用户名: 密码: 验证码:
微拉伸尺度效应及数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着微电子技术和微机电系统的快速发展,’对微形零件的需求量急剧增加,微细零件产品的加工在整个加工制造业中的地位越来越重要,而微塑性成形技术作为一种新的微细加工方法,由于其诸多的优点,受到了人们的高度重视。但由于尺寸的微小,出现了显著的尺度效应,使得传统的塑性加工工艺不再适用于微塑性成形中,让其成为了一个崭新的研究领域。
     首先,本文对目前微塑性成形的主要研究内容进行了总结,重点对尺度效应进行了阐述,给出了尺度效应的定义和分类,并对每类尺度效应现象的理论解释进行了总结。
     其次,通过热处理实验和H62黄铜箔板的微拉伸实验来研究微尺度效应现象,重点研究了轧制方向、晶粒尺寸和试样特征尺寸这三个因素对材料尺度效应的影响,实验结果表明:在微尺度下,板料的轧制方向对材料力学性能的影响与传统尺寸下具有相同的影响趋势;材料的晶粒尺寸和特征尺寸对材料的应力应变曲线有着明显的影响,具有显著的尺度效应,在材料特征尺寸一定的情况下,随着晶粒尺寸的减小,拉伸屈服应力逐渐增大,并且晶粒尺寸对屈服应力的影响满足Hall-Petch细晶强化关系。
     再次,本文以试样横截面的截面积为参数将厚度尺寸和宽度尺寸相互联系起来,并很好地反映出了特征尺寸对试样屈服应力的影响趋势,当试样的截面积大于10×104μm2时,表现出第Ⅰ类尺度效应,材料的屈服应力随着试样截面积的减小而减小;当试样的截面积小于10×104μm2时,表现出第Ⅱ类尺度效应,材料的屈服应力随着试样截面积的减小而增大。
     然后,在实验数据研究分析的基础上,将晶粒尺寸和试样特征尺寸两个相互独立的影响因素相互联系起来,得出了一个统一表征尺度效应的影响因子(b*D)-1/2,并且对于晶粒尺寸试样和特征尺寸试样,该因子均能很好地反映出试样屈服强度的变化趋势,得出试样的屈服强度随着(b*D)-1/2值的增大呈线性增大。
     最后,在修正的表面层模型基础上,利用分层的方法将其应用到有限元模拟软件ABAQUS中,对微拉伸过程进行数值模拟,将模拟结果与实验的结果进行了对比,论证了表面层模型的正确性,可以在一定的尺度范围内作为模拟微塑性成形的本构模型,并在此基础上对微拉深成形过程进行了数值模拟研究。
In recent years, with the rapid development of microelectronics technology and micro-electromechanical systems, micro-forming parts on the sharp increase in demand, micro-parts processing of the product in the processing and manufacturing industries is becoming more and more important. The micro-plastic-forming technology as a new kind of micro-processing methods is attaining the people's attention because of its numerous advantages. However, The small size, there has been a significant size effects, making the traditional plastic processing technology are no longer used with the micro-plastic-forming, allowed to become a new field of study.
     First of all, the main research of micro-plastic-forming is summarized, with emphasis on the size effects are set forth, given the definition of size effects and classification of each type of size effects theory to explain the phenomenon are summarized.
     Secondly, the heat treatment experiments and H62 brass foil micro-tensile test are performed to investigate the size effects phenomena, focusing on the rolling direction, grain size and sample size. The experimental results showed that:In the micro-scale, the influence of the sheet metal rolling direction on the mechanical properties had the similar trend with the traditional sizes. The grain size and feature size have a clear impact on the material stress-strain curves with a significant scale effects, as the grain size decreases, the tensile yield stress gradually increased, and the influence of the grain size on the yield strength meets the Hall-Petch relation of the grain size strengthening.
     Again, the cross-sectional area as a parameter which interconnects the thickness and the width, reflects the influence trend of the feature size on the yield strength of the specimen. The yield strength of the specimen decreases with decreasing cross-sectional area and shows the first size effects, when the cross-sectional area of specimen is more than 10×104μm2. And the yield strength of the specimen increases with decreasing cross-sectional area and shows the second size effects, when the cross-sectional area of specimen is less than 10×104μm2.
