, 6, 735.
    [145] Y. B. Mao, S. S. Wang, J. Am. Chem. Soc., 2004, 126, 15245.
    [146] B. B. Parthasarathy, C. R. Martin, Chem. Mater., 1997, 9, 857.
    [147] Y. Lei, L. D. Zhang, G. W. Meng, G. H. Li, X. Y. Zhang, C. H. Liang, W. Chen, S. X. Wang, Appl. Phys. Lett., 2001, 78, 1125.
    [148] H. Xu, D. H. Qin, Z. Yang, H. L. Li, Mater. Chem. Phys., 2003, 80, 524.
    [149] H. Q. Cao, X. Q. Qiu, Y. Liang, Q. M. Zhu, Appl. Phys. Lett., 2003, 83,761.
    [150] L. Yang, Y. Li. Y. H. Xiao. et al., Chem. Lett., 2005, 34(6), 828.
    [151] H. Q. Cao, Y. Xu, J. M. Hong, H. B. Liu, G Yin, B. L. Li, C. Y. Tie, Z. Xu, Adv., Mater., 2001, 13, 1393.
    [152] K. Zhou, H. L. Li, J. Mater. Chem,, 2002, 12,681.
    [153] B. Jin, S. L. Tang, B. L. Xu, B. X. Gu, Y. W. Du. Chem. Phys. Lett., 2003, 379, 484.
    [154] C. H. Liu. J. A. Zapion, Y. Yao., et al.. Adv. Mater.. 2003, 15, 838.
    [155] G. S. Cheng, L. D. Zhang, Y. Zhu, G. T. Fei, L. Li, C. M. Mo, Y. Q. Mao, Appl. Phys. Lett.,1999, 75, 2455.
    [156] X. Y. Zhang, L. D. Zhang, G. W. Meng, G. H. Li, N. Y. Jin-Phillipp, F. Phillipp, Adv. Mater., 2001, 13, 1238.
    [157] G. P. Sklar, K. Paramgurn, M. M isra. et al.. Nanotechology., 2005.16(8), 1265.
    [158] S. J. limmer, S. Seraji, M. J. Forbess, Y. Wu. T. P. Chou, C. Nguyen, G. Z. Gao, Adv. Mater., 2001, 13, 1269.
    [159] S. J. limmer, S. Seraji, Y. Wu, T. P. Chou, C. Nguyen, G. Z. Gao, Adv. Funct. Mater., 2002, 12, 59.
    [160] S. J. limmer, G. Z. Gao, Adv. Mater., 2003, 15,427.
    [161] Z. Miao, D. S. Xu, J. H. Quyang, G. L. Guo, X. S. Zhao, Y. Q. Tang, Nano. Lett., 2002, 2, 717.
    [162] Y. Lin, F. Q. Sun, X. Y. Yuan, B. Y. Geng, L. D. Zhang, Appl. Phys. A, 2004, 78, 1197.
    [163] H. B. Xu, H. Z. Chen. W. J. Xu, et al. Chem. Phys. Lett., 2005. 412(4-6), 294.
    [164] 张吉林,洪广言.发光学报2005,26(3),285.
    [165] 徐长远,王永生,黄最明等,光电子技术与信息,1997,10(1),8.
    [166] 杨应国,袁曦明等,一种高亮度小颗粒发蓝光荧光体及其制备方法[P],中国专利,2003,0310111258.
    [1] S. M. Prokes, K. L. Wang, MRS Bull., 1999, 24 (8), 13.
    [2] Z. Zhang, X, Sun, M. S. Dresselhaus, J. Y. Ying, Phys. Rev. B, 2000, 61, 4850.
    [3] M. Bockrath, W. Liang, D. Bozovic, J. H. Hafner, C. M. Lieber, M. Tinkham, H. Park, Science, 2001, 291,283.
    [4] S. Liu, J. Yue, A. Gedanken, Adv. Mater., 2001, 13,656.
