用户名: 密码: 验证码:
ZnO半导体材料的形貌、微结构调控及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,半导体纳米材料因其许多独特的性能,例如量子尺寸效应、宏观量子隧道效应和表面效应等,而越来越受到人们的关注。随着人们对半导体纳米材料认识的提高,对半导体纳米材料方面的研究也日益深入。作为一种信息时代的新材料,半导体纳米材料已经被广泛应用于催化、医学、光学及功能材料等领域。而在半导体纳米材料中,材料的性质与其形貌和结构关系非常紧密,制备方法与工艺对纳米材料的结构和性能有很大的影响。目前,纳米材料制备科学与技术的发展趋势是加强控制过程的研究,例如对材料形貌、尺寸、表面和微结构的研究,从而达到对其性能进行研究和利用的目的。
     氧化锌作为一种新型功能半导体,是一种高效、无毒性、价格低廉的重要材料,在发光、杀菌、环保等方面有着广泛的应用前景。无机材料的形貌对其多样化的性能及其相应的应用有重要的影响,而ZnO是一种具有丰富多样形貌的宽禁带半导体材料。因此,控制氧化锌的生长条件,制备出不同形貌和结构的ZnO纳米材料,可以有效的改善其物理化学性质,提高其应用价值。在本论文中,我们以氧化锌为研究对象,通过调节添加剂的种类、前躯体溶液的浓度及反应时间来控制氧化锌的生长,制备出一系列不同形貌和结构的氧化锌颗粒,进而研究不同形貌对ZnO性能的影响。同时,通过对ZnO的复合进行微结构调控,制备出ZnO的异质结结构,并研究微结构调控对其性能的影响。研究所得的一系列结论,对以后ZnO的研究和应用方面具有一定的指导意义。
     在第一章中,首先概括介绍了半导体材料的发展及分类,以及纳米材料的性质和制备方法。然后,介绍了ZnO半导体纳米材料的晶体结构和基本性质,重点介绍了ZnO在形貌控制、溶剂热法制备和粒子复合方面的研究现状和进展。
     在第二章中,采用溶剂热反应,乙醇作为溶剂,谷氨酸作为表面活性剂,制备出了氧化锌双柱结构。不加添加剂时,得到的样品形貌为双锥结构。研究发现,与ZnO双锥相比,双柱结构有着更好的结晶性:高的对称性、明显的晶棱和较少的缺陷。基于实验结论,我们推测了谷氨酸和氧化锌之间的作用机制,然后又用一系列实验加以验证:把添加剂由谷氨酸分别换做氨基乙酸、乙酸和乙胺,得到的结论是谷氨酸中的活性基团无论是氨基还是羧基在氧化锌双柱的形成过程中都是必不可少的。当其中任何一个缺失,双柱状氧化锌都不可能形成。另外,分别测试了氧化锌双柱和双锥的发光特性。
     在第三章中,通过简单的溶剂热反应,用酒石酸作为添加剂,合成了一系列高分散、形貌均匀的ZnO微结构。其中,无水乙醇不但作为溶剂,同时也作为一种反应物,来提供ZnO生长基元最初所需要的OH-离子。所得的样品利用XRD, SEM,TEM和HRTEM一系列技术手段进行了检测。研究发现,随着整个反应的进行,ZnO晶体出现了溶解-再结晶的过程。由于酒石酸的电离度能够受到温度的影响,不同的电离度相对应溶液的酸性不同,对ZnO作用也不同,因而就进一步控制了ZnO的形貌演化。酒石酸的腐蚀和酒石酸锌盐的再结晶分别是ZnO颗粒溶解和再结晶的主要原因。样品的荧光光谱显示所得产物具有良好的荧光发射性能,尤为突出的是其具备的红光发射,这在ZnO中是较为罕见的,这里主要归因于界面发射所导致。另外,通过控制酒石酸的加入量,可以有效地控制ZnO的形貌、尺寸以及到更复杂结构的转变。同时提出了不同形貌ZnO可能的生长机制,并利用FT-IR谱进一步证实了酒石酸对ZnO生长的影响。另外,由光致发光光谱可以看出,不同的ZnO形貌,发光性能会有所不同,总体上说,所得ZnO的发光区域主要集中在紫光波段和橙光波段。
     在第四章中,采用乙醇作为溶剂,通过简单的溶剂热反应合成出由塔状花瓣组成的蘑菇状ZnO。其中主要的核心是我们采用了草酸作为添加剂,整个反应过程都是在酸性环境下进行。所得样品的结构用x射线衍射仪进行了测试,结果表明其为单相纤锌矿结构。采用拉曼光谱测试了样品的结构和结晶质量。SEM结果显示样品为蘑菇形状ZnO,平均尺寸大约有12微米,上半部分的菌盖是由六方塔构成,而每个六方塔又都是由六方薄片密堆积而成。我们推测整个生长过程可能是由于六方极性薄片的电荷吸引所致。另外,对有机染料的降解结果表明,所得的蘑菇状ZnO具有很好的光催化性能,在污水处理方面具有潜在的应用价值。另外,通过调节前躯体溶液中锌离子的浓度,可以得到不同的均匀氧化锌形貌,分别为花束状ZnO和球形花状ZnO。由于有机物的溢出,不同的反应时间,得到的产物形貌也不同。由于颗粒较小,比表面积较大,花束状ZnO还具有较好的光催化性能。
     在第五章中,通过简单的溶剂热反应合成出由一系列不同形态的Zn0晶体。其中我们采用了乙酸作为添加剂,整个反应过程都是在强腐蚀酸性环境下进行。所得样品的结构用x射线衍射仪进行了测试,结果表明各种情况下的产物皆为单相纤锌矿结构。利用扫描电镜测试样品的微观结构,发现可以简单的通过调节乙酸的加入量就可以很容易的控制生成Zn0的形貌。乙酸可以通过自身的强腐蚀性来对生成的氧化锌进行表面修饰,使Zn0的活性(001)面得到不同程度的暴露。这会在很大程度上促进Zn0的反应活性,为以后其在各种光电领域的应用起到很大作用。
     在第六章中,通过简单的热分解反应,成功制备出形状规则的NiO八面体结构,尺寸在纳米级别。调节实验中不同的退火温度,氧化镍八面体的晶棱形态不同,得到了三种不同的NiO形貌。并且随着退火温度的升高,NiO颗粒逐渐从正八面体变为立方块结构,出现熔化粘连的过程。另外,采用溶剂热法可以制备出由薄片组成的球形NiO结构,与前面制备的氧化锌有着相似的制各环境,因而仍然采用溶剂热法对ZnO和NiO粒子进行了复合,得到了花状ZnO/NiO复合粒子。并通过高分辨电镜可以看出,两种颗粒的复合为异质结结构,属于II型异质结,为以后在光学方面的应用打下了基础。
     在第七章中,以六方相纳米ZnO为模板,通过硫原子对氧原子的部分取代,制备出ZnO/ZnS异质结。利用XRD、FESEM对制备出的ZnO/ZnS异质结的结构及表面形貌等进行了表征,发现由于六方相模板的作用,其中的ZnS为纤锌矿结构;所得到的异质结粒径尺寸较小,均为纳米级别。通过对其荧光光谱(PL)性能的测试,表明其较好的蓝光发射功能,为ZnO/ZnS异质结进一步在光学器件上的应用提供了理论基础。通过对甲基橙的降解,探讨了不同条件下制备出的ZnO/ZnS异质结的光催化活性。实验表明,在160℃制备的样品活性最高,经过两个小时的紫外光照射后,甲基橙的降解率可达到70%左右。
     在第八章中,对本论文的工作进行了总结,并对现有研究工作存在的问题进行了分析与讨论。同时,针对目前的工作存在的问题,对未来的研究工作进行了规划与展望。
     总之,半导体纳米材料的研究,对人类社会未来的发展和科学水平的提高有着非常重要的作用。其中,氧化锌半导体纳米材料的优良性能注定其研究尤为重要。在本论文中,我们通过控制Zn0的生长条件,实现了对氧化锌的微结构及性能的调控;并通过摸索实验条件,成功制备出基于Zn0的异质结结构,这些异质结结构同样具有优良的性能。这对于改善氧化锌材料的性能、提高其应用价值具有非常重要的应用。
In recent years, semiconductor nanomaterials exhibiting lots of terrific properties, for example, novel unique quantum size effect, surface effect, macroscopic quantum tunnel effect, have attracted more and more attention. Synthesis of semiconductor nanomaterials goes deeper with the understanding of their unique properties. As a kind of new materials in the information age, semiconductor nanomaterials can be applied in many fields such as catalysis, medicine, optics and functional materials. The properties of nanomaterials are associated with the nanostructures, which will be greatly influenced by the technology and method of their synthesis. At present, the development tendency of nanomaterials science and technology focuses on the study of controllable process, including materials'shape, dimension, surface and microstructure, so that their unique properties could find their corresponding applications in the industry.
