用户名: 密码: 验证码:
超声表面滚压加工改善40Cr钢综合性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文提出一种超声表面滚压加工(USRP)技术,用以提高材料表面的综合性能。试验设备主要由新改进的数字超声波电源(配有更为精确、稳定的频率跟踪及恒幅控制系统)和USRP处理执行机构组成,其中,加工工作头被创新性地设计为可滚动的球体,从而大幅提高其使用寿命,使USRP处理技术成为真正可应用于实际生产的表面改性新方法。
     以轴类用40Cr钢供应态及调质态试样为例,采用透射电镜(TEM)、扫描电镜(SEM)、X-射线衍射分析(XRD)、显微硬度及表面粗糙度测量等分析手段,研究了USRP表面组织结构及各加工参数对于其机械性能的影响规律;通过热稳定性、耐腐蚀性及耐摩擦磨损性能对比试验,分析该技术对于试样使用性能的影响。
     实验观察和研究表明:USRP试样表面组织具有梯度分布特征,表面强化及晶粒细化是塑性变形逐渐累积的结果;对于调质态试样,组织中析出的碳化物和弥散分布的合金碳化物在提高材料强度的同时,对位错起到一定的钉扎作用。USRP处理技术可以实现试样表面纳米化,表层晶粒为3~7nm,试样表面形成近百微米的纳米晶层;通过衍射花样分析,初步推测试样中渗碳体相在距表层一定深度内有溶解的现象;表层强烈的微应变通过位错移动、晶界形成等方式得到降低,表层并非微应变最大处。
     USRP处理技术中,加工参数对于表面硬化程度、表面粗糙度及表面残余应力均有不同程度的影响;适当的USRP加工能够降低甚至消除前序加工所产生的表面缺陷,但反复的塑性变形也会破坏表面质量,当处理能量大于材料的抗拉强度时,材料表面会产生微观裂纹。
     性能对比试验表明:USRP处理可以使40Cr试样的击穿电位和腐蚀电位有不同程度的正移,说明该方法能够提高材料的耐腐蚀性能,且加工参数越大,改善程度越高;USRP试样经400℃保温2h后,表面晶粒有不同程度的长大,且表面微观应变值大幅降低;在不同摩擦条件下,试样表面的磨损机理有所不同,但总体而言,与磨光试样相比,USRP处理可以提高材料表面耐磨性,尤其是在润滑摩擦条件下,提高幅度显著。
Ultrasonic surface rolling processing (USRP) is put forward, in order to improvethe general properties of surfaces. Testing device includes the improved digitalultrasonic power supply (with more accuracy and stable frequency tracing andamplitude controlling systems) and USRP operator, in which, the processing tip isdesigned as a rolling ball, so that the service life can be greatly prolonged, whichmakes USRP more practical and economical.
     Take as-supplied, quenched and tempered 40Cr steel as testing material. Analysismethods, including TEM, SEM, XRD, measurements of micro-hardness and surfaceroughness and so on, are used to discuss the micro structure and influence ofprocessing parameters on mechanical properties of USRP surfaces. Contrast tests ofthermal stability, corrosion and wear resistance are carried out to investigate theservice performance of USRP specimens.
     Micro-structure observation and test results show that: USRP surface is of gradeddistribution; surface enhancement and grain refinement are the results of plasticdeformation accumulation. As for the quenched and tempered 40Cr specimen, theprecipitated and dispersion-distributed carbide strengthens the surfaces and anchorsthe dislocations. Nanocrystallization can be realized by USRP, with grain size of 3~7nm at the top surface and the nano-structured layer is about 100 micrometers thick.Diffraction patterns indicate that: solution of cementite takes place in a certain rangefrom top surface. Micro strain decreases by dislocation movements and grainboundary formation, so micro strain is not the biggest at the top surface.
     USRP parameters have influence on surface hardening, surface roughness andresidual stress to some degree. Appropriate USRP treatment can reduce and eveneliminate the surface defects. However, repeated plastic deformation may damage thesurface, and micro-crack can be induced when processing energy exceeds the tensilestrength.
