用户名: 密码: 验证码:
分布式并网发电系统低电压穿越问题的若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源枯竭和环境污染的日趋严重,风能、太阳能等可再生能源的分布式发电(Distributed Generation, DG)技术在世界各国得到迅猛发展,将分布式发电融入集中式发电,并建立混合型发电体系已成为供电系统发展的必然趋势。众所周知,构成分布式发电系统的风力发电、太阳能发电等机组单机容量小,易受大电网的影响。当电网发生故障时,分布式发电系统可能出现大规模从电网解列的情况,为此世界各国对分布式发电系统并网制定了入网规则,其中对低电压穿越技术(Low Voltage Ride Though, LVRT)的要求备受关注。本文对分布式并网发电系统低电压穿越的若干关键技术,如变速恒频双馈感应风力发电机(Doubly-Fed Induction Generator, DFIG)稳态控制策略、转子侧变换器低电压穿越控制策略、网侧变换器低电压穿越控制策略、全功率变换器低电压穿越控制策略等进行了深入研究。论文主要工作如下:
     根据双馈感应风力发电机的运行特点,以矢量控制(Vector Control, VC)理论为基础,研究了电网电压定向的DFIG稳态控制策略及空载并网控制策略,对空载并网及稳态运行分别进行了实验研究,在变速条件下实现无冲击电流并网及输出有功、无功功率的解耦控制。
     为了提高双馈风力发电系统在电网发生故障时的动态响应速度,研究了一种电网电压定向的DFIG直接功率控制(Direct Power Control, DPC)策略,建立了相应的空载并网及稳态运行控制模型,进行了相关的实验研究。结果表明DPC实现了与VC相同的无冲击并网、解列、有功/无功功率解耦控制等功能;而在电网故障时,DPC能提高双馈感应风力发电系统的动态性能,增强系统的低电压穿越能力。
     在分析了电网电压跌落时双馈感应发电机定子磁链暂态变化过程的基础上,研究了电网故障发生时刻及故障程度对转子励磁变换器的影响,得出了电网发生故障时双馈发电机各个物理量之间的量化关系,找到了转子过电压、过电流的根本原因。提出了一种电网故障时消除定子磁链直流分量及负序分量的转子侧变换器低电压穿越控制策略,实验结果验证了所提控制策略在电网电压跌落时,减小了双馈发电机的定、转子过电流,提高了低电压穿越能力。
     深入分析了电网故障时双馈发电机处于不同运行状态下,网侧变换器的动态过程及直流母线电压波动的原因。根据电网故障发生及排除时网侧变换器的响应特性,提出了一种通过改变调制电压信号实现网侧变换器低电压穿越的控制策略。实验结果验证了所提的控制策略能快速调节直流母线电压,使之趋于平稳,并在电网故障时将双馈发电机转子电能快速回馈到电网。
     在深入研究了电网故障时双馈感应发电机转子电压、电流暂态变化过程的基础上,得出了单靠改进转子励磁变换器控制算法实现低电压穿越的条件;当无法满足该条件时,研究了一种改进转子侧变换器控制策略和硬件保护技术相结合的LVRT控制方法。实验结果验证了所提方法在电网严重故障时,限制了定、转子电流,保护了转子励磁变换器,同时提高了为电网提供功率支持的快速性。
     对全功率并网变换器低电压穿越控制技术进行了研究,以三相光伏并网发电系统为研究对象,对其稳态控制及低电压穿越控制进行了研究,提出了一种电网发生对称故障时,通过调节前馈补偿量实现LVRT的控制策略;研究了电网发生不对称故障时,采用正、负序控制器分别控制输出电流的正、负序分量以实现LVRT的控制方法,并对上述控制策略进行了仿真和实验验证。
     建立了以TMS320F2407A为核心的双PWM变换器硬件实验平台,在该实验平台上完成了上述双馈感应风力发电机矢量控制、直接功率控制、转子侧变换器及网侧变换器低电压穿越实验验证,及改进转子侧变换器控制策略与硬件保护相结合的双馈感应发电机低电压穿越实验验证,三相光伏全功率变换器稳态控制实验及低电压穿越实验验证。
With the increase of global environmental pollution and serious energy crisis, Distributed Generation(DG) technologies using renewable resources like wind energy and photovoltaic (PV) energy are developed quickly around the world. As we all know, the DG unit capacity is small and they are easily interrupted by the grid fluctuation. When the grid fault happens, DG may disconnect from the grid, so some countries presented the grid codes for DG. Low Voltage Ride Through(LVRT) requirement is one of the most important research topics. In this paper some key DG LVRT technologies, such as variable speed constant frequency wind power generation of doubly-fed induction generator (DFIG) flexible cutting-in and steady state operation control methods, rotor side converter(RSC) LVRT control strategy, grid side converter(GSC) LVRT control strategy, three phase PV full power converter LVRT control strategy are studied deeply, the contributions of this dissertation are as follows:
     According to characteristic of DFIG, the gird voltage orientated Vector control(VC) strategy is studied. Idle-load cutting-in and steady state operation are studied by experiments. Flexible cutting-in, decoupling control of active power and reactive power are obtained when the rotor speed changes.