     Zinc Oxide, as a new functional semiconductor materials, is an important kind of materials for its high efficiency, non-toxic nature and low cost, so it has been paid much attention in the degradation and complete mineralization of environmental pollutants. The morphologies of inorganic materials are demonstrated to have great effects on their widely varying properties and corresponding potential applications. It is well known that ZnO exhibits the richest range of morphologies among the wide band gap semiconductors. Therefore, the fabrication of ZnO nanomaterials with special morphologies could effectively improve their chemical and physical properties. In this thesis, we chose zinc oxide as the objective of our studies. By changing the kinds of additive, the concentration of precursor and the reaction time, we fabricated a series of ZnO particles with various morphologies and structures, and further we studied the relationship between ZnO morphologies and its properties. Besides, ZnO/NiO and ZnO/ZnS heterojunction have been successfully fabricated, which are important to expand the better properties of ZnO. The systematically investigation of the relationship on microstructures and properties of ZnO has provided a theoretical foundation for the future studies and applications.
     In chapter one, we briefly introduced the development and categories of semiconductor materials, and the properties and preparation methods of nanomaterials. Then we discussed the crystal structure and properties of ZnO semiconductor nanomaterials. The important part is that the progress of studies on ZnO was presented from three aspects.
     In chapter two, ZnO twin-prisms were prepared by a simple solvothermal process with glutamic acid as surface modification agent in ethanol. Compared with the twin-cones that obtained when glutamic acid was absent, the ZnO twin-prisms have optimized crystallinity with high symmetry, sharp crystal edges and few defects. Probable reaction mechanism between ZnO and glutamic acid was proposed based on our experimental analysis. Then it was verified by a series of comparison experiments by employing glycine, acetic acid and ethylamine as surface modification agents. Our results indicate that both alkaline and acidic groups play an important role on the formation of ZnO twin-prisms, and when either of them was absent, twin-prism structures can not be obtained. The photoluminescence properties of as-prepared ZnO twin-prisms and twin-cones were also studied.
     In chapter three, a series of homogeneous ZnO microstructures were synthesized via a facile solvothermal method with tartaric acid as additive. Absolute ethanol was not only the solvent but also a reactant that provided the original OH" for ZnO growth units. The products were characterized by XRD, SEM, TEM and HRTEM. A dissolution-recrystallization process was explored as reaction time went on. The ionization of tartaric acid, which could be controlled by temperature, influenced the evolution of ZnO. The etching of tartaric acid and decomposition of zinc tartaric complex were considered to be the main causes of dissolution and recrystallization. The PL spectra reflected that the obtained particles had favorable fluorescent properties and the highlight was the rare red emission of ZnO pineapples derived from the interfacial emission. Morever, the variational quantities of tartaric acid controlled the ZnO morphology and shape as well as the self-assembly of ZnO crystals into complex architectures. Possible growth mechanisms of obtained ZnO with different morphologies were proposed. The influence of tartaric acid to ZnO growth was further indicated by FT-IR spectra. In addition, the photoluminescence (PL) properties of these ZnO samples were investigated at room temperature, which indicated that the ZnO morphology could influence its optical property. On the whole, the fluorescence was violet emission and orange emission primarily.
     In chapter four, ZnO mushrooms composed of tower-like petals have been prepared by a simple solvothermal method with ethanol as solvent. The key strategy is that we employed an organic acid to be active agent, and the whole experiments were carried out in a sour environment. The main crystalline phase of the as-prepared products measured by X-ray diffraction was proven to be wurtzite-type ZnO. Raman spectroscopy was employed to characterize the crystalline structure and perfection. Scanning Electron Microscope results revealed that the ZnO mushrooms had average size of 12μm and the top pileus was made up of hexagonal towers packed with hexagonal slices. Possible growth process has been proposed to be charges adsorption among the polar ZnO slices. In addition, the results of the degradation of organic dye indicated that the prepared ZnO mushrooms showed good photocatalytic activity and it could be considered as a promising photocatalyst for dyes wastewater treatment. Besides, by changing the Zn2+ concentration, we obtained two other ZnO morphologies:bouquet ZnO and spherical flower ZnO. For the overflow of organic molecules, the obtained ZnO have different morphologies. Because of the small size and big specific surface area, the bouquet ZnO has high photocatalytic activity.
     In chapter five, a series of ZnO particles with different morphologies have been successfully fabricated by a facile solvothermal reaction with acetic acid as an additive. The whole reactions were taken in a strong corrosive environment and the samples were tested by XRD proving to be wurtzite ZnO. The difference of the obtained ZnO morphologies demonstrated that controlling the addition of acetic acid could easily control the morphologies of obtained ZnO. Morever, the strong corrosion of acetic acid could etch the ZnO surface and make the (001) planes exposed in varying degrees. The exposure of active planes improved the reactive activities of ZnO, which made the ZnO application in photoelectric field in the future.
     In chapter six, regular octahedron NiO was successfully obtained by a facile thermal degradation. Changing the annealing temperatures, the NiO crystals had different crystal edges. And with the annealing temperatures higher, the regular octahedron NiO gradually converted to be cubic structure, which had the adhesion to each other. What's more, with the solvothermal reaction, we have obtained the NiO flowers made up of plenty of slices. Because the NiO and the former ZnO have similar growing environment, the ZnO/NiO heterojunction was fabricated through a solvothermal reaction, and the heterojunction have the same flower shape. Observed by HRTEM, the heterojunction was obvious and compact, belonging to type II heterojunction. The investigation based ZnO was the basis for its application in optical field.
     In chapter seven, using hexagonal ZnO as template, ZnO/ZnS heterojunction has been obtained by replacing partial oxygen atoms with sulfur atoms. Its structure and surface morphology were analyzed by XRD and FESEM.The result showed that the prepared ZnS is wurtzite structure because of the hexagonal template and the ZnO/ZnS partical size is nano-scale. The PL spectrum showed that the as-prepared ZnO/ZnS heterojunction had a high rate of blue emission, which make it possible that ZnO/ZnS heterojunction would be applied in optical devices. The photocatalytic activity of the heterojunction in different conditions was tested by decomposing methyl orange. The results indicated that the obtained heterojunction had the best photocatalytic activity when the preparation tempreture is 160℃, which can decompose 70%of methyl orange under UV irradiation for 2 hours.