     Contrast tests show that: USRP can make the breakdown potential and corrosionpotential of 40Cr specimens move positively, which indicates the improvement ofcorrosion resistance, and the bigger the parameters are, the better the corrosion
     resistance will be. After annealing 2h at 400℃, surface grains grow up to some degree,and the surface micro strain decreases. Under different friction conditions, mechanismof wear surfaces varies. Generally speaking, USRP improves the wear resistance ofsurfaces, especially under lubricating, the increase is obvious.
引文
[1]姜银方,现代表面工程技术,北京:化学工业出版社,1~5
    [2]孟凡军,朱胜,巴德玛,45CrNiMoVA钢堆焊修复层组织及摩擦学性能,机械工程学报,2008,44(4):150~153
    [3]徐荣正,宋刚,刘黎明,铝合金表面电弧喷涂铝涂层工艺与性能,焊接学报,2008,29(6):109~112
    [4] Changsing Hwang, Chia-ho Yu. Formation of nanostructured YSZ/Ni anodewith pore channels by plasma spraying. Surface & Coatings Technology, 2007,201:5954~5959
    [5]张振宇,王智平,梁补女,等,NiCrBSiWCe合金粉末喷熔层滑动磨损特性研究,材料热处理学报,2007,28(6):114~117
    [6]张剑,刁辉,金映丽,等,等离子弧淬火后处理工艺对摩擦学特性的影响,润滑与密封,2008,33(5):26~29
    [7]王红阁,杨师斌,低速重载齿轮渗碳淬火热处理工艺研究,热加工工艺技术与材料研究2008,4:91~93
    [8]刘敬福,李荣德,李赫亮,等,喷射沉积ZA35-3.5%Mn合金的力学和摩擦磨损性能,机械工程材料,2008,32(2):57~60
    [9] Yan Li, Songbo Wei, Xiangqian Cheng, et al. Corrosion behavior and surfacecharacterization of tantalum implanted TiNi alloy. Surface and CoatingsTechnology,2008,202(13):3017~3022
    [10] J.F. Gu, D.H. Bei, J.S. Pan, et al. Improved nitrogen transport in surfacenanocrystallized low-carbon steels during gaseous nitridation.Materials Letters,2002,55:340~343
    [11]齐勇田,施瀚超,激光熔覆原位生成Ti(C0.3N0.7)颗粒增强镍基复合熔覆层,应用激光,2008,28(2):135~138
    [12] M.Nofar,H.R.MadaahHosseini,N.Kolagar-Daroonkolaie.Fabricationofhighwear resistant Al/Al3Ti metal matrix composite by in situ hot press method.Materials&Design,2009,30(2):280~286
    [13] LvXiao,WeiJie Lu,YunGangLi, et al.Thermal stabilityofinsitusynthesizedhightemperaturetitaniummatrixcomposites.JournalofAlloysandCompounds,2009,467(1-2):135~141
    [14]徐滨士,朱绍华,表面工程的理论与技术,北京:国防工业出版社,1999,1~10
    [15]戴雄杰,摩擦学基础,上海:上海科学技术出版社,1984,18~19
    [16]徐滨士,纳米表面工程,北京:化学工业出版社,2004
    [17]郦振声,杨明安,现代表面工程技术,北京:机械工业出版社,2007,8~15
    [18]刘晋春,赵家齐,赵万生,特种加工,北京:机械工业出版社,2004,88~100
    [19]叶邦彦,周泽华,超声振动切削改善硬脆材料加工性的研究,华南理工大学学报,1994,22(5):132~137
    [20] Chandra Nath, M. Rahman, S.S.K. Andrew. A study on ultrasonic vibrationcutting of low alloy steel. Journal of Materials Processing Technology, 2007,192-193:159~165