    [5] Y. Zhou, S. H. Yu, C. Y. Wang, X. G. Li, Y. R. Zhu, Z. Y. Chen, Adv. Mater., 1999, 11, 850.
    [6] Y. Zhou, S. H. Yu, X. P. Cui, C. Y. Wang, Z. Y. Chen, Chem. Mater., 1999, 11,545.
    [7] J. J. Zhu, X. H. Liao, X. N. Zhao, H. Y. Chen, Mater. Lett., 2001, 49, 91.
    [8] Z. P. Liu, Y. Yang, J. B. Liang, Z. K. Hu, S. Li, et al., J. Phys. Chem. B, 2003, 107, 12658.
    [9] Z. P. Liu, S. Li, Y. Yang, et al., Adv. Mater., 2003, 15, 1946.
    [10] D. N. Davydov, T. Haruyama, D. Routkevitch, B. W. Statt, D. Ellis, M. Moskovits, J. M. Xu, Phys. Rev. B, 1998, 57, 13550.
    [11] T. M. Whiteney, J. S. Jiang, P. C. Searson, C. L. Chien, Science, 1993, 261, 1316.
    [12] P. M. Ajayan, O. Stephan, C. Colliex, Nature, 1995, 375, 564.
    [13] A. Govindaraj, B. C. Satishkumar, M. Nath, C. N. R. Rao, Chem. Mater., 2000, 12, 202.
    [14] S. Bhattacharrya, S. K. Saha, D. Chakravorty, Appl. Phys. Lett., 2000, 76, 3896.
    [15] D. Zhang, L. Qi, J. Ma, H. Cheng, Chem. Mater., 2001, 13, 2753.
    [16] J. J. L. M. Cornelissen, R. V. Heerbeek, et al., Adv. Mater., 2002, 14, 489.
    [17] E. Braun, Y. Eichen, et al., Nature, 1998, 391,775.
    [18] Y. Eichen, E. Braun, et al., Acta. Polym., 1998, 49, 663.
    [19] N. R. Jana, L. Gearheart, C. J. Murphy, Chem. Commun., 2001, 617.
    [20] M. A. El-Sayed, Acc. Chem. Res., 2001, 34, 257.
    [21] C. J. Murphy, N. R. Jana, Adv, Mater., 2002, 14, 80.
    [22] X. Jiang, Y. Xie, J. Lu, L. Zhu, et al., J. Mater. Chem., 2001, 11, 1775.
    [23] L. Huang, H. Wang, et al., Adv. Mater., 2002, 14, 61.
    [24] B. R. Martin, D. J. Dermody, et al., Adv. Mater., 1999, 11, 1021.
    [25] Z. Zhang, D. Gekhtman, et al., Chem. Mater., 1999, 11, 1659.
    [26] C. R. Martin, D. T. Mitchell, Electroanal. Chem., 1999, 21, 1.
    [27] V. M. Cepak, C. R. Martin, Chem. Mater., 1999, 11, 1363.
    [28] Y. J. Han, J. M. Kim, G. D. Stucky, Chem. Mater., 2000, 12, 2068.
    [29] M. H. Huang, A. Choudrey, P. Yang, Chem. Commun., 2000, 1063.
    [30] M. J. Edmondson, W. Zhou, et al., Adv. Mater., 2001, 13, 1608.
    [31] P. M. Ajayan, S. lijima, Nature, 1993, 361,333.
    [32] D. Ugarte, A. Chatelain, et al., Science, 1996, 274, 1897.
    [33] C. R. Martin, Science, 1994, 266, 1961.
    [34] A. Huczko, Appl. Phys. A, 2000, 70, 365.
    [35] Q. B. Wu, S. Ren, S. Z. Deng, J. She, J. C. Chen, N. S. Xu, Surf. Interface Anal, 2004, 36, 493.
    [36] B. Lakshmi, J. Charles, C. R. Martin, Chem. Mater.,1997, 9, 2544.
    [37] M. Sun, G. Zangari, M. Shamuzzzoha, R. M. Metzger, Appl. Phys. Lett., 2001, 78, 2964.