     Then, based on the study of experimental data, the paper characterized the size effects of a unified impact factor (b*D)-1/2, which is linked the grain size and the feature size of sample, two mutually independent factors, with each other. The impact factor can very well reflects the trend in yield strength of the specimen and shows that the yield strength of the specimen linearly increases with increasing value of (b*D)-1/2.
     Finally, the paper simulates the micro-tensile process based on the modified surface layer model making use of the finite element simulation software ABAQUS, and demonstrates that is correct through comparing the simulation results and the experiment results. The results prove that the modified surface layer model can be in a certain range as the constitutive model of simulation of micro-plastic deformation. And the process of micro deep drawing is studied by the finite element simulation.
引文
[1]U.Engel, R.Eckstein. Microforming-from basic research to it's realization [J]. Journal of Materials Processing Technology,2002,125:35-44.
    [2]苑伟政,马炳和.微机械与微细加工技术[M].西安:西北工业大学出版,2000.
    [3]M.Geiger, R.Eckstein. Microforming-Advanced Technology of Plasticity, Proceedings of the 7th. ICTP, Japan:2002(1),327-338.
    [4]Leopold J. Foundations of Micro Forming. Proceedings of the 6th ICTP, Berlin,1999, 889-894.
    [5]F.Vollertsen, H.S.Niehoff, Z.Hu. State of the art in micro forming, International Journal of Machine Tools & Manufacture,2006,46:1172-1179.
    [6]胡耀志,黄光周,于继荣.机电产品微细加工技术与工艺[M].广东科技出版社,1991.
    [7]蒋欣荣.微细加工技术[M].电子工业出版社,1989.
    [8]M.Geiger, A.Mebner, U.Engel, et al. Metal forming of microparts for electronics. Production Engineering,1994,2(1):15-18.
    [9]张凯峰,雷鹍.面向微细制造的微成形技术,中国机械工程,2004,15(12):1121-1127.
    [10]R.Howe, M.Allen, et al. Microsystems Research and Development in Japan[J]. Site Reports,2002,(1):14.
    [11]M.Geiger, M.Kleiner, R.Eckstein, et al. Microforming[J]. Annals of the CIRP,2001, 50:445-462.
    [12]王春举,曲东升等.精密微塑性成形系统的研制[J].锻压技术,2005,3:56-59.
    [13]张志豪.大块非晶合金超塑性成形技术的基础研究[D].北京:北京科技大学博士学位论文,2005.
    [14]申昱,于沪平,阮雪榆.微成形中材料非均匀流动研究[J].锻压技术,2005,5:1-4.
    [15]李经天,董湘怀等.微细塑性成形研究进展[J].塑性工程学报,2004,11(4):1-8.
    [16]黄克智,丘信明,姜汉卿.应变梯度理论的新进展(一)—偶应力理论与SG理论[J].机械强度,1999,21(2),81-87.
    [17]黄克智,丘信明,姜汉卿.应变梯度理论的新进展(二)—基于微观机制的MSG应变梯度塑性理论[J].机械强度,1999,21(3):161-165.
    [18]A.Messner, U.Engel, R.Kals, F.Vollertsen. Size Effects in the FE-Simulation of Microforming Processes. Journal of Materials Processing Technology.1994,45: 371-376.
    [19]T.A.Kals, R.Eckstein. Miniaturization in Sheet Metal Working. Journal of Materials Processing Technology.2000,103:95-101.
    [20]P.Picard, J.F.Michel. Characterization of the Constitutive Behavior for very Small Components in Sheet Metal Forming. Proceeding of the 2nd ESAFORM conference on material forming.1999:169-170.
    [21]U.Engel, A.Messner, N.Tiesler. Cold Forging of Microparts-Effect of Miniaturization on Friction[C]. Proceedings of the lst ESAFORM Conference on Materials Forming, Sohpia- Antipolis,1998,77-80.