     In chapter eight, we summarized our work and discussed the problems remained to be solved. At last, we made a plan for the future work and looked forward to the futurity.
     The studies on semiconductor nanomaterials is very important for the both the development of human civilization and the exploration of science. ZnO semiconductor nanomaterials have special excellent properties, which makes the ZnO progress more important. In this thesis, by controlling the experiment conditions, we investigated the relationship of microstructuresand properties of ZnO, and modulated the microstructures to improve their properties. Besides, we have successfully obtained the heterojunctions based ZnO, which have excellent properties as well. Our studies on the ZnO microstructure modulation and properties are proven to be an important and efficient way to improve the properties. And it is also important for the practical applications of ZnO in the future.
引文
[1]王季陶,刘明登,半导体材料,高等教育出版社,1990.
    [2]周永溶.半导体材料[M].北京:北京理工大学出版社,1992.
    [3]陈治明,王建农,半导体器件的材料物理学基础,科学出版社,1999.
    [4]邓志杰,郑安生,半导体材料,化学工业出版社,2004.
    [5]周瑞发等,纳米材料技术,国防工业出版社2003.
    [6]R. F. Zhuo, L. Qiao, H. T. Feng, J. T. Chen, D. Yan, Z. G. Wu, P. X. Yan, Microwave absorption properties and the isotropic antenna mechanism of ZnO nanotrees, J. Appl. Phy.,104 (2008) 094101-8.
    [7]R. ECavicchi, R. H. Silsbee. Coulomb suppression of tunneling rate from small metal particles, Phys. Rev. Lett.,52(16)(1984)1453-1457.
    [8]D. L. Feldhein, C. D. Keating. Self-assembly of single electron transistors and related devices, Chem. Soc. Rev.,27(1998)1-12.
    [9]J. Lu, M. Tinkhan,单电子晶体管,物理,27(3)(1998)137-140.
    [10]朱屯等,国外纳米材料技术进展及应用,化学工业出版社,2002.
    [11]R. Brringer, H. Gleiter, H. P. Klein, P. Marquit. Nanocrystalline materials an approach to a novel solid structure with gas-like disorder? Phys.Lett.102A (1984),365-369.
    [12](a)C. W Lu, J. L. Shi, et al. TG-DTA-MS studies on the thermal decomposition behaviour of homogeneously precipitated Zr2(SO4)(OH)6-6H2O. Thermochimica Acta. 232(1994)77-84. (b) D. Jezequel, et al. Submicrometer zinc oxide particles: Elaboration in polylol medium and morphological characteristics. Mater. Res.10(1995)77-83.
    [13]徐甲强,潘庆谊,孙雨安,等.纳米氧化锌的乳液合成、结构表征与气敏性能[J].无机化学学报,14(3)(1998)355-359.
    [14]汤皎宁,龚晓钟,李均钦,等.均匀沉淀法制备纳米氧化锌的研究[J].无机材料学报,21(1)(2006)65-69.
    [15]施尔畏,夏长泰,王步国,仲维卓,水热法的应用与发展。无机材料学报,11(1996)193-206
    [16]苏勉曾,谢高阳,申泮文等译,固体化学及其应用,复旦大学出版社,1989
    [17]X.X. Li, Y.J. Xiong, Z.Q. Li, el. al. Large-Scale Fabrication of TiO2 Hierarchical Hollow Spheres[J], lnorg. Chem.,45(9)(2006)3493-3495
    [18]J.G. Yu, X.X. Yu, Hydrothermal Synthesis and Photocatalytic Activity of Zinc Oxide Hollow Spheres[J], Environ. Sci. Technol.42(2008)4902-4907
    [19]W. S. Sheldrick, M. Wachhold, Solventothermal Synthesis of Solid-State Chalcogenidometalates[J], Angew. Chem. Int. Ed. Engl.,36(1997)206-224.
    [20]P. Feng, X. Bu, G. D. Stucky, Hydrothermal Syntheses and Structural Characterizations of Cobalt Phosphate Based Zeolite Analogues[J], Nature,388(1 997)735-741.
    [21]Y. Jiang,YWu, S. Zhang, etal. Acatalytic-assembly solvothermal route to multiwall carbon nanotubes at a moderate temperature[J]. J. Am. Chem. Soc., 112(49)(2000)12383-12384.
    [22]C.Y. Wang, W.X. Zhang, Y.T. Qian. Preparation of nanocrystalline[J]. Materials Science and Engineering B,94(2)(2002) 170-175.
    [23]Y.L. Gu, F. Guo, Y.T. Qian, et al. A solvothermal synthesis of ultra-fine iron phosphide[J]. Materials Research Bulletin,37(6)(2002)1101-1105.
    [24]D. Xu, Z. Liu, G. Liang, et al. Solvothermal synthesis of CdS nanowires in a mixed solvent of ethylenediamine and dodecanethiol[J]. J. Phys. Chem. B 109(30)(2005) 14344-14349.
    [25]徐国财,张立德.纳米复合材料[M],北京化学工业出版社,2002.
    [26]C. Shane Carr, Daniel F. Shantz. Synthesis of High Aspect Ratio Low-Silica Zeolite Rods in Oil/Water/Surfactant Mixtures [J], Chem. Mater.17 (2005) 6192-6 197.
    [27]D. K. Yi, S.S. Lee, J.Y. Ying. Synthesis and Applications of Magnetic Nanocomposite Catalysts [J], Chem. Mater.18(10) (2006)2459-2461.
    [28]B. Yoon, C.M. Wai. Microemulsion-Templated Synthesis of Carbon Nanotube—Supported Pd and Rh Nanoparticles for Catalytic Applications [J], J. Am. Chem. Soe.127(2005)17174-17175
    [29]宋方平,朱启安,王树峰,等.反相微乳液法合成纳米钛酸钡球形颗粒[J].无 机化学学报,22(2)(2006)355-358.
    [30]李月峰,赖琼珏.反胶束微乳液法合成纳米SrTiOa研究[J].无机化学学报,21(6)(2006)915-918.
    [31]张立德,牟平美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [32]A.M. Qin, Y.P.Fang, H.D. Ou, et. al. Formation of Various Morphologies of Covellite Copper Sulfide Submicron Crystals by a Hydrothermal Method without Surfactant[J], Cryst. Growth Des,5(3) (2005)855-860
    [33]S. Eiden-Assmann, J. Widoniak, G Maret. Synthesis and Characterization of Porous and Nonporous Monodisperse Colloidal TO2 Particles [J] Chem. Mater.1 6(2004)6-11
    [34]Y.X. Zhang, G.H. Li, Y.C. Wu, et. al. The Formation of Mesoporous Ti02 Spheres via a Facile Chemical Process[J], J. Phys. Chem. B 109(2005)5478-5481
    [35]王琳,吴忆宁,汪炎.溶胶-凝胶法制备纳米二氧化钛及其性能研究[J],哈尔滨商业大学学报(自然科学版),22(3):76-79
    [36]李芝华,任冬燕.溶胶凝胶法制备ITO透明导电薄膜的工艺研究[J].材料科学与工艺,14(2)(2006)174-177.
    [37]张金升,许凤秀,王英姿等.功能材料综述[J].现代技术陶瓷.(3)(2002)40-44.
