用户名: 密码: 验证码:
涎腺腺样囊性癌嗜神经侵袭相关基因表达谱的构建及相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
涎腺腺样囊性癌(adenoid cystic carcinoma, ACC)具有嗜神经侵袭(perineural invasion, PNI)的特性,常侵袭神经并沿神经生长向远处转移。已有一些研究报道了某些基因在ACC发生PNI过程中可能的作用,但大多研究手段比较局限,未能较全面地了解ACC发生PNI的分子机理。而ACC侵袭神经是涉及多基因、多环节、多途径的复杂过程,因此,研究ACC嗜神经侵袭现象时,明确其嗜神经侵袭相关基因表达谱对ACC基础理论的丰富及指导临床治疗均具有重要意义。
     研究目的:
     1、利用激光俘获显微切割技术获得侵袭神经的纯一ACC肿瘤细胞群,进而通过基因表达谱芯片技术构建出ACC嗜神经侵袭相关基因表达谱,以辨别潜在的ACC嗜神经侵袭相关标记物。
     2、从获得的基因表达谱中,选定靶基因CD146(MCAM),利用RNAi技术高效特异地沉默其表达,分析其对ACC-M细胞的生物学影响及其在抑制ACC-M细胞体外嗜神经侵袭能力中的具体作用。
     研究方法:
     1、结合连续冰冻切片H&E染色及免疫组织化学(IHC)方法,从原发ACC肿瘤标本中,判定存在明确PNI现象的ACC标本。利用激光俘获显微切割技术获得侵袭神经的纯一ACC肿瘤细胞群,进而结合RNA线性扩增和基因表达谱芯片技术构建出ACC嗜神经侵袭相关基因表达谱。
     2、采用实时定量PCR(QRT-PCR)及IHC方法对部分差异表达基因进行验证,以确定基因表达谱芯片筛选结果的可靠性。采用生物信息学方法对获得的ACC嗜神经侵袭相关基因表达谱进行分析,选定靶基因CD146用于下一步的RNA干涉研究。
     3、利用DNA重组技术将针对CD146及GAPDH基因的不同部位所设计的4对dsDNA序列(包括2对CD146的特异性干扰序列、1对CD146的阴性对照干扰序列和1对GAPDH的阳性对照干扰序列)克隆到真核表达质粒pGenesil-1中,限制性酶切和基因测序鉴定,构建CD146的shRNA真核表达载体系统。转染ACC-M细胞,结合有限稀释法及G418压力筛选,构建CD146 shRNA真核表达载体稳定转染细胞株,检测RNA干涉后CD146在mRNA及蛋白水平的表达情况。
     4、检测CD146基因沉默对ACC-M细胞其生物学特性的影响,包括MTT法测定细胞生长曲线;流式细胞仪检测细胞周期的变化。体外实验应用改良Transwell细胞侵袭实验,以了解CD146基因沉默后ACC-M细胞体外嗜神经侵袭能力的变化。
     主要实验结果:
     1、15例原发ACC标本中,6例可判定为存在明确的PNI现象。从6例判定为PNI的肿瘤组织中,激光俘获紧贴神经束且侵袭至神经内膜或神经束膜间的纯一肿瘤细胞群作为嗜神经侵袭组(PNI组);从该6例肿瘤组织中,同样激光俘获未侵袭神经的纯一肿瘤细胞群作为非嗜神经侵袭组(non-PNI组),从而获得侵袭神经的纯一ACC肿瘤细胞群。RNA线性扩增结合人类全基因组芯片Agilent human 1A cDNA microarray,检测差异表达基因。在18,716个基因和1,457个ESTs中,所有的6例芯片共同差异表达的基因有53个,这53个基因能够区分出PNI组及non-PNI组肿瘤细胞,其中38个基因表达上调,15个基因表达下调,从而构建出ACC嗜神经侵袭相关基因表达谱。
     2、53个差异表达基因中,我们使用QRT-PCR及IHC方法验证了其中7个及1个基因,其表达情况均与芯片筛选结果一致。聚类分析显示53个差异表达基因可聚类为5簇,这5簇聚类可详细描述ACC嗜神经侵袭相关基因表达谱。基因功能分析显示在PNI肿瘤细胞组中特异性高表达的基因,其功能与发育、信号转导、神经发生、癌基因、炎性应答、免疫反应、DNA结合、细胞黏附和细胞外基质相关。部分前期ACC芯片研究中表达增高的基因被我们的实验结果所证实,同时我们也获得了一些之前未被证实的在ACC嗜神经侵袭病理过程中可能起重要作用的新基因。
     3、以CD146为靶基因,成功构建了CD146 shRNA真核表达载体系统,包括特异性干扰载体pGe-CD146-shRNA1, 2 ;阴性干扰载体pGe-negative-shRNA以及阳性干扰载体pGe-GAPDH-shRNA。结合有限稀释法及G418压力筛选,我们构建了CD146 shRNA真核表达载体稳定转染细胞株,证实稳定转染细胞中,CD146在mRNA及其蛋白的表达水平被显著抑制。
     4、MTT及流式细胞仪研究结果表明,CD146基因沉默可能通过阻碍ACC-M细胞从G0/G1期进入S期,抑制DNA合成,从而抑制细胞增殖。改良Transwell细胞侵袭实验证实CD146基因沉默可抑制ACC-M细胞体外嗜神经侵袭能力;根据不同位点设计的CD146 shRNA可能导致抑制ACC-M细胞体外嗜神经侵袭能力的差异。
     结论:
     1、结合激光俘获显微切割和基因表达谱芯片技术成功构建出ACC嗜神经侵袭相关基因表达谱。聚类分析及基因功能分析可以较全面的分析基因表达谱结果。某些基因在其PNI的病理过程中的作用值得进一步研究。
     2、CD146 shRNA真核表达载体及其稳定转染细胞株可高效、特异性阻断CD146基因表达,是研究其功能的良好平台。
     3、CD146基因沉默能够显著抑制ACC-M细胞的恶性表型,尤其可显著抑制其体外嗜神经侵袭能力,提示CD146基因有可能成为ACC嗜神经侵袭相关标志物和治疗的靶基因。
Salivary adenoid cystic carcinoma (ACC) has a characteristic of perineural invasion (PNI), it often invades nerves and distantly metastasizes by growing along with nerves. A few of studies have reported the potential effects of some certain genes in the process of PNI in ACC, but most of the studies are limited, so they cannot elucidate the molecule mechanism of PNI in ACC thoroughly. The process of PNI in ACC was complicated which related to multiple genes, component elements, and pathways. So, there is important significance to clarify gene expression profile associated with PNI which can enrich basic theory and guide clinical treatment in ACC.