     To improve the dynamic response, a DFIG Direct Power Control(DPC) is studied. The cutting-in and steady state operation DPC modes are established and studied by experiments. The experimental results show that using DPC achieves the same purpose with VC and DPC improves the LVRT ability during grid fault.
     Based on analysis of DFIG stator flux transient period, how the DFIG rotor excited converter is affected by the voltage sag moment and percent during the grid fault is researched. The cause of stator and rotor overcurrent and the relationship of DFIG physical values are found. This paper proposed a DFIG RSC LVRT control method by reducing the DC flux and negative flux. The experimental results prove that the mentioned control method prevents the stator and rotor overcurrent and improves the LVRT ability.
     GSC dynamic process of different running state during grid fault is analyzed. A GSC LVRT control method is proposed based on GSC response. The method modifies the modulation voltage signal during grid fault to control AC current and stabilize the DC-link voltage. The experimental results prove that the GSC LVRT control method make DC-link voltage stable and transfer rotor power to the grid quickly.
     Based on analysis of transient period of DFIG rotor voltage and current, the LVRT limiting condition using RSC control strategy to achieve LVRT is found. A DFIG LVRT method combining the improved control stragety with hardware protect is studied when the limiting condition is not met. The experimental results prove that the method limit the stator and rotor overcurrent, protect the rotor converter and provide power to the grid quickly during serious grid fault.
     The full power converter is studied. The steady state operation and LVRT control of a 3-phase PV converter is studied. A LVRT control strategy is proposed by regulating the forward compensation voltage during symmetric grid fault. The positive and negative controllers are used to control positive and negative current to achieve LVRT when asymmetric grid fault happened.
     A double PWM converter experimental system is established based on the TMS320F2407A. The DFIG VC and DPC steady state control, cutting-in control, the RSC and GSC LVRT control, RSC control method combined with Crowbar circute protect control experiments are made based on the system. The PV converter steady state control and LVRT control experiments are made based on the system also.
引文
[1]赵群,王永泉,李辉.世界风力发电现状与发展趋势[J].机电工程, 2006, 23(12):16- 18
    [2]江泽民.对中国能源问题的思考[J].上海交通大学学报, 2008, 42(3):345-359
    [3]杨巍.光伏并网发电系统关键技术研究[D].西安理工大学硕士学位论文. 2010
    [4]黄伟,孙昶辉,吴子平,张建华.含分布式发电系统的微网技术研究综述[J].电网技术, 2009, 33(9):14-19
    [5]谷永刚,王琨,张波.分布式发电技术及其应用现状,电网与清洁能源[J]. 2006, 26(6):37-43
    [6]刘细平,林鹤云.风力发电机及风力发电控制技术综述[J].大电机技术, 2007(3):17-20
    [7]王超,张怀宇.风力发电技术及其发展方向[J].电站系统工程, 2006(2):11-13
    [8]赵晶,赵争鸣.太阳能光伏发电技术现状及其发展[J].电气应用, 2007(10):6-10
    [9]黄磊.太阳能光伏发电市电并网电站的应用[J].低压电器, 2007(22):50-54
    [10]李国超,胡丽蓉.燃料电池分布式发电技术及其战略意义[J].可再生能源, 2009(1):112-114