    [38]P. Zu, Z. K. Tang, G. K. L.Wong, et al. Room-temperature gain spectra and lasing in microcrystalline ZnO thin films. Journal of Crystal Growth.184(1998)601-604.
    [39]H.Cao, Y. G. Zhao, H. C.Ong, et al. Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films. Applied Physics Leners.73(25) (1998)3656-3658.
    [40]N. Kouklin. Cu-Doped ZnO Nanowires for Efficient and Multispectral Photodetection Applications. Advanced Materials,20(11) (2008)2190-2194.
    [41]A. Hellemans. Laser Light From a Handful of Dust. Science.284(1999)24-25.
    [42]D.M. Bagnall, Y.F. Chen, Z. Zhu et al. Temperature dependence of electromigration dynamics in Al interconnects by real-time microscopy. Applied Physics Letters.73 (8) (1998) 1038-1040.
    [43]R. F. Service. Will UV lasers beat the blues? Science.276(1997)895.
    [44]J. K. Song, U. Wilier, J. M. Szarko et al. Ultrafast Upconversion Probing of Lasing Dynamics in Single ZnO Nanowire Lasers. Jounal ofPhysical Chemistry C.11 2(5)(2008)1679-1684.
    [45]J. C. Johnson, K. P. Knutsen, H. Yan et al. Ultrafast Carrier Dynamics in Single ZnO Nanowire and Nanoribbon Lasers. Nano Letters.4(2) (2004) 197-204.
    [46]J.K. Song, J.M. Szarko, S.R. Leone et al. Ultrafast Wavelength-Dependent Lasing-Time Dynamics in Single ZnO Nanotetrapod and Nanowire Lasers。 Jounal of Physical Chemistry B 109(33) (2005)15749-15753.
    [47]B. Meyer, D. Marx. Density-functional study of the structure and stability of ZnOsurfaces[J], Phys. Rev. B 67(2003)11p
    [48]J. S. Kang, H. S. Kang, S. S. Pang, et al. Variation of light emitting properties of ZnO thin films depending on post—annealing temperature [J]. Material Science and Engineering B,102(1-3)(2003)313-316
    [49]B. X. Lin,Z. X. Fu, Y. B. Jia. Green luminescent center in tmdoped zinc oxide films deposited on silicon substrates. Appl. Phys. Lett,79(7) (2001)943-945
    [50]D. H. Zhang, Z. Y Xue, Q. P. Wang. The mechanisms of blue emission from ZnO films deposited on glass substrate by r.magnetron sputtering [J]. J. Phys. D: Appl. Phys.35(2002)2837-2840
    [51]H.S. Kang, J. S. Kang, J. w. Kim, S. Y Lee. Annealing effect on the property of ultraviolet and green emissions ofZnO thin films[J]. J. Appl. Phys.95(2004)1246.
    [52]T. Bong Hur,Gwang Soo Jeen, Y. H. Hwang, H. K. Kim. Photoluminescence of polycrystalline ZnO under different annealing conditions [J]. Appl. Phys. Lett. 94(2003)5787
    [53]关柏鸥,张桂兰等,半导体纳米材料的光学性能及研究进展光电子激光,9(3)(1998)260-263.
    [54]H.C. Yatmaz, A.Akyol, M. Bayramoglu. Kinetics of the Photocamlytic Decolorization of an Azo Reactive Dye in Aqueous ZnO Suspensions. Industrial and Engineering Chemistry Research.43(19) (2004)6035-6039.
    [55]C.Ye, Y.Bando, G.Shen, et al. Thickness-Dependent Photocatalytic Performance of ZnO Nanoplatelets. Journal of Physicai Chemistry B.110 (31)(2006)l 5146-15151.
    [56]T. Pauporte, J. Rathousky. Electrodeposited Mesoporous ZnO Thin Films as Efficient Photocatalysts for the Degradation of Dye Pollutants. Journal of Physical Chemistry C.111(21) (2007)7639-7644.
    [57]F. Xu, P. Zhang, A. Navrotsky et al. Hierarchically Assembled Porous ZnO Nanoparticles:Synthesis, Surface Energy, and Photocatalytic Activity. Chemistry of Materials.19(23) (2007)5680-5686.
    [58]Y.Zheng, C.Chen, Y. Zhan et al. Luminescence and Photocatalytic Activity of ZnO Nanocrystals:Correlation between Structure and Property. Inorganic Chemistry.46(l 6) (2007)6675-6682.
    [59]I.Poulios, I.Tsachpinis. Photodegradation of the textile dye Reactive Black 5 in the presence of semiconducting oxides. Journal of Chemical Technology and Biotechnology.74(4) (1999)349-357.
    [60]H. H.Wang, C. H.Xie, W. Zhang, et al. Comparison of dye degradation efficiency using ZnO powders with various size scales. Journal of Hazardous Materials.141(3) (2007)645-652.
    [61]F. Oba, S. R. Nishitani, S. Isotani, et al. Energetics of native defects in ZnO[J]. Journal of Applied Physics,90(2) (2001)824-828.
    [62]Van de Walle C G. Hydrogen as a cause of doping in zinc oxide[J]. Physical Review Letters,85(5) (2000)1012(1-4).
    [63]D. M. Hofmann, A.Hofstaetter, F.Leiter, etal. Hydrogen:a relevant shallow donor in zinc oxide[J]. Physical Review Letters,88(4) (2002)045504(1-4).
    [64]Benny Joseph, K. G Gopchandran, P. V Thomas, et al, A study on the chemical spray deposition of zinc oxide thin films and their structural and electrical properties, Materials Chemistry and Physics,58(1) (1999)71-77
    [65]D. G Baik, S.M. Cho, Application of sol-gel derived films for ZnO/n-Si junction solar cells[J], Thin Solid Films,354(1999)227-231
    [66]S. Iijima. Helical Microtubules Of Graphitic Carbon[J]. Nature,354(1991)56-58.
    [67]P. Zu, Z. K.Tang, G. K. L.Wong, et al. Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature[J]. Solid State Communications,103(8) (1997)459-463.
    [68]M. H. Huang, S. Mao, H. Feick, et al. Room-Temperature UltravioletNanowire Nanolasers[J]. Science,292(2001)1897-1899.
    [69]Z.W. Pan, Z. R. Dai, Z. L. Wang. Nanobelts of Semiconducting Oxides[J]. Science,291(2001)1947-1949.
    [70]W. L. Hughes, Z. L. Wang. Controlled synthesis and manipulation of ZnO nanorings and nanobows[J]. Appl. Phys. Lett,86(4) (2005) 043106-1-3.
    [71]P. X. Gao, Z. L. Wang. Substrate Atomic-Termination-Induced Anisotropic Growth of ZnO Nanowires/Nanorods by the VLS Process. J. Phys. Chem. B,108(23) (2004)7534-7537.
    [72]P. X. Gao, Z. L. Wang. Nanopropeller arrays of zinc oxide[J]. Appl. Phys. Lett,,84(15) (2004)2883-2885.
    [73]X. D. Wang, C. J. Summers, Z. L. Wang. Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays. Nano Letters,4(3) (2004)423-426.
    [74]Z. L. Wang. Zinc oxide nanostructures:growth, properties and applications[J]. J. Phys.:Condens. Matter.16(25) (2004)829-858.
    [75]Z. L. Wang. Nanobelts, nanowires, and nanodiskettes of semiconducting oxidesrfrom materials to nanodevices. Adv. Mater,15(5) (2003) 432-436.