    [21] G. Ya, H. W. Qin, S.C. Yang, et al. Analysis of the rotary ultrasonic machiningmechanism. Journal of Materials Processing Technology, 2002, 129:182~185
    [22]赵波,工程陶瓷发动机缸套零件超声振动磨削研究(?),金刚石与磨料磨具工程,1997,120(6):26~31
    [23] P.Hu, J.M.Zhang, Z.J.Pei, Clyde Treadwell. Modeling of material removal ratein ratary ultrasonic machining: designed experiments. Journal of MaterialsProcessing Technology, 2002, 129:339~344
    [24]曹凤国,超声加工技术,北京:化学工业出版社,2005
    [25]许正功,陈宗帖,黄龙发,表面形变强化技术的研究现状,装备制造技术,2007,4:69~72
    [26] M. Umemoto, K. Todaka, K. Tsuchiya. Formation of nanocrystalline structurein carbon steels by ball drop and particle impact techniques. Materials Scienceand Engineering A, 2004, 375–377:899~904
    [27] K. Dai, L. Shawb. Comparison between shot peening and surfacenanocrystallization and hardening processes. Materials Science and EngineeringA, 2007, 463:46~53
    [28]蔡日恒,吴登真,王曙光,强化喷丸在汽车零件上的应用,汽车技术,1994,2:33~39
    [29]倪兆荣,盛继生,吴雄彪,等,喷丸对汽车变速箱齿轮疲劳强度影响的研究,机械传动,2003,27(1):39~41
    [30]王仁智,汝继来,汽车内燃机气门弹簧表面强化处理中的若干问题,中国表面工程,2000,47(2):38~41
    [31]加賀穀忠治,微粒子行突表面創制技術にょゐ切削工具の壽命延長,表面技術,2000,51(4):348~353
    [32]栾伟玲,涂善东,喷丸表面改性技术的研究进展,中国机械工程,2005,16(15):1405~1409
    [33]曾元松,黄遐,李志强,先进喷丸成形技术及其应用与发展,塑性工程学报,2006,13(3):23~30
    [34] X. Wu, N. Tao, Y. Hong, et al. Microstructure and evolution ofmechanically-induced ultrafine grain in surface layer of AL-alloy subjected toUSSP. Acta Materialia, 2002, 50(8):2075~2084
    [35] G. Liu, S. Wang, X. Lou, et al. Low carbon steel with nanostructured surfacelayer induced by high-energy shot peening. Scripta Materialia, 2001, 44(8/9):1791~1795.
    [36] G. Liu, J. Lu, K. Lu. Surface nanocrystallization of 316L stainless steel inducedby ultrasonic shot peening. Material Science and Engineering A, 2000, 286:91~95
    [37]冯淦,石连捷,吕坚,等,低碳钢超声喷丸表面纳米化研究,金属学报2000,36(3):300~303
    [38] N.R. Tao, M.L. Sui, J. Lu, et al. Surface nanocrystallization of iron induced byultrasonic shot peening. Nano Structured Materials, 1999 11(4):433~440
    [39] T. Roland, D. Retraint, K. Lu, et al. Enhanced mechanical behavior of ananocrystallised stainless steel and its thermal stability. Materials Science andEngineering A, 2007, 445–446:281~288
    [40] F.A. Guo, N. Trannoy, J. Lu. Microstructural analysis by scanning thermalmicroscopy of a nanocrystalline Fe surface induced by ultrasonic shot peening.Superlattices and Microstructures, 2004, 35:445~53