     Objectives:
     1. To investigate the range of gene expression differences between PNI and non-PNI ACC cell groups which procured by laser capture microdissection (LCM) and to correlate gene expression profile associated with PNI to identify potentially new biomarkers of ACC with PNI.
     2. CD146(MCAM), one of the up-regulated genes from gene expression profile, was chose to be the target for RNAi. To analyze its biological effects in reducing in vitro perineural invasion on ACC-M cell by specifically knock-down the transcription of CD146.
     Methods:
     1. Combined use of H&E staining and immunohistochemistry (IHC) method in consecutive frozen sections from primary ACC specimens, obvious PNI was assessed in the cancerous tissues. Pure cancer cells adjacent to the nerve tracts from cancerous tissues judged as PNI were procured by LCM. Then we constructed gene expression profile associated with PNI by combining use of RNA linear amplification and high-throughput cDNA microarray technique.
     2. Patterns of gene expression were verified by quantitative real-time PCR (QRT-PCR) and IHC. Gene expression profile associated with PNI was analyzed by bioinformatics methods. Target gene CD146 was chose for the following RNAi research.
     3. According to the CD146 cDNA in the Genebank, we designed two different shRNA targeting the coding sequence of the CD146. The pGe-CD146-shRNA1, 2 were constructed by inserting the designed shRNA in the eukaryotic expression vector pGenesil-1. The vector was identified by restriction endonuclease digestion and partial nucleotide sequencing. ACC-M cells were transfected with different vectors respectively. Monoclones of stable transfectants, were procured by limiting dilution assay, then selected by G418. The expression results of CD146 mRNA and protein were detected after RNAi.
     4. Effects of CD146 gene silencing on ACC-M cells were detected, including cell proliferation activity analyzed by MTT assay, and cell cycle change detected by flow cytometry (FCM) analysis. The inhibitory effect of RNAi on ACC-M cell’s PNI in vitro was demonstrated in modified Boyden chambers.
     Results:
     1. Obvious PNI was found in 6 out of the 15 primary cancerous tissues. Pure cancer cells adjacent to the nerve tracts from 6 cancerous tissues judged as PNI were laser captured, and pure cancer cells from the same 6 tumors distant from the nerve tracts were also procured. Differential expression genes were detected by Agilent human 1A cDNA microarray. Of 18,716 interrogated genes and 1,457 ESTs, analyzed data showed 53 genes were differentially expressed (fold difference≥2.0 or≤1/2) among all 6 arrays that could distinguish PNI and non-PNI cancer cell groups. Of the 53 genes found differentially expressed, 38 were up-regulated and 15 down-regulated. Thus we constructed gene expression profile associated with PNI.
     2. Of the 53 differentially expressed genes, we performed QRT-PCR and IHC analysis for a group of selected genes to validate the findings of the microarray analysis. Hierarchical clustering showed the 53 genes could be divided into five clusters discriminating the PNI. Functional gene classes highly represented in PNI cell group included those involved in development, signal transducer activity, neurogenesis, oncogene, inflammatory response, immune response, binding, cell adhesion, and extracellular matrix functions. Several genes previously identified as overexpressed in ACC were confirmed by our study in addition to identifying several novel genes with potential roles in the pathobiology of ACC associated with PNI.
     3. We successfully constructed CD146 shRNA eukaryotic expression vector system based on target gene CD146, including pGe-CD146-shRNA1, 2; a negative control vector pGe-negative-shRNA and a positive control vector pGe-GAPDH-shRNA. Combined use of limiting dilution assay and G418 pressure selection, we successfully constructed monoclones of CD146 shRNA stable transfectants. It has been proved that the mRNA and protein expression levels of CD146 were significantly inhibited in the stable transfectants.
     4. Findings based on MTT and FCM analysis indicated that the knockdown of CD146 expression could inhibit proliferation of ACC-M cells by modulating G0/G1 and S cell cycle regulators. Modified Boyden chambers experiment demonstrated that the knockdown of CD146 expression could inhibit PNI activity of ACC-M cells, and that different shRNA transfectants showed striking unequal efficiency in inhibiting PNI activity.
     Conclusions:
     1. Combined use of LCM and high-throughput cDNA microarray techniques, we successfully constructed in vivo gene expression profile of salivary ACC and to correlate the profile with PNI. Hierarchical clustering and functional gene classes can analyze the gene expression profile all around. Several novel genes with potential roles in the pathobiology of ACC associated with PNI deserved further study.
     2. CD146 shRNA eukaryotic expression vectors and their stable transfectants can specifically and effectively inhibit the expression of CD146, suggesting that it could be a good platform applied for functional research.
     3. The knockdown of CD146 expression by RNAi can successfully inhibit the malignant behaviors of ACC-M cells, especially PNI ability in vitro, implicating that CD146 may be a new candidate target gene for treatment of ACC.
引文
[1] De Vita V. Cancer principles and practice of oncology (5th edition). USA: Lippincott-Raven. 1997, 145-146.
    [2] Li JR, He RG. Development of basic research in oral and maxillofacial tumor. Wuhan:Hubei Science and Technology Press, 2002, 209-211.
    [3] DeSchryver K, Balogh K, Neet KE. Nerve growth factor and the concept of neural-epithelial interactions, immunohistochemical observations in two cases of vasitis nodosa and six cases of prostatic adenocarcinoma. Arch. Pathol. Lab Med., 1987, 111(9): 833-835.
    [4] Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, Weiss RA, Liotta LA. Laser capture microdissection. Science, 1996, 274(5289): 998-1001.
    [5] Ren CP, Lin WD, He ZW, Lan K, Wang H, Yao KT.Differentially expressed gene profile of hCR2- transfected mouse cells before and after EBV infection and TPA treatment. Acta Biochim. Biophys. Sin., 2001, 33(1): 105-111.