    [76]X. Y. Kong, Y. Ding, R. S. Yang, Z. L. Wang. Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polar Nanobelts[J]. Science,303(5662)(2004), 1348-1351.
    [77]Z. L. Wang. Nanostructures of zinc oxide[J]. Mater. Today,7(6) (2004) 26-33.
    [78]Jin Joo, Soon G.Kwon, Jung H. Yu and Taeghwan Hyeon. Synthesis of ZnO nanocrystals with cone, hexagonal cone, and rod shapes via non-hydrolytic ester elimination sol-gel reactions. Adv. Mater.17(2005) 1873-1877.
    [79]Y. Sun, Garth. M. Fuge, Neil A. fox, D. JaSon. Riley, and N. R. Ashfold. Synthesis of aligned arrays of ultrathin ZnO nanotubes on a Si wafer coated with a thin ZnO film. Adv. Mater.17(2005)2477-2481.
    [80]H.Q. Yan, R. R. He, J. Johnson, M. Law, R.J. Saykally, P. D. Yang, Dendritic Nanowire Ultraviolet Laser Array, Am. Chem. Soc.125(2003)4728-4729.
    [81]S.Jung, E.Oh, K. Lee et al. Sonochemical Preparation of Shape-Selective ZnO Nanostructures. Crystal Growth and Design.8(1) (2008)265-269.
    [82]H. Zhu, J.F.Huang, Z. Pan et al. Ionothermal synthesis of hierarchical ZnO nanostructures from ionic-liquid precursors. Chemistry of Materials.18(18) (2006)4473-4477.
    [83]L.E. Greene, M. Law, D.H. Tan, M. Montano, J. Goldberger, G. Somorjai, P. Yang, General Route to Vertical ZnO. Nanowire Arrays Using Textured ZnO Seeds, Nano Lett.5 (2005) 1231-1236.
    [84]A. Dev, S. Kar, S. Chakrabarty, S. Chaudhuri, Optical and field emission properties of ZnO nanorod arrays synthesized on zinc foils by the solvothermal route[J]. Nanotechnology 17 (2006) 1533-1540.
    [85]J. Liang, J. Liu, Q. Xie, S. Bai, W. Yu, Y. Qian, Hydrothermal growth and optical properties of doughnut-shaped ZnO microparticles[J]. J. Phys. Chem. B 109 (2005) 9463-9467.
    [86]韩冬,张树朝.溶剂热法制备六角锥形Zn0及其光致发光性能[J],物理化学学报,24(3)(2008)539-542
    [87]J. Zhang, L. D. Sun, J. L. Yin. Control of ZnO morphology via a simple solution route[J]. Chemistry of Materials,14(10) (2002)4172-4177.
    [88]Z.Wang, X. F.Qian,-. rjn J. Aqueous solution fabrication of large—scale arrayed obelisk-like zinc oxide nanorods with high efficiency[J]. Journal of Solid State Chemistry,177(2004)2144-2149.
    [89]S. Ikeda, Y. Ikoma, H. Kobayashi, T. Harada, T. Torimoto, B.Ohtani, M. Matsumura, Encapsulation of titanium(IV) oxide particles in hollow silica for size-selective photocatalytic reactions. Chem. Commun. (2007)3753-3755
    [90]D. Chen, H. Zhang, S. Hu, J. Li. Preparation and Enhanced Photoelectrochemical Performance of Coupled Bicomponent ZnO-TiO2 Nanocomposites, J Phys Chem C, 112(1)(2008)117-122.
    [91]E.S. Toberer, J.D. Epping, B.F. Chmelka, R. Seshadri. Hierarchically Porous Rutile Titania:Harnessing Spontaneous Phase Changes in Mixed Metal Oxides, Chem Mater,18(2006)6345-6351.
    [92]L.Q. Jing, W.M. Cai, X. J. Sun. Pd/ZnO和Ag/ZnO复合纳米粒子的制备、表征及光催化活性[J]. Cuihua Xuebao (Chinese Journal of catalysis),23(4) (2002)336-340.
    [93]D. Li, H. Haneda. Photocatalysis of sprayed nitrogen-containing Fe2O3-ZnO and WO3-ZnO composite powders in gas-phase acetaldehyde decomposition, Journal of Photochemistry and Photobiology A:Chemistry.160 (3) (2003)203-212
    [94]K. H. Yoon, J. Cho, D. H. Kang, Physical and photoelectrochemical properties of the TiO2-ZnO system. Mater Res Bull,34(1999)1451-1461.
    [1]J.H. Lee, M.H. Hon, Y.W. Chung, I.C. Leu, Microcontact Printing of Organic Self-Assembled Monolayers for Patterned Growth of Well-Aligned ZnO Nanorod Arrays and their Field-Emission Properties. J. Am. Ceram. Soc.92 (2009) 2192-2196.
    [2]K.J. Chen, F.Y. Hung, S.J. Chang, S.J. Young, Optoelectronic characteristics of UV photodetector based on ZnO nanowire thin films, J. Alloys Compd.479 (2009) 674-677.
    [3]H.Y. Li, S. Rule, R. Khedoe, A.F. Koenderink, D. Vanmaekelbergh, Polarization, Microscopic Origin, and Mode Structure of Luminescence and Lasing from Single ZnO Nanowires. Nano Lett.9 (2009) 3515-3520.
    [4]M. Lei, Q.R. Hu, X. Wang, S.L. Wang, W.H. Tang, Facile route to straight ZnGa2O4 nanowires and their cathodoluminescence properties. J. Alloys Compd. 489(2010)663-666.
    [5]W.Y. Wu, J.M. Ting, P.J. Huang, Electrospun ZnO Nanowires as Gas Sensors for Ethanol Detection. Nanoscale Res. Lett.4 (2009) 513-517.
    [6]P.G. Li, S.L. Wang, W.H. Tang, Low-temperature synthesis and photoluminescence of ZnO nanostructures by a facile hydrothermal process, J. Alloys Compd.489 (2010) 566-569.
    [7]S.H. Hu, Y.C. Chen, C.C. Hwang, C.H. Peng, D.C. Gong. Development of a wet chemical method for the synthesis of arrayed ZnO nanorods, J. Alloys Compd.500 (2010) 17-21.
    [8]U.N. Maiti, Sk.F. Ahmed, M.K. Mitra, K.K. Chattopadhyay, Novel low temperature synthesis of ZnO nanostructures and its efficient field emission property. Mater. Res. Bull.44 (2009) 134-139.
    [9]S.F. Wang, T.Y. Tseng, Y.R. Wang, C.Y. Wang, H.C. Lu, Effect of ZnO seed layers on the solution chemical growth of ZnO nanorod arrays. Ceram. Int.35 (2009) 1255-1260.
    [10]Q. Ahsanulhaq, S.H. Kim, Y.B. Hahn, Hexagonally patterned selective growth of well-aligned ZnO nanorod arrays. J. Alloys Compd.484 (2009) 17-20.
    [11]G. Meng, X.D. Fang, Y.K. Zhou, J. Seo, W.W. Dong, S. Hasegawa, H. Asahi, H. Tambo, M.G. Kong, L. Li, Ultra-low turn-on field from ultra-long ZnO nanowire arrays emitters. J. Alloys Compd.491 (2010) 72-76.
    [12]S. Baruah, J. Dutta, pH-dependent growth of zinc oxide nanorods. J. Cryst. Growth.311 (2009) 2549-2554.