    [41]吕爱强,刘春明,刘刚,表面机械研磨316L不锈钢诱导表层纳米化,东北大学学报(自然科学版),2004,25(9):848~850
    [42]张俊宝,40Cr钢表面纳米化组织结构与力学性能研究,博士后出站报告,上海交通大学,2003
    [43] N.R. Tao, Z.B. Wang, W.P. Tong. An investigation of surface nanocrystallizationmechanism in Fe induced by surface mechanical attrition treatment. Acta Metall.Mater, 2002,50:4603~4616
    [44] Chang-Min Suh, Gil-ho Song, Min-Soo Suh, et al. Fatigue and mechanicalcharacteristics of nano-structured tool steel by ultrasonic cold forgingtechnology. Materials Science and Engineering A, 2007, 443:101~106
    [45]王东坡,宋宁霞,王婷,等,纳米化处理超声金属表面,天津大学学报,2007,40(2):228~233
    [46]华学明,吴毅雄,等.数字化焊接电源系统的特征[J].焊接技术,2002,31(2):6~7
    [47]王东坡,改善焊接接头疲劳强度超声冲击方法的研究,博士学位论文,天津大学,2000
    [48]张立,赵永健,现代电力电子技术,北京:科学出版社,1992,21~40
    [49]赵春雷,杨国福,郭英军,低频超声波功率电源的设计,江苏电叠,2008,6:14~17
    [50]江思敏,TMS320LF240x DSP硬件开发教程,北京:机械工业出版社,2003,166~178
    [51]王潞钢,DSP C2000程序员高手进阶,北京:机械工业出版社,2004,46~55
    [52]林书玉,超声换能器的原理及设计,北京:科学出版社,2004
    [53]林仲茂,超声变幅杆的原理和设计,北京:科学出版社,1987
    [54]李炯辉,林德成,金属材料金相图谱,北京:机械工业出版社,2006,296~298
    [55]谢关荣,张京钦,梁国柱,等,钢铁材料电解抛光技术,Electroplating&Finishing,2001,20 (3):24~30
    [56]石德珂,材料科学基础,北京:机械工业出版社,2000,236~240
    [57]雍兴平,刘刚,吕坚,等,低碳钢表面纳米化处理及结构特征,金属学报,2002,38(2):157~160
    [58] Yoshikazu Todaka, Minoru Umemoto, Akifumi Ohno, et al. Dissolution ofcementite in carbon steels by ball drop deformation and laser heating. Journal ofAlloys and Compounds, 2007, 434-435:497~500
    [59]曹茂盛,徐群,杨郦,等,材料合成与制备方法,哈尔滨:哈尔滨工业大学出版社,2001,66~79
    [60]常铁军、祁欣等,材料近代分析测试方法,哈尔滨:哈尔滨工业大学出版社,1999,106~112
    [61]美国Gatan公司/科扬国际贸易(上海)有限公司,第二期数字电子显微学训练班DigitalMicreograph软件入门,杭州,2005
    [62]张定铨,何家文,材料中残余应力X射线衍射分析和作用,西安:西安交通大学出版社,1997
    [63] T. Ungár, J. I. Langford, R. J. Cernik, et al. Microbeam X-ray diffraction studiesof structural properties of polycrystalline metals by means of synchrotronradiation. Materials Science and Engineering A, 1998, 247(1-2):81~87
    [64] Klug H P, Alexander L E. X-ray Diffraction Procedures for Polycrystalline andAmorphous Materials.Wiley, New York, 1974
    [65]黄继武,X射线衍射实验操作指导—MDI Jade使用手册,中南大学,2006
    [66] Liu G, Lu J,Lu K.Surface nanocrystallization of 316L strainless steel induced byultrasonic shot peening. Material Science and EngineeringA, 2000, 286:91~95
    [67] K. Ku, J. Lu. Surface Nanocrystallization (SNC) of metallicmaterials-presentation of the concept behind a new approach. J Mater SciTechnol. 1999, 15(3):193~197.