    [6] Bortoli S, Renault V, Eveno E, Auffray C, Butler-Browne G, Pietu G. Gene expression profiling of human satellite cells during muscular aging using cDNA arrays. Gene,2003, 321(2): 145-154.
    [7] Bockman D, Buchler M, Beger H. Interaction of pancreatic ductal carcinoma with nerves leads to nerve damage. Gastroenterology, 1994, 107(1): 219-230.
    [8] Reed R, Leonard D. Neurotropic melanoma. A variant of desmoplastic melanoma. Am. J. Surg. Pathol., 1979, 3(4): 301-308.
    [9] Iwamoto S, Odland P, Piepkorn M. Evidence that the p75 neurotrophin receptor mediates perineural spread of desmoplastic melanoma. J. Am. Acad. Dermatol., 1996, 35(5 Pt 1): 725-731.
    [10] Iwamoto S, Burrows R, Agoff S, Piepkorn M, Bothwell M, Schmidt R. The p75 neurotrophin receptor, relative to other Schwann cell and melanoma markers, is abundantly expressed in spindled melanomas. Am. J. Dermatopathol., 2001, 23(4): 288-294.
    [11] Tezel E, Nagasaka T, Nomoto S, Sugimoto H, Nakao A. Neuroendocrine-like differentiation in patients with pancreatic carcinoma. Cancer, 2000, 89(11): 2230-2236.
    [12] DeSchryver K, Balogh K, Neet K. Immunohistochemical observations in two cases of vasitis nodosa and six cases of prostatic adenocarcinoma. Arch. Pathol. Lab Med., 1987, 111(9): 833-835.
    [13] Miknyoczki S, Lang D, Huang L, Klein-Szanto A, Dionne C. Neurotrophins and Trk receptors in human pancreatic ductal adenocarcinoma: expression patterns and effects on in vitro invasive behavior. Int. J. Cancer, 1999, 81(3): 417-427.
    [14] Zhu Z, Friess H, diMola F, Zimmermann A, Graber H. Nerve growth factor expression correlates with perineural invasion and pain in human pancreatic cancer. Clin. Oncol., 1999, 17(8): 2419-2428.
    [15] Ohta T, Numata M. Neurotrophin-3 expression in human pancreatic cancers. Pathol., 1997, 181(4): 405-412.
    [16] 马大权主编. 涎腺疾病. 北京:人民卫生出版社, 2002. 235-240.
    [17] 孙长伏,李瑞武,钟鸣. 涎腺腺样囊性癌嗜神经性的相关临床病理学研究. 中国医科大学学报, 1999, 28(5): 387-390.
    [18] Toth A, Daley T, Lampe H. Schwann cell differentiation of modified myoepithelial cells within adenoid cystic carcinomas and polymorphous low-grade adenocarcinomas: clinico-pathologic assessment of immunohistochemical staining. J. Otolaryngol., 1996, 25(2): 94-101.
    [19] 孙长伏,钟鸣,王兆元,王玉新. 涎腺腺样囊性癌神经内分泌性探讨. 华西口腔医学杂志, 1999, 17(2): 125-129.
    [20] 罗小龙. 雪旺氏细胞分化与涎腺腺样囊性癌嗜神经侵袭的关系及其临床意义. 第四军医大学研究生毕业论文. 2003, 1-59.
    [21] 陈伟,孙沫逸,董绍忠,杨耀武,李建虎,王磊,居云. 雪旺细胞标记物 Leu-7(HNK-1)在涎腺腺样囊性癌嗜神经侵袭中的意义. 北京口腔医学, 2005, 13(1): 10-12.
    [22] 孙沫逸,陈伟,杨连甲,董绍忠. 许旺细胞标记物 GFAP 与肌上皮细胞标记物 α-SMA在涎腺腺样囊性癌中共表达. 中华口腔医学, 2006, 41(8): 461-463.
    [23] Luo XL, Sun MY, Lu CT, Zhou ZH. The role of Schwann cell differentiation in perineural invasion of adenoid cystic and mucoepidermoid carcinoma of the salivary glands. Int. J. Oral Maxillofac. Surg. 2006, 35(8): 733-739.
    [24] Iga H, Azuma M, Nagamine S. Expression of neurofilaments in a neoplastic human salivary intercalated duct cell line or its derivatives and effect of nerve growth factor on the cellular proliferation and phenotype. Cancer Res., 1989, 49(23): 6708-6014.
    [25] Kowalski P, Paulino A. Perineural invasion in adenoid cystic carcinoma: Its causation/promotion by brain-derived neurotrophic factor. Hum. Pathol. 2002, 33(9): 933-936.
    [26] 王磊. 神经营养素及其受体在涎腺腺样囊性癌嗜神经侵袭中的作用. 第四军医大学研究生毕业论文. 2004, 1-65.
    [27] 陈伟,孙沫逸,王磊,董绍忠,杨耀武,李建虎,安永谦. 酪氨酸激酶 B 在涎腺腺样囊性癌中的表达及与嗜神经侵袭的关系. 现代肿瘤医学, 2004, 12(5): 388-390.
    [28] Wang L, Sun MY, Jiang YG, Yang LJ, Lei DL, Lu C, Zhao YH, Zhang P, Yang YW, Li JH. Nerve growth factor and tyrosine kinase A in human salivary adenoid cystic carcinoma: expression patterns and effects on in vitro invasive behavior. J. Oral Maxillofac. Surg. 2006, 64(4): 636-641.
    [29] 余立强,孙沫逸,张圃,杨耀武,李建虎,王磊,李谨革. 腺样囊性癌 SACC-83 细胞对雪旺氏细胞的诱向作用. 现代肿瘤医学, 2006, 14(5): 518-520.
    [30] 李志进,孙沫逸,王磊,陈伟,张圃,李建虎. NT-3 对腺样囊性癌细胞系 ACC-M 体外粘附能力的影响. 现代肿瘤医学, 2006, 14(6): 657-659.
    [31] 李志进,孙沫逸,王磊,张圃,李建虎. 神经营养素-3 对腺样囊性癌细胞体外迁移能力的影响. 北京口腔医学, 2006, 14(2): 99-100.
    [32] Franca C, Jaeger R, Freitas V. Effect of N-CAM on in vitro invasion of human adenoid cystic carcinoma cells. Oral Oncol., 2001, 37(8): 638-642.