    [22]L.V.Raulea, L.E.Govaert, F.P.T.Baaijens. Grain and Specimen Size Effects in Processing Metal Sheets. Proceeding of the 6th ICTP. Nuremberg, Bavaria, Germany. 1999,939-944.
    [23]L.V.Raulea, A.M.Goijaerts, L.E.Govaert, F.P.T.Baaijens. Size Effects in the Processing of Thin Metal Sheet. Journal of Materials Processing Technology. 2001,115:44-48.
    [24]Fleck N A, Muller G M, Ashby M E, et al. Strain gradient plasticity:theory and study. Acta Metal Mater,1994,42,475-487.
    [25]Stolk J S. Evans A G. A Microbend Test Method for Measuring the Plasticity Length Scale. Acta Mater,1998,46:5109-5115
    [26]Lloyd D J, Particle reinforced aluminum and magnesium matrix composites. Int Mater Rev,1994,39:1-23.
    [27]Tiesler N, Engel U, Geiger M. Forming of Microparts-Effects of Miniaturization on Friction. Proceedings of the 6th ICTP,1999:19-24.
    [28]N.Tiesler, U.Engel, M.Geiger. Forging of Microparts-Effects of Miniaturization on Friction. M.Geiger. Proceeding of the 6th ICTP. Nuremberg, Bavaria, Germany.1999:889-894.
    [30]N.Tiesler, U.Engel, M.Geiger. Basic research on cold forging of microparts, Proceedings of the 7th ICTP(27 Oct.-1 Nov.,2002),Yokohama,Japan,2002,1,379-384.
    [31]N.Tiesler, U.Engel. Microforming-Effects of Miniaturization. Metal Forming 2000.2000:355-360.
    [32]Y.Shen, H.P.Yu, X.Y.Ruan, X.F.Yin. The Test Study of Micro Copper Cylinder Upsetting. Z.R.Wang, T.A.Dean. Proceeding of the 1st ICNFT. Harbin, China. 2004:165-170.
    [32]F.Vollertsen, Z.Hu, H.Schulze Niehoff, et al, State of the art in micro forming and investiga- tions into microdeep drawing, Journal of Materials Processing Technology, 2002,151:70-79.
    [33]Yasunori Saotome, A. Itoh, S. Amada. Supperplastic Micro Forming of Double Gear for Milli-machines. Proceeding of the 4th ICTP. Beijing, China.1993:2000-2005.
    [34]K.Yoshida, M.Fukazawa, I.Kubold. FEM analysis and experimental on multistage forging for wrist watch parts. M.Geiger. Proceeding of the 6th ICTP. Nuremberg, Bavaria, Germany.1999:901-906.
    [36]K.Yoshida, M.Maejima. Optimum Drawing Conditions for Shaped Microwire of 100-400μm Size. P.F.Bariani. Proceeding of the 8th ICTP. Verona, Italy.2005.
    [36]Yasunori Saotome, Kaname Yasuda, Hiroshi Kaga. Microdeep drawability of very thin sheet steels. Journal of Materials Processing Technology,2001,113:641-647.
    [37]F.Vollertsen, Z.Hu, H.Schulze Niehoff, C.Theiler. State of the art in micro forming and investigations into micro deep drawing. Journal of Materials Processing Technology,2002,151,70-79.
    [38]Z.Hu, F.Vollertsen. Fabrication Test for Deep Drawing with Respect to Size Effects. Z.R.Wang. Proceeding of the 1st ICNFT. Harbin, China.2004:153-158.
    [39]T.Erhardt, F.Schepp, D.Schmoechel. Micro Forming with Local Part Heating by Laser Irradiation in Transparent tools. Proceeding of the 7th Int.Conf. On Sheet Metal. 1999:497-504
    [40]H.Justinger, G.Hirt, N.Witulski. Analysis of Cup Geometry and Temperature Conditions in the Miniaturized Deep Drawing Process. P.F.Bariani. Proceeding of the 8th ICTP. Verona, Italy.2005.
    [41]S.Kurimoto, K.Hirota, Y.Nakano, T.Mori. Improvement of Ultra-Fine Piercing by Means of Vacuum System. M.Kiuchi, H.Nishimura. Proceeding of the 7th ICTP. Yokohama, Japan.2002:391-396.