    [11]逯红梅,秦朝葵.燃料电池混合发电技术[J].电池, 2008(6):389-391
    [12]张丽香.可再生能源发电的发展现状及前景[J].电力学报, 2008(1):29-32
    [13]孙守强,袁隆基.生物质能发电技术及其分析[J].能源研究与信息, 2008(3):130-135
    [14]王燕.分布式电源联网接口逆变电路控制技术的研究[D].华北电力硕士学位论文, 2007
    [15]杨文宇,杨旭英,杨俊杰.分布式发电及其在电力系统中的应用研究综述[J].电网与水利发电进展, 2008, 24(2):39-42
    [16]余昆,曹一家,倪以信,陈星莺,郭创新.分布式发电技术及其并网运行研究综述[J].河海大学学报(自然科学版)[J]. 2009, 37(6):741-748
    [17]魏兵,王志伟.微型燃气轮机冷热电联供系统及其在国外的发展状况[J].电力需求侧管理, 2006(6):62-64
    [18]赵豫,于尔铿.新型分散式发电装置—微型燃气轮机[J].电网技术, 2004(4):47-50
    [19]王东风,贾增周,孙剑,徐大平.变桨距风力发电系统的滑模变结构控制[J].华北电力大学学报(自然科学版), 2008 (1):1-3
    [20]徐大平,肖运启,秦涛,吕跃刚.变桨距型双馈风电机组并网控制及建模仿真[J].电网技术, 2008(6):100-105
    [21]夏长亮,宋战锋.变速恒频风力发电系统变桨距自抗扰控制[J].中国电机工程学报, 2007(14):91-95
    [22]李杰,王得利,陈国呈.一种直驱式风力发电系统的并网控制策略研究[J].电工技术学报, 2007, 22(8):89-95
    [23]卞松江.变速恒频风力发电关键技术研究[D].浙江大学博士学位论文. 2003
    [24] Esmaili. R,Xu. L,and Nichols. D. K.A New Control Method of Permanent Magnet Generator for Maximum Power Tracking in Wind Turbine Application[C], IEEE power engineering society general meeting, 2005, 13:2090-2095
    [25] Yazhou Lei, Alan Mullane, Gordon Lightbody, Robert Yacamini. Modeling of the Wind Turbine With a Doubly Fed Induction Generator for Grid Integration Studies[J]. IEEE Transactions on energy conversion. 2006, 21(1):257-264
    [26] Lie Xu, Direct Active and Reactive Power Control of DFIG for Wind Energy Generation[J]. IEEE Transactions on energy conversion. 2006, 21(3): 750-758
    [27] Kelvin Tan, Syed Islam.Optimum Control Strategies in Energy Conversion of PMSG Wind Turbine System Without Mechanical Sensors[J]. IEEE Transactions on energy conversion. 2004, 19(2): 392 -399
    [28]吴国祥,马炜,陈国呈,俞俊杰.双馈变速恒频风力发电空载并网控制策略[J].电工技术学报, 2007(7):169-175
    [29]李建林,赵栋利,李亚西,许洪华.几种适合变速恒频风力发电机并网方式对比分析[J].电力建设, 2006,27(5):8-10
    [30]马祎炜,俞俊杰,吴国祥,陈国呈.双馈电机风力发电柔性并网方式的分析与比较[J].上海大学学报(自然科学版), 2009(3):238-244
    [31]郭金东,赵栋利,林资旭,许洪华.兆瓦级变速恒频风力发电机组控制系统[J].中国电机工程学报, 2007, 27(6):1-6
    [32]迟永宁.大型风电场接入电网的稳定性问题研究[D].中国电力科学研究院博士学位论文. 2006
    [33]马祎炜,俞俊杰,吴国祥,陈国呈.双馈风力发电系统最大功率点跟踪控制策略[J].电工技术学报, 2009, 24(4):202-208
    [34] R. Spee, S. Bhowmik, and J. Enslin, Novel control strategies for variable speed doubly fed wind power generation systems[J], Renew. Energy, 1995, 6(8):907–915
    [35] Eftichios Koutroulis,Kostas Kalaitzakis.Design of a Maximum Power Tracking System for Wind-Energy- Conversion Applications[J] .IEEE Transactions on Industrial Electronics, 2006, 53(2):486-494
    [36] M. Ermis, H. B. Ertan, E. Akpinar, and F. Ulgut, Autonomous wind energy conversion systems with a simple controller for maximum-power transfer[J], Proc. Inst. Elect. Eng. B, 1992, 139:421–428
    [37] G.D.MOOR, H.J.BEYKES, Maximum Power Point Trackers for Wind Turbines[C]. Proceedings of IEEE 35th Annual Power Electronics Specialists Conference, 2004:2044-1049
    [38] A. Z. Mohamed, M. N. Eskander, and F. A. Ghali, Fuzzy logic control based maximum power tracking of a wind energy system[J], Renew. Energy, 2001, 23( 2): 235–245