    [33] 唐峰,王虹,赵为之.53 例涎腺腺样囊性癌 MMP-2 和 MMP-9 表达与神经浸润和淋巴结转移的关系.复旦学报(医学科学版), 2001, 21(2): 121-124.
    [34] 毛立民,于世凤,孙开华,刘红岩,赵万州,韩锐.金属蛋白酶抑制剂 BB-94 抑制涎腺腺样囊性癌侵袭转移的实验.中华口腔医学杂志, 2001, 36(4): 304-307.
    [35] Simone NL, Bonner RF, Gillespie JW, Emmert-Buck MR, Liotta LA. Laser-capture microdissection: opening the microscopic frontier to molecular analysis. Trends in Genetics, 1998, 14(7): 272-276.
    [36] James D, Richard F. Practical histological microdissection for PCR analysis. Journal of Pathology, 1996, 179(1): 121-124.
    [37] Shibata D, Hawes D, Li ZH, Hernandez AM, Spruck CH, Nichols PWl. Specific genetic analysis of microscopic tissue after selective ultraviolet radiation fractionation and the polymerase chain reaction. American Journal of Pathology, 1992, 141(3): 539-543.
    [38] Vasmatzis G, Essand M, Brinkmann U, Lee B, Pastan I. Discovery of three genes specifically expressed in human prostate by expressed sequenctag database analysis. Proc. Natl. Acad. Sci. USA, 1998, 95(1): 300-304.
    [39] Ying SY, Lin SL. Gene expression in precursor cells of prostate cancer associated with activin by combination of subtractive hybridization and microarray technologies. Biochemical and Biophysical Research Communications, 2004, 313(1): 104-109.
    [40] Ma XJ, Salunga R, Tuggle T, Gaudet J, Enright E, McQuary P, Payette T, Pistone M, Stecker K, Zhang BM, Zhou YX, Varnholt H, Smith B, Gadd M, Chatfield E, Kessler J, Baer TM, Erlander MG, Sgroi DC. Gene expression profiles of human breast cancer progression. Proc. Natl. Acad. Sci. USA, 2003, 100(10): 5974-5979.
    [41] Paterson RF, Ulbright TM, MacLennan GT, Zhang S, Pan CX, Sweeney CJ, Moore CR, Foster RS, Koch MO, Eble JN, Cheng L. Molecular genetic alterations in the laser-capture- microdissected stroma adjacent to bladder carcinoma. Cancer, 2003, 98(9): 1830-1836.
    [42] Ilias A, Mamatha M, Xue Z. Oral cancer in vivo gene expression profiling assisted by laser capture microdissection and microarray analysis. OncoGene, 2001, 20(43): 6196-6204.
    [43] Yan F, Weiguo D, Yoshihiko K, Taylor EE, Dunmire VR. Mutation and expression of the p53 gene during chemical hepatocarcinogenesis in F344 rats. Biochimica et Biophysica Acta, 2003, 1628(1): 40-49.
    [44] Jia JY, Kathrin H, Gillian D, Ramdas L, Cogdell DE. Absence of epstein–barr virus DNA in the tumor cells of european hepatocellular carcinoma. Virology, 2003, 306(2): 236-243.
    [45] Massimo I, Jean-Baptiste T, Oona D, Aurilio C, Maione S. Characterisation of hepatitis B virus X protein mutants in tumour and non-tumour liver cells using laser capture microdissection. Journal of Hepatology, 2003, 39(2): 253-261.
    [46] Sugiyama Y, Dan S, Yoshida Y, Akiyama F, Sugiyama K, Hirai Y, Matsuura M, Miyata S, Ushijima M, Hasumi K, Yamori T. A large-scale gene expression comparison ofmicrodissected, small-sized endometrial cancers with or without hyperplasia matched to same-patient normal tissue. Clin Cancer Res., 2003, 9(15): 5589-6000.
    [47] Shekouh AR, Thompson CC, Prime W, Campbell F, Hamlett J, Herrington CS, Lemoine NR, Crnogorac-Jurcevic T, Buechler MW, Friess H, Neoptolemos JP, Pennington SR, Costello E. Application of laser capture microdissection combined with two-dimensional electrophoresis for the discovery of differentially regulated proteins in pancreatic ductal adenocarcinoma. Proteomics, 2003, 3(10): 1988-2001.
    [48] Jozsef B, Bin Y, Samuel C, Bela B, Gyula S, Laszlo T. Protein profiling of complete mole and normal placenta using ProteinChip analysis on laser capture microdissected cells. Gynecologic Oncology, 2003, 88(3):424-428.
    [49] Yoon SR, Louis D, Margot DY, Wexler NS, Arnheim N. Huntington disease expansion mutations in human scan occur before meiosis is completed. Proc. Natl. Acad. Sci. USA, 2003, 100(15): 8834-8838.
    [50] Zirlinger M, Anderson D.Molecular dissection of the amygdala and its relevance to autism. Genes Brain Behav., 2003, 2(5): 282-294.
    [51] Albright TD, Kandel ER, Posner MI. Cognitive neuroscience. Current Opinion in Neurobiology, 2000, 10(5): 612-624.
    [52] Yolanda R, Pablo E, Humberto G, Kandel ER, Gilliam TC. Hippocampal gene expression profiling in spatial discrimination learning. Neurobiology of Learning and Memory, 2003, 80(1): 80-95.
    [53] Lin SL, Chuong CM, Randall B, Ying SY. In vivo analysis of cancerous gene expression by RNA-polymerase chain reaction. Nucleic Acids Research, 1999, 27(23): 4585-4589.
    [54] Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995, 270(5235): 467-470.
    [55] Schena M, Shalon D, Heller R, Chai A, Brown PO, Davis RW. Parallel human genome analysis:microarray-based expression monitoring of 1000 genes. Proc. Natl. Acad. Sci. USA, 1996, 93(20): 10614-10619.
    [56] Garber K. Genomic medicine: Gene expression tests foretell breast cancer's future. Science, 2004, 303(5665): 1754-1755.
    [57] Khan J, Bittner ML, Chen Y, Trent JM, Meltzer PS. DNA microarray technology: the anticipated impact on the study of human disease. Biochim. Biophys. Acta, 1999, 1423(2): 17-28.