    [38] C. G. Jin, X. Q. Xiang, C. Jia, W. F. Liu, W. L. Cai, L. Z. Yao, X. G. Li, J. Phys. Chem. B, 2004, 108, 1844.
    [39] E. Matijevi, Chem; Mater., 1993, 5, 412.
    [40] L. D. Keklikian, I. Haq, E. Matijevi, Colloids Surfaces A, 1994, 92, 267.
    [41] K. Matsui, T. Kyotani, A. Tomita, Adv. Mater., 2002, 14, 1216.
    [42] X. Wang, Y. D. Li, Chem. Eur. J., 2003, 9, 5627.
    [43] X. Wang, Y. D. Li, Angew. Chem. Int. Ed., 2002, 41, 4790.
    [44] A. W. Xu, Y. P. Fang, L. P. You, H. Q. Liu, J. Am. Chem. Soc., 2003, 125, 1494.
    [45] M. Yada, M. Mihara, S. Mouri, M. Kuroki, T. Kijima, Adv. Mater., 2002, 14, 309.
    [46] X. Wang, X. M. Sun, D. P. Yu, B. S. Zou, Y. D. Li, Adv. Mater., 2003, 15, 1442.
    [47] W. Q. Han, L. J. Wu, Y. M. Zhu, J. Am. Chem. Soc., 2005, 127, 12814.
    [48] G. S. Wu, L. D. Zhang, B. C. Cheng, T. Xie, X. Y. Yuan, J. Am. Chem. Soc., 2004, 126, 5976.
    [49] H. Masuda, H. Yamada, M. Satoh, H. Asoh, Appl. Phys. Lett., 1997, 71, 2770.
    [50] J. F. Banfield, S. A. Welch, H. Z. Zhang, T. T. Ebert, R. L. Penn, Science, 2000, 289, 751.
    [51] Y. B. Mao, S. S. Wong, J. Am. Chem. Soc., 2004, 126, 15245.
    [52] C. R. Martin, Science, 1994, 266, 196.
    [53] L. T. Qu, G. Q. Shi, X. F. Wu, B. Fan, Adv. Mater., 2004, 16, 1200.
    [54] S. H. Zhang, Z. X. Xie, Z. Y. Jiang, X. Xu, J. Xiang, R. B. Huang, L. S. Zheng, Chem. Commun., 2004,, 7, 1106.
    [55] X. Y. Yuan, G. S. Wu, T. Xie, B. Y. Geng, Y. Lin, G. W. Meng, L. D. Zhang, Solid State Sciences, 2004, 6, 735.
    [56] F. S. Liu, W. J. Ma, Q. L. Liu, J. K. Liang, J. Luo, L. T. Yang, G. B. Song, Y. Zhang, G. H. Rao, Appl. Surf. Sci., 2005, 245, 39.
    [57] 张克从、张乐潓主编,《晶体生长科学与技术》第二版,科学出版社,1997.
    [1] 李懋强,硅酸盐学报,1994,22(1),85.
    [2] 徐华蕊,李凤生,陈舒林等,化工进展,1996,(5),29.
    [3] S. L. Jones, C. J. Norman, J. Am. Ceram. Soc., 1988, 71(4), C-190.
    [4] W. H. Rhodes, J. Am. Ceram. Soc.,1981, 64, 19.
    [5] 吉林大学,四川大学.物理化学与胶体化学,人民教育出社,1980,422.
    [6] 姚连增,晶体生长基础,中国科学技术大学出版社,1995,258.
    [7] 毛立娟,山东大学,硕士学位论文,济南,2005.
    [8] S. M. Lee, S. N. Cho, J.Cheon, Adv. Mater., 2003, 15,441.
    [9] P. D. Cozzoli, A. Komowski, H. Weller, J. Am. Chem. Soc., 2003, 125, 14539.
    [10] L. Manna, E. C. Scher, A. P. Alivisatos, J. Am. Chem. Soc., 2000, 122, 12700.