    [68] H.Chang,H.J.Hofler,C.J.Altstetter, et al. Synthesis,processing and propertiesof nanophase TiAl,Scripta Metall.Mater., 1991,25(5):1161~1166
    [69] Wu X,Tao N,Hong Y,et al.Microstructure and evolution ofmechanically-induced ultrafine grain in surface layer of Al-alloy subjected toUSSP.Acta Mater, 2002, 50:2075~2084
    [70] Doris Kuhlmann-Wilsdorf, J.H. Van Der Merwe. Theory of dislocation cell sizesin deformed metals. Materials Science and Engineering, 1982, 55(1):79~83
    [71] P. Keblinski, D. Wolf, S.R. Phillpot, et al. Structure of grain boundaries innanocrystallization palladium by molecular dynamics simulation. ScriptaMaterialia, 1999, 41(6):631~636
    [72] M. Ke, S.A. Hackney, W.W. Milligan, et al. Observation and measurement ofgrain rotation and plastic strain nanostructured metal thin films. Nano structuredMataials, 1995, 5(6): 689~697
    [73] UEJI R, TSUJI N, MINAMINO Y, et al. Ultra-grain refinement of plain lowcarbon steel by coldrolling and annealing of martensite. Acta Materialia, 2002,50:4177~4189
    [74] MARA N A, SERGUEEVA A V, MARA T D, et al. Super-plasticity andcooperative grain boundary sliding in nanocrystalline Ni3Al [J]. MaterialsScience and Engineering A, 2007, 463:238~244
    [75]赵新,高聿为,南云,等,制备块体纳米/超细晶材料的大塑性变形技术,材料导报,2003,17(12):5~8
    [76] JANG J S, CKOCH C C. Hall-petch relationship in nanocrystallization ironproduced by ball milling. Scr Metall Mater, 1990, 24:1599~1604
    [77] K.A. Padmanabhan, G.P. Dind, H. Hahn,et al. Inverse Hall–Petch effect andgrain boundary sliding controlled flow in nanocrystalline materials. MaterialsScience and Engineering A, 2007, 452–453: 462~468
    [78] G.D.Hughes, S.D.Smith, C.S.Pande, et al. Hall-Petch strengthening for themicro hardness of twelve nanometer grain diameter electrodeposited nickel.Scripta Metall, 1986, 20:93~97
    [79] S.R.Agnew,B.R.Elliott,C.J.Youngdahl, et al. Microstructure and mechanicalbehavior of nanocrystalline metals,Materials.Science&.Engineer A, 2000,285(1-2):391~396
    [80]韩立发,屈盛官,夏伟,滚挤压加工对颗粒增强金属基复合材料表面粗糙度的影响,机床与液压,2007,35(6):19~21
    [81] M. H. El-Axi, M. M. El-Khabeery.Influence of orthogonal burnishingparameters on surface characteristics for various materials. Journal of MaterialsProcessing Technology, 2003,132:82~89
    [82]刘春利,赵红梅,提高车削金属表面粗糙度的技术研究,现代制造技术,2007,34(6):50~52
    [83]吕光义,朱有利,李礼,等,超声深滚对TC4钛合金表面形貌和表面粗糙度的影响,中国表面工程,2007,20(4):38~41
    [84] P.G. Benardos, G.-C. Vosniakos.Predicting surface roughness in machining: areview. International Journal of Machine Tools & Manufacture, 2003, 43:833~844
    [85] J. Sun, Y.B. Guo. A comprehensive experimental study on surface integrity byend milling Ti–6Al–4V. Journal of Materials Processing Technology, Article inPress
    [86] Ataollah Javidi, Ulfried Rieger, Wilfried Eichlseder, et al. The effect ofmachining on the surface integrity and fatigue life. International Journal ofFatigue, 2008, 30(10-11):2050~2055
    [87] Y.B. Guo, A.W. Warren. The impact of surface integrity by hard turning vs.grinding on fatigue damage mechanisms in rolling contact. Surface andCoatings Technology, 2008, 203(3-4):291~299