    [58] Xiang CC, Chen Y. cDNA microarray technology and its applications. Biotechnology Advance, 2000, 18(1):35-46.
    [59] Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, Barjesteh van Waalwijk van Doorn-Khosrovani S, Boer JM, Beverloo HB, Moorhouse MJ, van der Spek PJ, Lowenberg B, Delwel R. Prognostically useful gene-expression profiles in acute myeloid leukemia. N. Engl. J. Med. 2004, 350(16): 1617-1628.
    [60] Nicole LW, Van HA, Oscar V, Iglesias JL. The application of DNA microarrays in gene expression analysis. Journal of Biotechnology, 2000, 78(2): 271-280.
    [61] Timothy RH, Daniel DS. DNA microarrays for expression profiling. Chemical Biology, 2001, 5(1): 21-25.
    [62] Lashkari DA, Derisi JL, Mccusker JH, Garza-Leal JG, Lalloue C. Yeast microarrays for genome wide parallel genetic and gene expression analysis. Proc. Natl. Acad. Sci. USA, 1997, 94(24): 13057-13062.
    [63] Warner GC, Reis PP, Makitie AA,Sukhai MA, Arora S, Jurisica I, Wells RA, Gullane P, Irish J, Kamel-Reid S. Current applications of microarrays in head and neck cancer research. Laryngoscope, 2004, 114(2): 241-248.
    [64] Li H, Luan Y. Kernel Cox regression models for linking gene expression profiles to censored survival data. Pac. Symp. Biocomput., 2003, 2(1): 65-76.
    [65] Le QT, Sutphin PD, Raychaudhuri S, Yu SC, Ohashi A, Hirose S. Identification of osteopontin as a prognostic plasma marker for head and neck squamous cell carcinomas. Clin. Cancer Res., 2003, 9(1): 59-67.
    [66] Henry F, Adel KE, John BW, Haidar O, Fery JC, Paris D. Large scale molecular analysis identifies genes with altered expression in salivary adenoid cystic carcinima. American Journal of Pathology, 2002; 161(9): 1315-1323.
    [67] Cheung M, Abu-Elmagd M, Clevers H, Scotting PJ. Roles of Sox4 in central nervous system development. Brain Res. Mol. Brain Res. 2000, 79(1): 180-191.
    [68] Huang D, Chen W, Zhang ZY, Zhang P, He R, Zhou X, Qiu W. Identification of genes with consistent expression alteration pattern in ACC-2 and ACC-M cells by cDNA array. Chin. Med J.,2003, 116(3): 448-452.
    [69] Zhu NS, Yang JL, Wang YM, Guan XF. Study of the difference of high and metastasis-related genes of adenoid cystic carcinoma. Experimental and Molecular Medicine, 2003, 35(4): 243-248.
    [70] Patel KJ, Pambuccian SE, Ondrey FG, Adams GL, Gaffney PM. Genes associated with early development, apoptosis and cell cycle regulation define a gene expression profile of adenoid cystic carcinoma. Oral Oncol., 2006, 42(10): 994-1004.
    [71] Kasschau KD, Carrington JC. A counterdefensive strategy of plant viruse: suppression of posttranscriptional gene silencing. Cell, 1998, 95(4): 461-470.
    [72] Napoli C, Lemierx C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell, 1990, 2(4): 279-289.
    [73] van der Krol AR, Mur LA, Beld M, Mol JN, Stuitje AR. Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell, 1990, 2(4): 291-299.
    [74] Cogoni C, Romano N, Macino G. Suppression of gene expression by homologous transgenes. Antonie Van Leeuwenhoek, 1994, 5(3): 205-209.
    [75] Guo S, Kemmphues KJ. Par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell, 1995, 81(4): 600-620.
    [76] Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391(6669): 806-811.
    [77] Hannon GJ. RNA interference. Nature, 2002, 418(6894): 244-251.
    [78] Fire A. RNA triggered gene silencing. Trends Genet., 1999, 15(9): 358-363.
    [79] Bemstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 2001, 409(6818): 363-366.
    [80] Zhang H, Kolb FA, Brondani V, Billy E, Filipowicz W. Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMSO J, 2002, 21(21): 5875-5885.
    [81] Novotny J, Diegel S, Schirmacher H, Mohrle A, Hildebrandt M, Oberstrass J, Nellen W. Dictyostelium double-stranded ribonuclease. Methods Enzymol, 2001, 342: 193-212.
    [82] Tijsterman M, Plasterk RH. Dicers at RISC; The Mechanism of RNAi. Cell, 2004, 117(1):1-3.
    [83] Martens H, Novotny J, Oberstrass J, Steck TL, Postlethwait P, Nellen W. RNAi in Dictyostelium: The role of RNA-directed RNA polymerases and double-stranded RNase. Mol. Biol. Cell. 2002, 13(2):445-453.
    [84] Hannon GJ. RNA interference. Nature, 2002, 418(6861):277-283.
    [85] Ngo H, Tschudi C, Gull K, Ullu E. Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proc. Natl. Acad. Sci. USA, 1998, 95(25): 14687-14692.
    [86] Montgomery MK, Xu S, Fire A. RNA as a target of double-stranded RNA mediated genetic interference in Caeanorhabdiris elegans.Proc. Natl. Acad. Sci. USA, 1998, 95(25): 15502-15507.
    [87] Harborth J, Elbashir SM, Bechert K, Tuschl T, Weber K. Identification of essential genes in cultured mammalian cells using small interfering RNAs. J. Cell Sci., 2001, 114(Pt24): 4557-4565.
    [88] Yang D, Lu H, Erickmn JW. Evidence that processed small dsRNAs may mediate sequence-specific mRNA degradation during RNAi in Drosophila embryos. Curr. Biol., 2000, 10(19): 1191-1200.
    [89] Nishikura K. A short primer on RNA: RNA-directed RNA polymerase acts as a key catalyst. Cell, 2001, 107(19): 415-418.
    [90] Clemens JC, Worby CA, Simonson-Leff N, Muda M, Maehama T, Hemmings BA, Dixon JE. Use of double-stranded RNA interference in Drosophila celI lines to dissect signal transduction pathways. Proc. Natl. Acad. Sci. USA, 2000, 97(12): 6499-6503.