    [11] Y. W. Jun, S. M. Lee, N. J. Kang, J. Cheon, Am. Chem. Sot., 2001, 123, 5150.
    [12] Y. W. Jun, Y.Y. Jung, J. Cheon, J. Am. Chem. Soc., 2002, 124, 615.
    [13] Q. Song, Z. J. Zhang, J. Am. Chem. Soc., 2004, 126, 6164.
    [14] M. Yin, S. O'Brien, J. Am .Chem. Sot., 2003, 125, 10180.
    [15] A. F. David, M. E. Williams, Langmiur, 2004, 20, 3021.
    [16] H. Reiss, J. Chem. Phys., 1951, 19, 482.
    [17] J. Park, V. Privman, E. Matijevic, J. Phys. Chem B, 2001, 105, 11630.
    [18] X. Peng, J. Wickham, A. P. Alivisatos, J. Am. Chem. Soc., 1998, 120, 5343.
    [19] A. W. Murielle, G. F. Richard, J. Am. Chem. Soc.,1997, 119, 10382.
    [20] P. Wilcoxon, P. P. Provencio, J. Am. Chem. Soc., 2004, 126, 6402.
    [21] M. A. El-Sayed, Acc. Chem. Res., 2001, 34, 257.
    [22] A. P. Alivisatos, Science, 1996, 271,933.
    [23] F. Williams, A. J. Nozik, Nature, 1984, 312, 21.
    [24] X. Wang, J. Zhuang, Q. Peng, Y. D. Li, Nature, 2005, 437, 121.
    [25] A. M. Morales, C. M. Liber, Science, 1998, 279, 208.
    [26] X. G. Peng, L. Manna, W. D. Yang, J. Wickham, E. Scher, A. Kadavanish, A. P. Alivisatos, Nature, 2000, 404, 59.
    [28] T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, M. A. El-sayed, Science, 1996, 272, 1924.
    [29] S. Biswas, S. Kar, S. Chaudhuri, J. Cryst. Growth, 2005, 284, 129.
    [30] R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, J. G. Zheng, Science, 2001, 294, 1901.
    [31] M. Maillard, S. Giorgio, M. P. Pileni, J. Phys. Chem. B, 2003, 107, 2466.
    [32] X. Zhang, Y. Xie, F. Xu, X. H. Liu, D. Xu, Inorg. Chem. Commun., 2003, 6, 1390.
    [33] P. He, X. H. Shen, H. C. Gao, J. Coll. Inter. Sci., 2005, 284, 510.
    [34] Y. F. Hao, G. W. Meng, C. H. Ye, L. D. Zhang, Cryst. Growth Design, 2005, 5, 1617.
    [35] C. H. Lu, L. M. Qi, J. H. Yang, X. Y. Wang, D. Y. Zhang, J. L Xie., J. M. Ma, Adv. Mater., 2005, 17, 2562.
    [36] H. G. Yang, H. C. Zeng, Angew. Chem. Int. Et., 2004, 43, 5930.
    [37] Y. Liu, Y. Chu, Mater. Chem. Phys., 2005, 92, 59.
    [38] Z. Kollia, E. Sarantopoulou, A. C. Cefalas, C. A. Nicolaides, A. K. Naumov, et al., J. Opt. Soc. Am. B, 1995, 12, 782.
    [39] A. Kaminskii, Laser Crystals (Berlin: Springer), 1990.
    [40] J. L. Lemyre, A. M. Ritcey, Chem. Mater., 2005, 17, 3040.
    [41] Y. W. Zhang, X. Sun, R. Si, L. P. You, C. H. Yan, J. Am. Chem. Soc., 2005, 127, 3260.
    [42] X. Wang, J. Zhuang, Q. Peng, Y. D. Li, Inorg. Chem., 2006, 45, 6661.
    [43] H. X Mai., Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, C. H,Yan, J. Am. Chem. Soc., 2006, 128, 6426.
    [44] Z. L. Wang, J. Phys. Chem. B, 2000, 104, 1153.
    [45] R. L. Penn, J. F. Banfield, Science, 1998, 281,969.