    [13]Z. Lockman, Y. P. Fong, T. W. Kian, K. Ibrahim, K. A. Razak, Formation of self-aligned ZnO nanorods in aqueous solution. J. Alloys Compd.493 (2010) 699-706.
    [14]P.X. Cao, Y. Ding, Z.L. Wang, Electronic Transport in Superlattice-Structured ZnO Nanohelix. Nano Lett.9 (2009) 137-143.
    [15]S. Xu, Y. Wei, M. Kirkham, J. Liu, W. Mai, D. Davidovic, R.L. Snyder, Z.L. Wang, Patterned Growth of Vertically Aligned ZnO Nanowire Arrays on Inorganic Substrates at Low Temperature without Catalyst. J. Am. Chem. Soc.130 (2008) 14958-14959.
    [16]S.J. Chen, G.R. Wang, Y.C. Liu, The structure and photoluminescence properties of ZnO nanobelts prepared by a thermal evaporation process. J. Lumin.129 (2009) 340-343.
    [17]Q.R. Hu, S.L. Wang, P. Jiang, H. Xu, Y. Zhang, W.H. Tang, Synthesis of ZnO nanostrucrures in organic solvents and their photoluminescence properties. J. Alloys Compd.496 (2010) 494-499.
    [18]T.R. Zhang, W.J. Dong, M.K. Brewer, S. Konar, R. N. Njabon, Z. R. Tian, Site-Specific Nucleation and Growth Kinetics in Hierarchical Nanosyntheses of Branched ZnO Crystallites. J. Am. Chem. Soc.128 (2006) 10960-10968.
    [19]L.M. Shen, N.Z. Bao, K. Yanagisawa, K. Domen, C. A. Grimes, A. Gupta, Organic Molecule-Assisted Hydrothermal Self-Assembly of Size-Controlled Tubular ZnO Nanostructures. J. Phys. Chem. C 111 (2007) 7280-7287.
    [20]W. Posthumus, P.C.M.M. Magusin, J.C.M. Brokken-Zijp, A.H.A. Tinnemans, R. van der Linde, Surface modification of oxidic nanoparticles using 3-methacryloxypropyltrimethoxysilane. J. Colloid Interface Sci.269 (2004) 109-116.
    [21]Y.F. Gao, H.Y. Miao, H.J. Luo, M. Nagai, J.J. Shyue, Morphological and Crystallographic Transformation of ZnO in Solution. J. Phys. Chem. C 112 (2008) 1498-1506.
    [22]J. P. Liu, X. T. Huang, K. M. Sulieman, F. L. Sun, X. He. Solution-Based Growth and Optical Properties of Self-Assembled Monocrystalline ZnO Ellipsoids. J. Phys. Chem. B 110(2006) 10612-10618.
    [23]M. S. Mo, J. C. Yu, L. Z. Zhang, S. A. Li. Self-Assembly of ZnO Nanorods and Nanosheets into Hollow Microhemispheres and Microspheres. AdV. Mater.17 (2005) 756-760
    [24]B. Cheng, X. F. Wang, L. Y. Liu, L. T. Guo. Growth mechanism and morphology dependent luminescence properties of ZnO nanostructures prepared in aqueous solution. Mater. Lett.62 (2008) 3099-3102.
    [25]S.H. Hu, Y.C. Chen, C.C. Hwang, C.H. Peng, D.C. Gong. Development of a wet chemical method for the synthesis of arrayed ZnO nanorods. J. Alloys Compd.500 (2010)L17-L21.
    [26]R. Dragone, P. Galli, M. A. Massucci, M. Trombetta, Preparation and characterisation of histidine-and iron-histidine-a-zirconium phosphate intercalation compounds. Catalytic behaviour of the iron derivatives in oxidation reactions with H2O2. J. Mater. Chem.13 (2003) 834-840.
    [27]S. Kar, A. Dev, S. Chaudhuri. Simple Solvothermal Route To Synthesize ZnO Nanosheets, Nanonails, and Well-Aligned Nanorod Arrays. J. Phys. Chem. B 110 (2006) 17848-17853.
    [28]Y. Dai, Y. Zhang, Q.K. Li, C.W. Nan, Synthesis and optical properties of tetrapod-like zinc oxide nanorods. Chem. Phys. Lett.358 (2002) 83-86.
    [29]A.Van Dijken, E. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, The Kinetics of the Radiative and Nonradiative Processes in Nanocrystalline ZnO Particles upon Photoexcitation. J. Phys. Chem. B 104 (2000) 1715-1723.
    [30]N.O. Korsunska, L.V. Borkovska, B.M. Bulakh, L.Yu. Khomenkova, V.I. Kushnirenko, I.V. Markevich, The influence of defect drift in external electric field on green luminescence of ZnO single crystals. J. Lumin.102 (2003) 733-736.
    [31]B. Lin, Z. Fu, Y. Jia, Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl. Phys. Lett.79 (2001) 943-945.
    [32]M.H. Huang, S. Mao, H. Feick, H.Q. Yan; Y. Wu, H. Kind, E. Weber, R. Russo, P. D. Yang, Room-Temperature Ultraviolet Nanowire Nanolasers. Science 292 (2001) 1897-1899.
    [33]F. Fang, D. Zhao, D. Shen, J. Zhang, B. Li, Synthesis of Ordered Ultrathin ZnO Nanowire Bundles on an Indium-Tin Oxide Substrate. Inorg. Chem.47 (2008) 398-400.
    [34]M.H. Huang, Y. Wu, H. Feick, G. Tran, E. Weber, P. D. Yang, Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport. Adv. Mater.13 (2001) 113-116.
    [35]F. Wang, L. Cao, A. Pan, R. Liu, X. Wang, X. Zhu, S. Wang, B. Zou, Synthesis of Tower-like ZnO Structures and Visible Photoluminescence Origins of Varied-Shaped ZnO Nanostructures. J. Phys. Chem. C. 111(2007) 7655-7660.
    [36]K.F. Lin, H.M. Cheng, H.C. Hsu, L.J. Lin, W.F. Hsieh, Band gap variation of size-controlled ZnO quantum dots synthesized by sol-gel method. Chem. Phys. Lett. 409(2005)208-211.
    [37]H.M. Xiong, D.P. Liu, Y.Y. Xia, J.S. Chen, Polyether-Grafted ZnO Nanoparticles with Tunable and Stable Photoluminescence at Room Temperature. Chem. Mater.17 (2005) 3062-3064.
    [1]A. P. Almeida de Oliveira, J. F. Hochepied, F. Gritton, Berger M. H. Controlled precipitation of zinc oxide particles at room temperature, Chem. Mater.15(2003) 3203-3207.
    [2]J. Jiansheng, G. Wang, Q. Wang, Y. Chen, X. Han, X. Wang, J. G. Hou, Synthesis and characterization of aligned ZnO nanorods on porous aluminum oxide template, J. Phys. Chem. B 108(2004) 11976-11980.
    [3]M. Raula, M. H. Rashid, T. K. Paira, E. Dinda, T. K. Mandal, Ascorbate assisted growth of hierarchical ZnO nanostructures:sphere, spindle, flower and their catalytic properties, Langmuir 26 (2010) 8769-8782.
    [4]X. Cao, N. Wang, L. Wang, Ultrathin ZnO nanorods:facile synthesis, characterization and optical properties, Nanotechnology 21(2010) 065603.
    [5]V. V. Ursaki, E. V. Rusu, A. Sarua, M. Kuball, G. I. Stratan, A. Burlacu, I. M. Tiginyanu, Optical characterization of hierarchical ZnO structures grown with a simplified vapour transport method, Nanotechnology 18 (2007) 215705,8p.