    [39] T. Thiringer and J. Linders, Control by variable rotor speed of a fixed pitch wind turbine operating in a wide speed range[C], IEEE Trans. Energy Conv., 1993, 8(3):520–526
    [40]刘其辉,贺益康,赵仁德.变速恒频风力发电系统最大风能追踪控制[J].电力系统自动化, 2003, 27(20):62-67
    [41]胡书举,李建林,许洪华.永磁直驱风电系统低电压运行特性的分析[J].电力系统自动化, 2007(17):73-77
    [42]李建林,胡书举,孔德国,许洪华.全功率变流器永磁直驱风电系统低电压穿越特性研究[J].电力系统自动化, 2008(19):92-95
    [43]王伟,孙明冬,朱晓东.双馈式风力发电机低电压穿越技术分析[J].电力系统自动化, 2007, 31(23):84-89
    [44] Joos, G. Wind Turbine Generator Low Voltage Ride through Requirements and Solutions[C]. IEEE Power and Energy Society General Meeting, 2008:1-7
    [45] D Xiang, L Ran, P J Tavner, S Yang. Control of a doubly fed induction generator in wind turbine during grid fault ride-through[J]. IEEE Trans. Energy Conversion,2006, 21(3): 652-662
    [46] Muyeen S M, Takahashi R, Murata T, Tamura J, Ali M H, Matsumura Y, Kuwayama A, Matsumoto T. Low voltage ride through capability enhancement of wind turbine generator system during network disturbance[J]. Renewable Power Generation, IET. 2009(3):65-74
    [47] Abbey C, Joos G. Short-term energy storage for wind energy applications[C]. Industry Applications Conference, 2005: 2035-2042
    [48]杨晓萍,段先锋,田录林.直驱永磁同步风电系统低电压穿越的研究[J].西北农林科技大学学报(自然科学版), 2009, 37(8):228-234
    [49]赵紫龙,吴维宁,王伟.电网不对称故障下直驱风电机组低电压穿越技术[J].电力系统自动化. 2009, 33(21):87-91
    [50]杨晓萍,段先锋,钟彦儒.直驱永磁同步风电机组不对称故障穿越的研究[J].电机与控制学报, 2010, 14(2):7-13
    [51] C. Rodriguez, G. A. J. Amaratunga, Dynamic stability of grid-connected photovoltaic systems[C]. Power Engineering Society General Meeting. 2004(2):2193-2199
    [52] Azevedo, G.M.S., Rodriguez, P., Cavalcanti, M.C. NEW CONTROL STRATEGY TO ALLOW THE PHOTOVOLTAIC SYSTEMS[C]. Power Electronics Conference, 2009, 9:196-201
    [53] H. C. Seo, C. H. Kim, Y. M. Yoon, C. S. Jung. Dynamics of grid connected photovoltaic system at fault conditions [J]. IEEE Transmission & Distribution Conference & Exposition 2009:1-4
    [54] Mullane A,lightbody G,yacamini R.Wind-turbine fault ride-though enhancement[J].IEEE Transactions on Power Systems, 2005, 20(4):1929-1937
    [55] Yongfeng Ren,Hongyan Xu,Jianlin Li,Shuju Hu.Research on Low Voltage Ride Through of Doubly-fed Induction generator[C]. Intelligent Information Technology Application Workshops, 2008:1117-1120
    [56] Zhang Yong, Duan Zhengang, Liu Xuelian. Comparison of Grid Code Requirements withWind Turbine in China and Europe[C]. Power and Energy Engineering Conference, 2010:1-4
    [57]郭晓明.电网异常条件下双馈异步风力发电机的直接功率控制[D].浙江大学博士学位论文. 2008
    [58] Technical University of Denmark. Mapping of grid faults and grid codes[M]. 2007
    [59] Arulampalam, A., Ramtharan, G., Jenkins, N. Trends in wind power technology and grid code requirements[C]. Industrial and Information Systems International conference. 2007: 129 - 134
    [60] Energinet - Grid connection of wind turbines to networks with voltages above 100 kV, Regulation TF 3.2.5, December 2004, p. 25
    [61] ESB Networks– Distribution Code, version 1.4, February 2005
    [62] CER– Wind Farm Transmission Grid Code Provisions, July 2004