    [91] Sabine B. Antisense-RNA regulation and RNA interference. Biochem. Biophys. Acta, 2002, 1575(1-3): 15-25.
    [92] Gan L, Anton KE, Masterson BA, Vincent VA, Ye S, Gonzalez-Zulueta M. Specific interference with gene expression and gene function mediated by long double-stranded RNA in neural cells. J. Neurosci. Methods, 2002, 121(2): l51-157.
    [93] Kamath RS, Martinez-Campos M, Zipperlen P, Fraser AG, Ahringer J. Effectiveness of specific RNA-Mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol., 2001, 2(1): 1-10.
    [94] Tavernarakis N, Wang SL, Dorovkov M, Ryazanov A, Driscoll M. Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes. Nat-genet., 2000, 24(2): 180-183.
    [95] Plasterk HAR. RNA Silencing: The Genome’s immune system. Science, 2002, 296(5571): 1263-1265.
    [96] Tuschl T, Zamore PD, Lehmann R, Bartel DP, Sharp PA. Targeted mRNA degradation by double-stranded RNA in vitro. Genes. Dev., 1999, 13(24): 3191-3197.
    [97] Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev., 2002, 16(8): 948-958.
    [98] Yu JY, Taylor J, DeRuiter SL, Vojtek AB, Turner DL. Simultaneous inhibition of GSK3alpha and GSK3beta using hairpin siRNA expression vectors. Mol. Ther., 2003, 7(2): 228-236.
    [99] Kim VN. RNA interference in functional genomics and medicine. J. Korean Med. Sci., 2003, 18(3):309-318.
    [100] Shih IM. The role of CD146 (Mel-CAM) in biology and pathology. J Pathol., 1999, 89(1): 4-11.
    [101] Yan X, Lin Y, Yang D, Shen Y, Yuan M, Zhang Z, Li P, Xia H, Li L, Luo D, Liu Q, Mann K, Bader BL. A novel anti-CD146 monoclonal antibody, AA98, inhibits angiogenesis and tumor growth. Blood, 2003, 102(1): 184-191.
    [102] Wu GJ, Wu MW, Wang SW, Liu Z, Qu P, Peng Q, Yang H, Varma VA, Sun QC, Petros JA, Lim SD, Amin MB. Isolation and characterization of the major form of human MUC18 cDNA gene and correlation of MUC18 over-expression in prostate cancer cell lines and tissues with malignant progression. Gene, 2001, 279(1): 17-31.
    [103] Anfosso F, Bardin N, Frances V, Vivier E, Camoin-Jau L, Sampol J, Dignat-George F. Activation of human endothelial cells via S-endo-1 antigen (CD146) stimulates the tyrosine phosphorylation of focal adhesion kinase p125(FAK). J. Biol. Chem., 1998, 273(41): 26852-26856.
    [104] Johnson JP, Bar-Eli M, Jansen B, Markhof E. Melanoma progression-associated glycoprotein MUC18/MCAM mediates homotypic cell adhesion through interaction with a heterophilic ligand. Int. J. Cancer, 1997, 73(5): 769-774.
    [105] Satyamoorthy K,Muyrers J,Meier F,Patel D, Herlyn M. Mel-CAM-specific genetic suppressor elements inhibit melanoma growth and invasion through loss of gap junctional communication. Oncogene, 2001, 20(34): 4676-4684.
    [106] Bittner M, Meltzer P, Chen Y, Seftor E, Hendrix M, Radmacher M, Simon R, Yakhini Z, Ben-Dor A, Sampas N, Dougherty E, Wang E, Marincola F, Gooden C, Lueders J, Glatfelter A, Pollock P, Carpten J, Gillanders E, Leja D, Dietrich K, Beaudry C, Berens M, Alberts D, Sondak V. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature, 2000, 406(6795): 536-540.
    [107] Mills L, Tellez C, Huang S, Baker C, McCarty M, Green L, Gudas JM, Feng X, Bar-Eli M. Fully human antibodies to MCAM/MUC18 inhibit tumor growth and metastasis of human melanoma. Cancer Res., 2002, 62(17): 5106-5114.
    
    [108] 马建华,白进良,傅梧,杨晓春. CD146 与前列腺癌微血管生成关系的研究. 中华男科学杂志, 2005, 19(4): 12-14.
    [109] Wu GJ, Peng Q, Fu P, Wang SW, Chiang CF, Dillehay DL, Wu MW. Ectopical expression of human MUC18 increases metastasis of human prostate cancer cells. Gene, 2004, 327(2): 201-213.
    [110] Kristiansen G, Yu Y, Schluns K, Sers C, Dietel M, Petersen I. Expression of the cell adhesion molecule CD146/MCAM in non-small cell lung cancer. Anal. Cell Pathol., 2003, 25(2): 77-81.
    [111] Shih IM, Hsu MY, Palazzo JP, Herlyn M. The cell-cell adhesion receptor Mel-CAM acts as a tumor suppressor in breast carcinoma. Am. J. Pathol., 1997, 151(3): 745-751.
    [112] Shih IM, Kurman RJ. Expression of melanoma cell adhesion molecule in intermediate trophoblast. Lab Invest., 1996, 75(3): 377-388.
    [113] McGary EC, Heimberger A, Mills L, Weber K, Thomas GW, Shtivelband M, Lev DC, Bar-Eli M. A fully human antimelanoma cellular adhesion molecule/MUC18 antibody inhibits spontaneous pulmonary metastasis of osteosarcoma cells in vivo. Clin. Cancer Res., 2003, 9(17): 6560-6566.
    [114] 宋波,唐建武,王波,崔晓楠,周春辉,侯力. 基因芯片筛选小鼠肝癌淋巴道转移相关基因. 癌症, 2005, 24(7): 774-780.
    [115] 曾益新,吕有勇,朱明华,等.肿瘤学[M].第 2 版.北京:人民卫生出版社,2003:250-258.
    [116] Duraker N, Caynak, ZC, Turkoz K. Perineural invasion has no prognostic value in patients with invasive breast carcinoma. Breast, 2006, 15(5): 629-634.
    [117] Khatri P, Draghici S, Ostermeier GC, Krawetz SA. Profiling gene expression using onto-express. Genomics, 2002, 79(2): 266-270.