    [6]F. Xu, K. Yu, G. D. Li, Q. Li, Z. Q. Zhu, Synthesis and field emission of four kinds of ZnO nanostructures:nanosleeve-fishes, radial nanowire arrays, nanocombs and nanoflowers, Nanotechnology 17 (2006) 2855-2859.
    [7]P. Jiang, J. J. Zhou, H. F. Fang, C. Y. Wang, Z. L. Wang, S. S. Xie, Hierarchical Shelled ZnO Structures Made of Bunched Nanowire Arrays, AdV. Funct. Mater.17 (2007)1303-1310.
    [8]X. Sun, X. Qiu, L. Li, G. Li. ZnO twin-cones:synthesis, photoluminescence, and catalytic decomposition of ammonium perchlorate, Inorg. Chem.47 (2008) 4146-4152.
    [9]X.G. Han, Y.Q. Jiang, S.F. Xie, Q. Kuang, X. Zhou, D.P. Cai, Z.X. Xie, L.S. Zheng. Control of the surface of ZnO nanostructures by selective wet-chemical etching. J. Phys. Chem. C 114 (2010) 10114-10118.
    [10]K. Yu, Z. Jin, X. Liu, J. Zhao, J. Feng. Shape alterations of ZnO nanocrystal arrays fabricated fromNH3H2O solutions, Appl. Surf. Sci.253 (2007) 4072-4078.
    [11]X. Hu, Y. Masuda, T. Ohji, K. Kato, Dissolution-recrystallization induced hierarchical structure in ZnO:bunched roselike and core-shell-like particles, Cryst. Growth Des.10 (2010) 626-631.
    [12]F. Wang, L. Cao, A. Pan, R. Liu, X. Wang, X. Zhu, S. Wang, B. Zou. Synthesis of tower-like ZnO structures and visible photoluminescence origins of variedshaped ZnO nanostructures, J. Phys. Chem. C.111 (2007) 7655-7660.
    [13]Y.N. Zhao, M.S. Cao, H.B. Jin, L. Zhang, C.J. Qiu, Catalyst-free synthesis, growth mechanism and optical properties of multipod ZnO with nanonail-like legs. Scripta Mater.54 (2006) 2057-2061.
    [14]K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys.79 (1996) 7983-7990.
    [15]Xi-Guang Han, Ya-Qi Jiang, Shui-Fen Xie, Qin Kuang, Xi Zhou, Dao-Ping Cai, Zhao-Xiong Xie, Lan-Sun Zheng. Control of the surface of ZnO nanostructures by selective wet-chemical etching. J. Phys. Chem. C 114 (2010) 10114-118.
    [16]K.H. Tam, C.K. Cheung, Y.H. Leung, A.B. Djurisic, C.C. Ling, C.D. Beling, S.; Fung, W.M. Kwok, W.K. Chan, D.L. Philips, L. Ding, W.K. Ge, Defects in ZnO nanorods prepared by a hydrothermal method. J. Phys. Chem. B 110 (2006) 20865-20871.
    [17]H. Zhou, X.M. Chen, G.H. Wu, F. Gao, N. Qin, D.H. Bao. Significantly enhanced red photoluminescence properties of nanocomposite films composed of a ferroelectric Bi36Euo 4T13O12 matrix and highly c-axis-oriented ZnO nanorods on Si substrates prepared by a hybrid chemical solution method. J. Am. Chem. Soc.132 (2010)1790-1791.
    [18]T. Ghoshal, S. Kar, S. Chaudhuri. ZnO Doughnuts:Controlled Synthesis, Growth Mechanism, and Optical Properties. Cryst. Growth Des.7 (2007) 136-141.
    [19]F. Wang, L. Cao, A. Pan, R. Liu, X. Wang, X. Zhu, S. Wang, B. Zou. Synthesis of Tower-like ZnO Structures and Visible Photoluminescence Origins of Varied-Shaped ZnO Nanostructures. J. Phys. Chem. C 111 (2007) 7655-7660.
    [20]V. G. Pol, J. M. Calderon-Moreno, P. Thiyagarajan. Facile Synthesis of Novel Photoluminescent ZnO Micro-and Nanopencils. Langmuir 24 (2008) 13640-13645.
    [21]K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisic, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Philips, L. Ding, W. K. Ge. Defects in ZnO Nanorods Prepared by a Hydrothermal Method. J. Phys. Chem. B 110 (2006) 20865-20871.
    [22]Z. Wang, B. Huang, X. Liu, X. Qin, X. Zhang, J. Wei, P. Wang, S. Yao, Q. Zhang, X. Jing. Photoluminescence studies from ZnO nanorod arrays synthesized by hydrothermal method with polyvinyl alcohol as surfactant. Mater. Lett.62 (2008) 2637-2639
    [1]L.P. Xu, Y.L. Hu, C. Pelligra, C.H. Chen, L. Jin, H. Huang, S. Sithambaram, M. Aindow, R. Joesten, S. L. Suib. ZnO with different morphologies synthesized by solvothermal methods for enhanced photocatalytic activity. Chem. Mater.21(2009) 2875-2885.
    [2]A.Pan, R.Yu, S. Xie, Z. Zhang, C. Jin, B. Zou, ZnO flowers made up of thin nanosheets and their optical properties. J. Cryst. Growth 282(1-2)(2005)165-172.
    [3]Q. R. Hu, S. L. Wang, P. Jiang, H. Xu, Y. Zhang, W. H. Tang. Synthesis of ZnO nanostructures in organic solvents and their photoluminescence properties. J. Alloys Compd.496 (2010) 494-499.
    [4]F. Wang, L. Cao, A. Pan, R. Liu, X. Wang, X. Zhu, S. Wang, B. Zou. Synthesis of tower-like ZnO structures and visible photoluminescence origins of varied-shaped ZnO nanostructures, J. Phys. Chem. C 111(2007)7655-7660.
    [5]J. Wang, S. Zhang, Z. Li, J. You, H. Yan, X. Jing, M. Zhang. Synthesis and evolution of novel double tower-like ZnO by a simple method, Colloid. Polym. Sci., 286(2008)849-853.
    [6]Z. Wang, X.F. Qian, J. Yin, Z.K. Zhu. Large-scale arrays of tower-like, flower-like and tube-like ZnO nanocrystals by a simple chemical solution route, Langmuir,20(2004)3441-3448.
    [7]R. Wahab, S.G. Ansari, Y.S. Kim, H.K. Seo, G.S. Kim, G. Khang, H.S. Shin, Low temperature solution synthesis and characterization of ZnO nano-flowers, Mater. Res. Bull,42(2007)1640-1648.
    [8]Z.Q. Chen, A. Kawasuso, Y. Xu, H. Naramoto, X.L. Yuan, T. Sekiguchi, R. Suzuki, T. Ohdaira, Production and recovery of defects in phosphorus implanted ZnO, J. Appl. Phys,97(2005)013528.
    [9]M. Rajalakshmi, A.K. Arora, B.S. Bendre, S. Mahamuni, Optical phonon confinement in zinc oxide nanoparticles, J. Appl. Phys,87(2000) 2445-2448.
    [10]F. Decremps, J. Pellicer-Porres, A.M. Saitta, J.C. Chervin, A. Polian, High-pressure Raman spectroscopy study of wurtzite ZnO, Phys. Rev. B,65(2002) 92101.