    [63]国家电网公司风电场接入电网技术规定. 2009.7
    [64]光伏系统并网技术要求. GB/T 19939—2005
    [65]光伏发电站接入电力系统技术规定. GB/Z 19964—2005
    [66]刘其辉.变速恒频风力发电系统运行与控制研究[D].浙江大学博士学位论文. 2005
    [67]郭家虎.变速恒频双馈风力发电系统控制技术的研究[D].上海大学博士学位论文. 2008
    [68]叶杭冶.风力发电机组的控制技术(第二版)[M].北京:机械工业出版社. 2006
    [69]马洪飞,徐殿国,苗立杰.几种变速恒频风力发电系统控制方案的对比分析[J].电工技术杂志, 2000(10):1-4
    [70]林成武,王风翔,姚兴佳.变速恒频双馈风力发电机励磁控制技术研究[J].中国电机工程学报, 2003, 23(11):122-125
    [71]郑康,潘再平.变速恒频风力发电系统中的风力机模拟[J].机电工程, 2003,20(6):40-43
    [72]钱坤,谢寿生,高梅艳.自适应控制在变速风力发电系统中的应用[J].控制工程, 2004, 11(1):76-78
    [73]吴国祥.变速恒频双馈机风力发电的若干关键技术研究[D].上海大学博士学位论文. 2009
    [74]李杰.直驱式风力发电变流系统拓扑及控制策略研究[D].上海大学博士学位论文. 2009
    [75]邹旭东.变速恒频交流励磁双馈风力发电系统及其控制技术研究[D].华中科技大学博士学位论文. 2005
    [76]杨淑英.双馈型风力发电变流器及其控制[D].合肥工业大学博士学位论文. 2007
    [77]赵仁德.变速恒频双馈风力发电机交流励磁电源研究[D].浙江大学博士学位论文. 2005
    [78] Ekanayake J B, Lee Holdsworth L, Wu X G. Dynamic modeling of doubly fed induction generator wind turbines[J]. IEEE Trans on Power Systems, 2003, 18(2):803-809
    [79] Z. Liu, O.A. Mohammed, S. Liu. A Novel Direct Torque Control of Doubly-Fed Induction Generator Used for Variable Speed Wind Power Generation[C]. Power Engineering Society General Meeting, 2007:1-6
    [80]姚兴佳,井艳军,王文卓,邢作霞.双馈风力发电机直接转矩控制的研究[J].沈阳工业大学学报, 2006, 28(6):671-674
    [81]王亮,林成武,姚鹏.双馈风力发电机的直接转矩控制技术[D].沈阳工业大学学报, 2006, 28(2):206-210
    [82]郭晓明,贺益康,何奔腾.双馈异步风力发电机开关频率恒定的直接功率控制[D].浙江大学博士学位论文. 2005
    [83] Lie Xu, Dawei Zhi. Direct Power Control of Grid Connected Voltage Source ConvertersPower Engineering Society General Meeting, 2007:1-6
    [84] Osama S. Ebrahim, Praveen K. Jain. New Direct Power Control for the Wind-DrivenDFIG with Improved Performance550-556
    [85] Lie Xu, Phillip Cartwright. Direct Active and Reactive Power Control of DFIG for Wind Energy Generation[J]. IEEE Trans. Energy convers, 2006, 21(3): 750-758
    [86]苏晓东.基于直接功率控制的风力发电并网变流器研究[D].北京交通大学硕士学位论文. 2008
    [87]张俊峰,毛承雄,陆继明,吴建东.双馈感应发电机的直接功率控制策略[J].电力自动化设备, 2006, 32(1):62-65
    [88] Chai Chompoo-inwai, Lee Wei-jen, Fuangfoo P, et al. System impact study for the interconnection of wind generation and utility system[J]. IEEE Trans on Industry Applications, 2005, 41(1) :163-168
    [89]姚俊,廖勇.基于Crowbar保护控制的交流励磁风电系统运行分析[J].电力系统自动化, 2007, 31(23): 79-82
    [90] Erlich I,Winter W, Dittrich A. Advanced grid requirements for the integration of wind turbines into the German transmissions system[C]. IEEE Power Engineering Society General Meeting, Montreal, 2006:1-7
    [91] Johan Morren, Sjoerd W.H. de Haan. Ridethrough of Wind Turbines with Doubly-Fed Induction Generator During a Voltage Dip[J]. IEEE Trans on Energy Conversion, 2005, 20 (1): 435-441
    [92] PERDANA A,CARLSON O,PERSSON J. Dynamic response of grid-connected wind turbine with doubly fed induction generator during disturbances[C]. Proceedings of Nordic Workshop on Power and Industrial Electronics, 2004
    [93]胡家兵,贺益康.双馈风力发电机低电压穿越运行与控制[J].电力系统自动化, 2008, 32(2):29-36
    [94]廖勇,李辉,姚骏.庄凯采用串联网侧变换器的双馈风电机组低电压过渡控制策略[J].中国电机工程学报, 2009, 29(27): 90-98