    [46] J. W. Mullin, Crystallization, Butterworth-Heine-mann: London, 1977, 288.
    [1] R. N. Bhargava, D. Gallaghar, X. Hong, A. Nun'nikko, Phys. Rev Lett., 1994, 72, 416.
    [2] B. M. Tissue, Chem. Mater., 1998, 10, 2837.
    [3] M. Yin, C. Duan, W. Zhang, L. Lous, S. Xia, J. C. Krupa, J. Appl. Phys., 1999, 86, 3751.
    [4] Y. L. Soo, S. W. Huan, Y. H. Kao, V. Chabra, B. Kulkarni, J. V. D. Veliadis, R. N. Bhargava, Appl. Phys. Lett., 1999, 75, 2464.
    [5] G. A. Hebbink, J. W. Stouwdam, D. N. Reinhoudt, F. C. J. M. vanVeggel, Adv. Mater., 2002, 14, 1147.
    [6] X. Wang, Y. D. Li, Angew. Chem., 2002, 114, 4984.
    [7] A. Huignard, V. Buissette, A. C. Franville, T. Gacoin, J. P. Boilot, J. Phys. Chem. B, 2003, 107, 6754.
    [8] T. Justel, H. Nikol, C. Ronda, Angew. Chem. Int. Ed., 1998, 37, 3085.
    [9] D. B. Barber, C. R. Pollock, L. L. Beecroft, C. K. Ober, Opt. Lett., 1997, 22, 1247.
    [10] R. Reisfeld, C. K. Jorgensen, Lasers and Excited States of Rare Earths, Springer, Berlin, 1977.
    [11] K. Kawano, K. Arai, H. Yamada, N. Hashimoto, R. Nakata, Sol. Energy Mater. Sol. Cells, 1997, 48, 35.
    [12] M. Dahan, Y. Laurence, F. Pinaud, D. D. Chemla, A. P. Alivisators, M. Sauer, S. Weiss, Opt. Lett., 2001,26, 825.
    [13] 李强,高濂,严东生,无机材料化学,2001,16(1),17.
    [14] 李强,高濂,严东生,无机材料化学,1998,13(6),899.
    [15] D. K. Williams, B. Bihari, B. M. Tissue, J. Phys.Chem. B, 1998, 102, 916.
    [16] 李强,高濂,严东生,无机材料化学,1997,12(4),575.
    [17] H. Meyssamy, K. Riwotzki, Adv. Mater., 1999, 11(10), 840.
    [18] G.. Skandan, C. M. Foster, H. Frase, et al., NanoStruc. Mater., 1992, 1,313.
    [19] Z. Q. Li, H. Hahn, R. W. Siegel, Mater. Lett., 1988,(6), 342.
    [20] 李强,高濂,严东生,无机材料学报,1999,14(1),150.
    [21] M. A. El-Sayed, Acc. Chem. Res., 2001, 34, 257.
    [22] A. P. Alivisatos, Science, 1996, 271,933.
    [23] F. Williams, A. J. Nozik, Nature, 1984, 21,312.
    [24] Y. L. Soo, S. W. Huang, Z. H. Ming, Y. H. Kao, G. C. Smith, E. Goldburt, R. Hodel, B. Kulkami, J. V. D. Veliadis, R. N. Bhargava, J. Appl. Phys., 1998, 83, 5404.
    [25] H. X. Zhang, C. H. Kam, Y. Zhou, X. Q. Han, S. Buddhudu, Y. L. Lam, Opt. Mater., 2000, 15, 47.
    [26] A. Patra, C. S. Friend, R. Kapoor, N. Prasad, J. Phys. Chem. B, 2002, 106, 1909.
    [27] R. Schmechel, M. Kennedy, H. yon Seggem, H. Winkler, M. Kolbe, R. A. Fischer, X. M. Li, A. Benker, M. Winterer, H. Hahn, J. Appl. Phys., 2001, 89, 1679.