    [1]F. Dumestre, B. Chaudret, C. Amiens, P. Renaud, P. Fejes, Superlattices of Iron Nanocubes Synthesized from Fe[N(SiMe3)2]2..,Science 303(2004)821-823
    [2]F. Li, J. He, W. Zhou, J. B. Wiley, Synthesis of Porous Wires from Directed Assemblies ofNanospheres, J. Am. Chem. Soc.125(2003)16166-16167
    [3]J. Joo, S. G. Kwon, J. H. Yu, T. Hyeon, Synthesis of ZnO Nanocrystals with Cone, Hexagonal Cone, and Rod Shapes via Non-Hydrolytic Ester Elimination Sol-Gel Reactions. AdV. Mater.17(2005)1873-1877.
    [4]R. Qiao, X. L. Zhang, R. Qiu, J. C. Kim, Y. S. Kang, Preparation of Magnetic Hybrid Copolymer-Cobalt Hierarchical Hollow Spheres by Localized Ostwald Ripening. Chem. Mater.19(2007)6485.-6491
    [5]C. Ding, Q. Xu. Preparation of composite of poly (o-methyl-acrylamide-benzoic acid)/ZnO nanoparticlesand its property of fluorescence, Spectrosc. And Spectral Anal.26 (2006) 2072-2075
    [6]R. mam, T. Caykara, S. Akkoc, O. Kantoglu. Investigation of ZnO-release Behavior of poly(N-isopropylacrylamide-co-maleic acid)/ZnO composite hydrogels by differential pulse polarography. J Appl. Polym. Sci.92 (2004) 2411-2414
    [7]G. Mandal, S. Bhattacharya, T. Ganguly, Nature of interactions of tryptophan with zinc oxide nanoparticles and L-aspartic acid:A spectroscopic approach. Chem. Phys. Lett.472 (2009) 128-133.
    [8]S. Cho, H. Jeong, D. H. Park, S. H. Jung, H. J. Kim, K. H. Lee. The effects of vitamin C on ZnO crystal formation. Cryst. Eng. Comm.12 (2010) 968-976.
    [9]Q. Wu, X. Chen, P. Zhang, Y. Han, X. Chen, Y. Yan, S. Li. Amino Acid-Assisted Synthesis of ZnO Hierarchical Architectures and Their Novel Photocatalytic Activities.8 (2008) 3010-3018.
    [10]K. Matsumoto, N. Saito, T. Mitate, J. Hojo, M. Inada, H. Haneda. Surface Polarity Determination of ZnO Spherical Particles Synthesized via Solvothermal Route. Cryst. Growth Des.9(2009) 5014-5016
    [1]吉文欣,李永听.甲烷催化燃烧中制备参数对NiO/CuOZrO催化剂高温反应性能的影响[J].燃烧化学学报,32(6)(2004)372-377.
    [2]F.W. Chang, M.T. Tsay, M.S. Kou. Effect of Thermal Treatments on Catalyst Reducibility and activety in Nickel Supposed on RHA-A1203 Systems[J]. Thermoehimica Acta,386(2)(2002)16-20.
    [3]Pang Suh-Cem,Anderson A Mare, chapman W Thomas, Novel Electrode Materials Thin-Film ULracapacilors:Comparison of Sol—Gel—Derived and Electrodeposited Manganese Dioxide[J]. Jonmal of Electrochemical Society,2000,147(2):444-450.
    [4]王连超.电致变色纳米氧化镍薄膜的溶胶-凝胶法制备与表征[J].无机材料学报,2004,19(6):1391-1396.
    [5]Garcia—Miquel J L, Zhang Q, Allen S J, et al. Nickel oxide sol-gel films from nickel diacetate for electrochromic applications. Thin Solid Films[J].2003,424: 165-170.
    [6]朱诚意,刘中华,陈雯,等.超微NiO粉体的制备及其应用现状[J].功能材料.1999.30(4):345-349
    [7]李秀艳,曾令可,刘平安,等.超细NiO粉体的制备及其应用研究进展[J].材料科学与工程学报.2004.22(5):770--773
    [8]闪星.张密林.纳米氧化镍在超大容量电容器中的应用.功能材料与器件学报.2002,8(1):35-39
    [9]Nam Kyung-Wan, Kim Kwang-Bum. A Study of the Preparation of NiOx Electrode via Electrochemical Route for Supercapacitor Applications and Their Charge Storage Mechanism. J. Electrochem. Soc.,2002,149(3):A346-A354
    [10]王晓峰-孔祥华(WANG Xiao-Feng, et al.)新型氧化镍超电容器电极材料的研究.无机材料学报(Journal of Inorganic Materials),2001,16(5):815-820
    [1]H.X. Gao,G.F. Cheng, R.M. Cheng基于纳米ZnO/聚氯乙烯的复合材料光催化性能研究Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao),22(05)(2006)872-876
    [2]W.S. Lu, G.C. Xiao, D.Z. Li, et al. Pt/InVO4/TiO2可见光催化剂的制备及性能研究。Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao),21 (10)(2005)l 495-1499
    [3]Z.Y Wang, B.B. Huang, Y. Dai, et al..High photocatalytic ZnO/In2O3 hetero-nanostructures synthesized by co-precipitation method. J. Phys. Chem. C, 113(11)(2009)4612-4617
    [4]P. Wang, B. B. Huang, X. Y. Zhang, X. Y. Qin, Y. Dai, H. Jin, J. Y. Wei, M.-H. Whangbo, Composite semiconductor H2WO4.H2O/AgCl as an efficient and stable photocatalyst under visible light, Chem. Eur. J.14(2008)10543.
    [5]B. Levy, W. Liu, S. Gilbert, Directed Photocurrents in Nanostructured TiO2/SnO2 Heterojunction Diodes. J. Phys. Chem. B 101(1997)1810-1816.
    [6]C. R. Gorla, N. W. Emanetoglu, S. Liang, W. E. Mayo, Y. Lu, M. Wraback, H. Shen, Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (0112) sapphire by metal organic chemical vapor deposition. J. Appl. Phys. 85(1999)2595.
    [7]J. L. Yang, S. J. An, W. I. Park, G. C. Yi, W. Choi. Photocatalysis Using ZnO Thin Films and Nanoneedles Grown by Metal-Organic Chemical Vapor Deposition. Adv. Mater.16(2004) 1661.
    [8]K. Keis, L. Vayssieres, S. E. Lindquist, A. Hagfeldt., Nanostructured ZnO electrodes for photovoltaic applications. Nanostruct. Mater.12(1999)487-490
    [9]J. A. Rodriguez, T. Jirsak, J. Dvorak, S. Sambasivan, D. Fischer, Reaction of NO2 with Zn and Zno;photoemission, XANES, and density functional studies on the formation of NO3. J. Phys. Chem. B 104(2000)319-328
    [10]S. Y. Ren, W.M. Hu, J. D. Dow. Gap vibration modes of mass defects in the cubic compound semiconductor ZnS. J. Lumin.45(1-6)(1990)159-161
    [11]郭广生,刘颖荣,王志华等单分散性ZnS及其复合颗粒的制备.无机化学学报, 16(3)(2000)492
    [12]刘成林酞菁铜掺杂TiO2纳米颗粒的光谱特性和精细结构China Ceramic Industry 11(1)(2004)26-28
    [13]Y. Zhao, Y. Zhang, H. Zhu, G. C. Hadjipanayis, J. Q. Xiao, Low-temperature synthesis of hexagonal (Wurtzite) ZnS nanocrystals. J. Am. Chem. Soc.126(2004) 6874-6875.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700