    [95]胡家兵,孙丹,贺益康,等.电网电压骤降故障下双馈风力发电机建模与控制[J].电力系统自动化, 2006, 30( 8):21-26
    [96]向大为.双馈感应风力发电机特殊运行工况下励磁控制策略的研究.[D].重庆大学博士学位论文. 2006
    [97] Sun T, Chen Z, Blaabjerg F.Voltage recovery of grid-connected wind turbines with DFIG after a short-circuit fault[C]. IEEE 35th Annual Power Electronics Specialists Conference, Aachen, 2004
    [98] Sun T, Chen Z, Blaabjerg F. Transient stability of DFIG wind turbines at an external short-circuit fault [J].Wind Energy, 2005, 8(3):345-360
    [99]迟永宁,王伟胜,戴慧珠.改善基于双馈感应发电机的并网风电场暂态电压稳定性研究[J].中国电机工程学报, 2007, 27(25):25- 31
    [100]关宏亮,赵海翔,迟永宁.风电机组低电压穿越功能及其应用[J].电工技术学报, 2007, 22(10): 142-147.
    [101] Manoj R Rathi, Ned Mohan A. A novel robust low voltage and fault rtide through for wind turbine application operating in weak grids[C]. Industrial Electronics Society, IECON, 2005:2481-2486
    [102]姚骏,廖勇,唐建平.电网短路故障时交流励磁风力发电机不脱网运行的励磁控制策略[J].中国电机工程学报, 2007, 27(30):64-71.
    [103] Yi Wang, Lie Xu. Control of DFIG-Based Wind Generation Systems under Unbalanced Network Supply[C]. IEEE EMDC, 2007: 430 - 435
    [104]王成元,夏加宽,杨俊友,孙宜标编著.电机现代控制技术[M].北京:机械工业出版社, 2006.
    [105]王锋,姜建国.风力发电机用双PWM变换器的功率平衡联合控制策略研究[J].中国电机工程学报,2006,26(22):134-139
    [106]姚骏.交流励磁发电机及其励磁电源的控制策略研究[D].重庆:重庆大学博士学位论文., 2007
    [107]姚俊,廖勇,周求宽,等.双PWM控制交流励磁电源直流链电压的稳定控制策略[J].电力系统自动化, 2007, 31(21): 63-66
    [108] Dawei Zhi, Lie Xu, Direct Power Control of DFIG With Constant Switching Frequency and Improved Transient Performance[J]. IEEE Trans on Energy Conversion, 2007, 22(1):110-119
    [109] Cuiqing Du, Math H.J.Bollen, Evert Agneholm, Ambra Sannino. A New Control Strategy of a VSC–HVDC System for High-Quality Supply of Industrial Plants[J]. IEEE Transon Power Delivery, 2007, 22(4):2386-2394
    [110] Eduard Muljadi, C.P.Butterfield, Brian Parsons, Abraham Ellis. Effect of Variable Speed Wind Turbine Generator on Stability of a Weak Grid[J]. IEEE Trans on Energy Conversion, 2007, 22(1):29-36
    [111] Pedro Rodriguez, Adrian V.Timbus, Remus Teodorescu, Frede Blaabjerg. Flexible ActivePower Control of Distributed Power Generation Systems During Grid Faults[J]. IEEE Trans on Industrial Electronics, 2007, 54(5):2583-2592
    [112]李建林.全功率变流器永磁直驱风电系统低电压穿越特性研究[J].电力系统自动化, 2008, 32(19):29-33
    [113]肖磊.直驱型永磁风力发电系统低电压穿越技术研究[D].湖南大学硕士学位论文. 2009
    [114] LI Jianlin , HU Shuju , LI Mei. Research on t he application of parallel back to back PWM converter on direct drive wind power system[C]. Proceedings of Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, 2008: 2504-2508
    [115]姚骏,廖勇,庄凯.电网故障时永磁直驱风电机组的低电压穿越控制策略[J].电力系统自动化, 2009, 33(21):91-96
    [116] Miguel Castilla, Jaume Miret, Jorge Sos, JoséMatas. Grid Fault Control Scheme for Three-phase Photovoltaic Inverters with Adjustable Power Quality Characteristics[J]. IEEE Trans. Power Electron., 2010, 25(12): 2930-2940
    [117] H. Song and K. Nam, Dual current control scheme for PWM converter under unbalanced input voltage conditions, IEEE Trans. Ind. Electron., 1999, 46(5): 953-959