    [28] Y. Tao, G. W. Zhao, W. P. Zhang, S. D. Xia, Mater. Res. Bull., 1997, 32, 501.
    [29] T. Igarashi, M. Ihara, T. Kusunoki, K. Ohno, T. Isobe, M. Senna, Appl. Phys. Lett., 2000, 76, 1549.
    [30] G. Wakefield, E. Holland, P. J. Dobson, J. L. Hutchison, Adv. Mater., 2001, 13, 1557.
    [31] J. X. Wan, Z. H. Wang, X. Y. Chen, L. Mu, Y.T. Qian, J. Cryst. Grow., 2005, 284, 538.
    [32] W. W. Piper, J. A. Deluca, F. S. Ham, J. Lumin., 1997, 48, 344.
    [33] V. Pankratov, M. Kirm, H. Vonseggem, J. Lumin., 2005, 113,143.
    [34] J. L. Adam, Chem. Rev., 2002, 102, 2461.
    [35] J. W. Stouwdam, G. A. Hebbink, J. Huskens, F. C. van Veggel, Chem. Mater., 2003, 15, 4604.
    [36] R. X. Yan, Y. D. Li, Adv. Funct. Mater., 2005, 15,763.
    [37] Y. Cui, X. P. Fan, Z. L. Hong, M. Q. Wang, J. Nanosci. Nanotech., 2006, 6, 830.
    [38] J. L. Lemyre, A. M. Ritcey, Chem. Mater., 2005, 17, 3040.
    [39] R. Balda, J. Fernandez, J. L. Adam, M. A. Arriandiagn, Phys. Rev. B: Condens. Matter, 1996, 54, 12076
    [40] K. Riwotzki, H. Meyssamy, A. Komowski, M. Haase, J. Phys. Chem. B, 2000, 104, 824.
    [41] J. C. Krupa, M. Queffelec, J. Alloys Compd., 1997, 250, 287.
    [42] B. C. Hong, K. Kawano, J. Alloys Compd., 2006, 408-412, 838.
    [43] M. Nogami, Y. Abe, Appl. Phys. Lett, 1996, 69, 776.
    [44] J. R. Qiu, K. Miura, H. Inouye, S. Fujiwara, T. Mitsuyu, K. Hirao, J. Non-Cryst. Solids, 1999, 244, 185.
    [45] B. Howe, A. L. Diaz, J. Lumin., 2004, 109, 51.
    [46] G. Blasse, J. Solid State Chem., 1986, 62,207.
    [47] G. Blasse, W. L. Wanmekar, J. M. ter Vrugt, J. Electrochem. Sot., 1968, 115, 673.
    [48] C. Dujardin, B. Moine, C. Pedrini, J. Lumin., 1992, 53,444.
    [49] C. Dujardin, B. Moine, C.Pedrini, J. Lumin., 1993, 54, 259.
    [50] B. Moine, C. Pedrini, B. Courtois, J. Lumin., 1991, 50, 31.
    [51] P. Dorenbos, J. Lumin., 2003, 104, 239.
    [52] M. Nogami, T. Yamazaki, Y. Abe. J. Lumin.. 1998, 78, 63.
    [53] D. A. Sverjensky, Earth Planet. Sci. Lett., 1984, 67, 70.
    [54] Y. Liu, C. Shi, Chinese. J. Inorg. Chem., 1996, 12, 176.
    [55] S. M. Dhopte, P. T. Muthal, V. K. Kondawar, S. V. Moharil, J. Lumin., 1991, 50, 187.
    [1] G.. Counio, T. Gacoin, J. P.Boilot, J. Phys. Chem. B, 1998, 102, 5257.
    [2] J. F. Suyver, et al., Nano. Lett., 2001, 1,429.
    [3] J. K. Furdyna, J. Appl. Phys., 1988, 64, R29.
    [4] T. Dietl, H. Ohmo, F. Matsukura, et al., Science, 2000, 287, 1019.
    [5] 刘宜华,张连生,稀磁性半导体.物理学进展,1994,14(1),82.