    [118] Draghici S, Khatri P, Martins RP, Ostermeier GC, Krawetz SA. Global functional profiling of gene expression. Genomics, 2003, 81(2): 98-104.
    [119] Allison D, Gadbury G, Heo M, Fernandez JR, Lee CK, Prolla TA, Weindruch R. A mixture model approach for the analysis of microarray gene expression data. Comput. Stat. Data. Anal., 2002, 39, 1-20.
    [120] Laudet V, Stehelin D, Clevers H. Ancestry and diversity of the HMG box superfamily. Nucleic Acids Res., 1993, 21(2): 2493-2501.
    [121] Kamachi Y, Uchikawa M, Kondoh H. Pairing SOX off: with partners in the regulation of embryonic development. Trends Genet., 2000, 16(4): 182-187.
    [122] Tanaka S, Kamachi Y, Tanouchi A, Hamada H, Jing N, Kondoh H. Interplay of SOX and POU factors in regulation of the Nestin gene in neural primordial cells. Mol. Cell. Biol., 2004, 24(20): 8834-8846.
    [123] Pevny LH, Lovell-Badqe R. Sox genes find their feet. Curr. Opin. Genet. Dev., 1997, 7(3): 338-344.
    [124] Wegner, M. From head to toes: the multiple facets of Sox proteins. Nucleic Acids Res., 1999, 27(6): 1409-1420.
    [125] Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badqe R. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev., 2003, 17(1): 126-140.
    [126] Uchikawa M, Ishida Y, Takemoto T, Kamachi Y, Kondoh H. Functional analysis of chicken Sox2 enhancers highlights an array of diverse regulatory elements that are conserved in mammals. Dev. Cell, 2003, 4(1): 509-519.
    [127] Catena R, Tiveron C, Ronchi A, Porta S, Ferri A, Tatangelo L, Cavallaro M, Favaro R, Ottolenghi S, Reinbold R, Scholer H, Nicolis SK. Conserved POU-binding DNA sites in the Sox2 upstream enhancer regulate gene expression in embryonic and neural stem cells. J. Biol. Chem., 2004, 279(40): 41846-41857.
    [128] Miyagi S, Saito T, Mizutani K, Masuyama N, Gotoh Y, Iwama A, Nakauchi H, Masui S, Niwa H, Nishimoto M, Muramatsu M, Okuda A. The Sox-2 regulatory regions display their activities in two distinct types of multipotent stem cells. Mol. Cell. Biol., 2004, 24(40): 4207-4220.
    [129] Bani-Yaghoub M, Tremblay RG, Lei JX, Zhang D, Zurakowski B, Sandhu JK, Smith B, Ribecco-Lutkiewicz M, Kennedy J, Walker PR, Sikorska M. Role of Sox2 in the development of the mouse neocortex. Dev. Biol., 2006, 295(1): 52-66.
    [130] Taranova OV, Magness ST, Fagan BM, Wu Y, Surzenko N, Hutton SR, Pevny LH. SOX2 is a dose-dependent regulator of retinal neural progenitor competence. Genes Dev., 2006, 20(9):1187-1202.
    [131] Ikeda T, Kamekura S, Mabuchi A, Kou I, Seki S, Takato T, Nakamura K, Kawaguchi H, Ikeqawa S, Chung UI. The combination of SOX5, SOX6, and SOX9 (the SOX trio) provides signals sufficient forinduction of permanent cartilage. Arthritis Rheum., 2004, 50(11): 3561-3573.
    [132] Smits P, Dy P, Mitra S, Lefebvre V. Sox5 and Sox6 are needed to develop and maintain source, columnar, and hypertrophic chondrocytes in the cartilage growth plate. J. Cell. Biol., 2004, 164(5): 747-758.
    [133] Hargrave M, Wright E, Kun J, Emery J, Cooper L, Koopman P. Expression of the Sox11 gene in mouse embryos suggests roles in neuronal maturation and epithelio-mesenchymal induction, Dev. Dyn., 1997, 210(2): 79-86.
    [134] Kuhlbrodt K, Herbarth B, Sock E, Enderich J, Hermans-Borgmeyer I, Wegner M. Cooperative function of POU proteins and Sox proteins in glial cells. J. Biol. Chem., 1998, 273(26): 16050-16057.
    [135] Uwanogho D, Rex M, Cartwright EJ, Pearl G, Healy C, Scotting PJ, Sharpe, PT. Embryonic expression of the chicken Sox2, Sox3 and Sox11 genes suggests an interactive role in neuronal development. Mech. Dev., 1995, 49(1-2):23-36.
    [136] Hiraoka Y, Ogawa M, Sakai Y, Taniguchi K, Fujii T, Umezawa A, Hata J, Aiso S. Isolation and expression of a human SRY-related cDNA hSOX20. Biochim. Biophys. Acta., 1998, 1396(2): 132-137.
    [137] Sarraj MA, Wilmore HP, McClive PJ, Sinclair AH. Sox15 is up regulated in the embryonicmouse testis. Gene Expr. Patterns, 2003, 3(4): 413-417.
    [138] Sinner D, Rankin S, Lee M, Zorn AM. Sox17 and beta-catenin cooperate to regulate the transcription of endodermal genes. Development, 2004, 131(13): 3069-3080.
    [139] Park KS, Wells JM, Zorn AM, Wert SE, Whitsett JA. Sox17 influences the differentiation of respiratory epithelial cells. Dev. Biol., 2006, 294(1): 192-202.
    [140] Duan Z, Feller AJ, Toh HC, Makastorsis T, Seiden MV. TRAG-3, a novel gene, isolated from a taxol-resistant ovarian carcinoma cell line. Gene, 1999, 229(1-2):75-81.
    [141] Feller AJ, Duan Z, Penson R, Toh HC, Seiden MV. TRAG-3, a novel cancer/testis antigen, is overexpressed in the majority of melanoma cell lines and malignant melanoma. Anticancer Res., 2000, 20(6B): 4147-4151.
    [142] Rogner UC, Wilke K, Steck E, Korn B, Poustka A. The melanoma antigen gene (MAGE) family is clustered in the chromosomal band Xq28. Genomics, 1995, 29(3): 725-731.