    [42]Jimma T, Sekine F, Sato A. Effects of dynamic behavior of tools on blanking of electronic machine parts. In:Advanced Technology of Plasticity,1990,3,1459-1464.
    [43]Amit Jaisingh, K.Narasimhan, P.P.Date, et al. Sensitivity analysis of a deep drawing process for miniaturized products. Journal of Materials Processing Technology,2004, 147:321-327.
    [44]T.Takemas, S.Yamasaki, H.Miura, T.Ozaki. Development of New Piercing System for Micro Holes by Continuous Striking of Punch Using Ultrasonic Vibration. P.F.Bariani. Proceeding of the 8th ICTP. Verona, Italy.2005.
    [45]M.Yang, S.Nakano, K.Manve, et al. Fabrication of MEMS Using Micro Metal Forming Process. Z.R.Wang. Proceeding of 1st ICNFT.Harbin, China.2004:135-140.
    [46]M.Otsu, Y.Katayama. Micro Bending of Magnesium Alloy Foil by Spark Forming. P.F. Bariani. P.F.Bariani. Proceeding of the 8th ICTP. Verona, Italy.2005.
    [47]Yasunori Saotome, T.Okamoto. An In-situ Incremental Microforming System for the Three- Dimen- sional Shell Structures.Journal of Materials Processing Technology. 2001,113:636-640.
    [48]S.Tanaka, T.Nakamura, K.Hayakawa. Miniature Incremental Forming of Millimeter-Sized Thin Shell Structures. M.Kiuchi, H.Nishimura. Proceeding of the 7th ICTP. Yokohama, Japan.2002:403-408.
    [49]曾攀,赵迎红,雷丽萍.Bi系高温超导带材中的塑性微成形技术.塑性工程学报.2005,12:25-30.
    [50]Yasunori Saotome, H.Iwazaki. Superplastic Extrusion of Microgear Shaft of 10μm in Module. Journal of Microsystem Technologies.2000,4(6):126-129.
    [51]张凯锋,王长丽,于彦东.142OAl-Li合金超塑特性及微成形.金属成形工艺,2003,21(1):11-14.
    [52]王长丽.锌合金和铝合金超塑微挤压研究.哈尔滨:哈尔滨工业大学,2001.
    [53]Hanada K, Zhang L, Mayuzumi M, Sano T.Fabrication of diamond dies for microforming. Diamond and Related Materials,2003,12:757-761.
    [54]Y.Saotome, K.Imai, S.Shioda, et al. The Micro-nanoformability of Pt-based Metallic Glass and the Nanoforming of Three-Dimension Structure. Intermetallic.2002, 10:1241-1247.
    [55]http://pmf.snu.ac.kr
    [56]王春举,曲东升,周健等.精密微塑性成形系统的研制.锻压技术,2005,(3):56-59.
    [57]U.Engel, M.Geiger. Simulation of Microforming Processes-An Advanced Approach Applying A Mesoscopic Model. ICIP.2005.
    [58]N.A. Fleck, J.W. Hutchinson. A phenomenological theory for strain gradient effects in plasticity[J]. Journal of the Mechanics and Physics of Solids,1993,41:1825-1857.
    [59]N A Fleck, J W Hutchinson. Strain gradient plasticity[M]. A dv App Mech, Academic Pressed.1997,33:295-361.
    [60]Howe R, Allen M. Microsystems Research and Development in Japan Site Reports, 2002,(1):14.
    [61]王荣滨,黄铜的热处理与缺陷分析及消除措施[J],有色金属及稀土应用,2008(2):31-34.
    [62]崔忠圻,覃耀春.金属学与热处理[M],北京:机械工业出版社,2007.
    [63]Gau J T, Principe C,Wang J. J Mater Process Technol,2007,184:42.
    [64]石亦平,周玉蓉.ABAQUS有限元分析实例详解.机械工业出版社.2006,2-5.
    [65]李经天.微细塑性成形实验技术研究.武汉,华中科技大学,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700