    [6] A Oiwa, T. Slupinski, H. Munekata, Appl. Phys. Lett., 2001, 78 (4), 518.
    [7] 常凯,夏建白,物理,2004,33(6),414.
    [8] 危书义,王天兴,阎玉丽,河南师范大学学报(自然科学版),2003,31(2),50.
    [9] 闫发旺,梁春广,半导体情报,2001,38(6),2.
    [10] M. A. El-Sayed, Acc. Chem. Res., 2001, 34, 257.
    [11] A. P. Alivisatos, Science, 1996, 271,933.
    [12] F. Williams, A. J. Nozik, Nature, 1984, 312, 21.
    [13] X. Wang, J. Zhuang, Q. Peng, Y. D. Li, Nature, 2005, 437, 121.
    [14] S. H. Kan, I. Felner, U. Banin, Israel J. Chem., 2001, 41, 55.
    [15] C. Sombuthawee, S. B. Bonsall, F. A. Hummel, J. Solid State Chem. 1978, 25, 391.
    [16] B. J. Skromme, Y. Zhang, D. J. Smith, Appl. Phys. Lett., 1995, 67, 2690.
    [17] L. Wang, S. Sivananthan, R. Sporken, Phys. Rev. B, 1996, 54, 2718.
    [18] S. W. Kennedy, K. Harris, E. Summerville, J. Solid State Chem., 1980, 31,355.
    [19] R. L. Clendenen, H. G. Drickamer, J. Chem. Phys., 1966, 44, 4223.
    [20] M. Kobayaski, T. Nakai, S. Mochizuki, N. Takayama, J. Phys. Chem. Solids, 1995, 56, 341.
    [21] D. Fan, X. Yang, H. Wang, Y. Zhang, H. Yah, Physica. B, 2003, 337, 165.
    [22] B. Piriou, J. D. Ghys, S. Mochizuki, J. Phys., Condens. Matter., 1994, 6, 7317.
    [23] R. Tappero, P. D. Arco, A. Lichanot, Chem. Phys. Lett., 1997, 273, 83.
    [24] C. D. Lokhande, A. Ennaoui, P. S. Patil, M. Giersig, M. Muller, K. Diesner, H. Tributsch, Thin Solid Films, 1998, 330, 70.
    [25] B. Morasin, Phys. Rev. B, 1970, 1,236.
    [26] S. H. Wei, A. Zunger, Phys. Rev. B, 1993, 48, 6111.
    [27] M. Okajima, T. Tohda, J. Cryst. Growth, 1992, 117, 810.
    [28] Y. C. Zhang, M. Yoshimura et al., J. Cryst. Growth, 2002, 243,214.
    [29] J. Lu, et al., Chem. Mater., 2001, 13, 2169.
    [30] G. R. Wu, K. Nagatomo, M. Sasaki, F. Nagasaki, H. Sato, M. Taniguchi, W.X. Gao, Solid State Commun., 2001, 118, 425.
    [31] S. J. Lei, K. B. Tang, Q. Yang, H. G. Zheng, Eur. J. Inorg. Chem., 2005, 20, 4124.
    [32] C. H. An, K. B.Tang, X. M. Liu, F. Q. Li, G. E. Zhou, Y. T. Qian, J. Cryst. Growth, 2003, 252, 575.
    [33] J. P. Ge, Y. D. Li, Chem. Commun., 2003, 19, 2498.
    [34] S. Biswas, S. Kar, S. Chaudhuri, J. Cryst. Growth, 2005, 284, 129.
    [35] Y. H. Zheng, Y. Cheng, Y. S. Wang, L. H. Zhou, F. Bao, C. Jia, J. Phys. Chem. B, 2006, 110, 8284.
    [36] Y. G. Zhang, Z. D. Zhang, S. T. Wang, X. C. Ma, Y. T. Qian. Mater. Chem. Phys., 2006, 97, 365.
    [37] Z. P. Zhang, X. Q. Shao, H. D. Yu, Y. B. Wang, M. Y. Han Chem. Mater., 2005, 17, 332.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700