    [143] Errabolu R, Sanders MA, Salisbury JL. Cloning of a cDNA encoding human centrin, an EF-hand protein of centrosomes and mitotic spindle poles. J. Cell. Sci., 1994, 107(Pt 1): 9-16.
    [144] Duan Z, Duan Y, Lamendola DE, Yusuf RZ, Naeem R, Penson RT, Seiden, MV. Overexpression of MAGE/GAGE genes in paclitaxel/doxorubicin-resistant human cancer cell lines. Clin. Cancer Res., 2003, 9(7): 2778-2785.
    [145] Nimmrich I, Erdmann S, Melchers U, Finke U, Hentsch S, Moyer MP, Hoffmann I, Muller O. Seven genes that are differentially transcribed in colorectal tumor cell lines. Cancer Lett., 2000, 160(1): 37-43.
    [146] Serrano A, Garcia A, Abril E, Garrido F, Ruiz-Cabello F. Methylated CpG points identified within MAGE-1 promoter are involved in gene repression. Int. J. Cancer., 1996, 68(4): 464-470.
    [147] Jang SJ, Soria JC, Wang L, Hassan KA, Morice RC, Walsh GL, Hong WK, Mao L. Activation of melanoma antigen tumor antigens occurs early in lung carcinogenesis. Cancer Res., 2001, 61(21): 7959-7963.
    [148] Yao X, Hu JF, Li T, Yang Y, Sun Z, Ulaner GA, Vu TH, Hoffman AR. Epigenetic regulation of the taxol resistance-associated gene TRAG-3 in human tumors. Cancer Genet. Cytogenet., 2004, 151(1): 1-13.
    [149] Lehmann JM, Riethmuller G. Johnson JP. MUC18, a marker of tumor progression in human melanoma, shows sequence similarity to the neural cell adhesion molecules of the immunoglobulin superfamily. Proc. Natl. Acad. Sci. USA., 1989, 86(24): 9891-9895.
    [150] Shih IM, Elder DE, Speicher D, Johnson JP, Herlyn M. Isolation and functional characterization of the A32 melanomaassociated antigens. Cancer Res., 1994, 54(9): 2514-2520.
    [151] Luca M, Hunt B, Bucana CD, Johnson JP, Fidler IJ, Bar-Eli M. Direct correlation between MUC18 expression and metastatic potential of human melanoma cells. Melanoma Res., 1993, 3(1): 35-41.
    [152] Xie S, Luca M, Huang S, Gutman M, Reich R, Johnson JP, Bar-Eli M. Expression ofMCAM/MUC18 by human melanoma cells leads to increased tumor growth and metastasis. Cancer Res., 1997, 57(11): 2295-2303.
    [153] Pathak BG, Gilbert DJ, Harrison CA, Luetteke NC, Chen X, Klagsbrun M, Plowman GD, Copeland N.G., Jenkins NA, Lee DC. Mouse chromosomal location of three EGF receptor ligands: amphiregulin (Areg), betacellulin (Btc), and heparin-binding EGF (Hegfl). Genomics, 1995, 28(1): 116-118.
    [154] Katoh Y, Katoh M. Canonical WNT signaling pathway and human AREG. Int. J. Mol. Med., 2006, 17(6): 1163-1166.
    [155] Johnson JP. Cell adhesion molecules in the development and progression of malignant melanoma. Cancer Metastasis Rev., 1999, 18(3): 345-357.
    [156] Aldovini D, Demichelis F, Doglioni C, Di Vizio D, Galligioni E, Brugnara S, Zeni B, Griso C, Pegoraro C, Zannoni M, Gariboldi M, Balladore E, Mezzanzanica D, Canevari S, Barbareschi M. M-CAM expression as marker of poor prognosis in epithelial ovarian cancer. Int. J. Cancer, 2006, 119(8): 1920-1926.
    [157] Kuhlbrodt K, Herbarth B, Sock E, Enderich J, Hermans-Borgmeyer I, Wegner M. Cooperative function of POU proteins and Sox proteins in glial cells. J. Biol. Chem., 1998, 273(26): 16050-16057.
    [158] Chen G, Shukeir N, Potti A, Sircar K, Aprikian A, Goltzman D, Rabbani SA. Up-regulation of Wnt-1 and beta-catenin production in patients with advanced metastatic prostate carcinoma: potential pathogenetic and prognostic implications. Cancer, 2004, 101(6):1345-1356.
    [159] Martensson A, Oberg A, Jung A, Cederguist K, Stenling R, Palmgvist R. Beta-catenin expression in relation to genetic instability and prognosis in colorectal cancer. Oncol Rep., 2007, 17(2): 447-452.
    [160] Wong CM, Fan ST, Ng IO. Beta-catenin mutation and overexpression in hepatocellular carcinoma: clinicopathologic and prognostic significance. Cancer, 2001, 92(1): 136-145.
    [161] Zambon A, Mandruzzato S, Parenti A, Macino B, Dalerba P, Ruol A, Merigliano S, Zaninotto G, Zanovello P. MAGE, BAGE, and GAGE gene expression in patients with esophageal squamous cell carcinoma and adenocarcinoma of the gastric cardia. Cancer, 2001, 91(10): 1882-1888.
    [162] Zou W, Yang H, Hou X, Zhang W, Chen B, Xin X. Inhibition of CD147 gene expression via RNA interference reduces tumor cell invasion, tumorigenicity and increases chemosensitivity to paclitaxel in HO-8910pm cells. Cancer Lett., 2007, 248(2): 211-218.
    [163] Wang L, Sun M, Jiang Y, Yang L, Lei D, Lu C, Zhao Y, Zhang P, Yang Y, Li J. Nerve growth factor and tyrosine kinase A in human salivary adenoid cystic carcinoma: expression patterns and effects on in vitro invasive behavior. J Oral Maxillofac. Surg., 2006, 64(4): 636-641.
    [164] Sui G, Soohoo C, Affar el B, Gay F, Shi Y, Forrester WC, Shi Y. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci. USA, 2002, 99(8): 5515-5520.
    [165] Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschi T. Duplexes of21-nucleotide RNAs mediate RNA interference in culture mammalian cells. Nature, 2001, 411(6836): 494-498.
    [166] Pebernard S, Iggo RD. Determinants of interferon-stimulated gene induction by RNAi vectors. Differentiation, 2004, 72(2-3): 103-111.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700