    [118] S.C. Ahn and D.S. Hyun, New control scheme of three-phase PWM AC/DC converter without phase angle detection under the unbalanced input voltage conditions, IEEE Trans. Power Electron., 2002, 17(5):616-622
    [119] X.H. Wu, S.K. Panda, and J.X. Xu, Analysis of the instantaneous power flow for three-phase PWM boost rectifier under unbalanced supply voltage conditions, IEEE Trans. Power Electron., 2008, 23(4):1679-1691
    [120] M.I. Montero, E.R. Cadaval, and F.B. González, Comparison of control strategies for shunt active power filters in three-phase four-wire systems, IEEE Trans. Power Electron., 2007, . 22(1):229-236
    [121] K.R. Uyyuru, M.K. Mishra, and A. Ghosh, An optimization-based algorithm for shunt active filter under distorted supply voltages, IEEE Trans. Power Electron., 2009,24(5):1223-1232
    [122] S. Qiang and L. Wenhua, Control of a cascade STATCOM with star configuration under unbalanced conditions, IEEE Trans. Power Electron., 2009, 24(1):45-58
    [123] M.S. El-Moursi, B. Bak-Jensen, and M.H. Abdel-Rahman, Novel STATCOM controller for mitigating SSR and damping power oscillations in a series compensated wind park, IEEE Trans. Power Electron., 2010, 25(2): 429441
    [124] A. Timbus, M. Liserre, R. Teodorescu, P. Rodriguez, and F. Blaabjerg, Evaluation of current controllers for distributed power generation systems, IEEE Trans. Power Electron., 2009, 24(3):654-664
    [125] A.V. Timbus, P. Rodríguez, R. Teodorescu, M. Liserre, and F. Blaabjerg, Control strategies for distributed power generation systems operating on faulty grid, in Proc. IEEE IECON, 2006:1601-1607
    [126] P. Rodriguez, A.V. Timbus, R. Teodorescu, M. Liserre, and F. Blaabjerg, Independent PQ control for distributed power generation systems under grid faults, in Proc. IEEE IECON, 2006:5185-5190.
    [127] F. Blaabjerg, R. Teodorescu, M. Liserre, and A.V. Timbus, Overview of control and grid synchronization for distributed power generation systems, IEEE Trans. Ind. Electron., 53(5): 1398-1409
    [128] Jesus Lopez, Eugenio Gubia, Pablo Sanchis. Wind turbines based on doubly fed induction generator under asymmetrical voltage dips[J]. IEEE Transaction on Energy Conversion, 2008, 23(1): 321- 329
    [129] Jesus Lopez, Eugenio Gubia, Ride Through of Wind Turbines With Doubly Fed Induction Generator Under Symmetrical Voltage Dips[J]. IEEE Transaction on Industrial Electronics, 2009, 56(10):4246-4254
    [130] Jesus Lopez, Eugenio Gubia, Pablo Sanchis. Dynamic Behavior of the Doubly Fed Induction Generator During Three-Phase Voltage Dips [J]. IEEE Transaction on Energy Conversion, 2007, 22(3):709-717
    [131]Dawei Xiang, Li Ran, Tavner P J,et al. Control of a doubly fed induction generator in awind turbine during grid fault ride-through[J]. IEEE Transactions on Energy Conversion, 2006, 21(3):652-662
    [132]陈伯时.电力拖动自动控制系统[M].北京:机械工业出版社, 2008
    [133]张崇巍,张兴. PWM整流器及其控制策略[M].北京:机械工业出版社, 2003
    [134]徐金榜,何顶新,赵金,等.电压不平衡情况下PWM整流器功率分析方法[J].中国电机工程学报, 2006, 26(16):80-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700