    [88]翟绪圣编著,表面粗糙度测量,北京:中国计量出版社,1~5
    [89]杨世春,表面质量与光整技术,北京:机械工业出版社,2000
    [90]孙希泰,金属表面强化技术,北京:化学工业出版社,2005,5~16
    [91] Y.M. Xing, J. Lu. An experimental study of residual stress induced byultrasonic shot peening. Journal of Materials Processing Technology, 2004,152:56~61
    [92] Min Yaa, Yongming Xing, Fulong Dai, et al. Study of residual stress in surfacenanostructured AISI 316L stainless steel using two mechanical methods.Surface and Coatings Technology, 2003, 168(2-3):148~155
    [93]陆世英,王欣增,李丕钟,不锈钢应力腐蚀事故分析与耐应力腐蚀不锈钢,北京:原子能出版社
    [94] Sougata Roy, John W. Fisher, Ben T. Yen. Fatigue resistance of welded detailsenhanced by ultrasonic impact treatment (UIT). International Journal of Fatigue,2003, 25(9-11):1239~1247
    [95] T. Hong, J.Y. Oo, B. Shaw. A numerical simulation to relate the shot peeningparameters to the induced residual stresses. Engineering Failure Analysis, 2008,15(8):1097~1110
    [96]黄明志,石德珂,金志浩.金属力学性能.西安:西安交通大学出版社,1986
    [97]杜希文,原续波主编,材料分析方法,天津:天津大学出版社,2006
    [98] Society of Automotive Engineers, INC. Residual Stress Measurement by X-rayDiffraction-SAE J784a (1971)
    [99]吴荫顺,曹备,阴极保护和阳极保护—原理、技术及工程应用,北京:中国石化出版社,2007,3~8
    [100]K.Lu,J.T.Wang, W.D.Wei,Thermal expansion and specific heat capacity ofnanocrystalline Ni-Palloy,Scripta Metall. Mater.,1991, 25:619~623
    [101]C.T. Kwok, F.T. Cheng, H.C. Manc, et al. Corrosion characteristics ofnanostructured layer on 316L stainless steel fabricated by cavitation-annealing.Materials Letters, 2006, 60(19):2419~2422
    [102] Z.B. Wang, J. Lu, K. Lu. Wear and corrosion properties of a low carbon steelprocessed by means of SMAT followed by lower temperature chromizingtreatment. Surface and Coatings Technology, 2006, 201(6):2796~2801
    [103]王吉会,房大然,张琨,38CrMoAlA、40Cr钢经不同渗氮工艺处理后的性能研究,金属热处理,2003,28(7):20~23
    [104]李雪莉,李瑛,王福会,USSP表面纳米化Fe-20Cr合金的腐蚀性能及机制研究,中国腐蚀与防护学报,2002,22(6):326~334
    [105]曹楚南,腐蚀电化学原理,北京:化学工业出版社,2004,318~322
    [106] T. Roland, D. Retraint, K. Lub and J. Lu. Enhanced mechanical behavior of ananocrystallised stainless steel and its thermal stability. Materials Science andEngineering: A, 2007, 445-446:281~288
    [107] S.J. Li, Y.W. Zhang, B.B. Sun, et al. Thermal stability and mechanical propertiesof nanostructured Ti–24Nb–4Zr–7.9Sn alloy. Materials Science and Engineering:A, 2008, 480(1-2):101~108
    [108] Z.B. Wang, N.R. Tao, S. Li, et al. Effect of surface nanocrystallization onfriction and wear properties in low carbon steel. Materials Science andEngineering A, 2003, 352:144~149
    [109]许云华,袁善良,罗勤业,等,高能量冲击接触载荷下高锰钢磨损机理的研究,热加工工艺,2000,1:10~12
    [110]Weilin Yan, Liang Fang, Kun Sun.Effect of surface work hardening on wearbehavior of Hadfield steel[J]. Materials Science and Engineering: A, 2007,460-461(15):542~549
    [111]许云华、熊建龙、陈瑜眉,朱金华,冲击接触加载下高锰钢表层纳米结构及其特异耐磨性,自然科学进展:国家重点实验室通讯,2001,11(3):282~287
    [112] Zhang, H., Dynamic friction of nano-materials, AIP Conference Proceeding,2000, 505(2):1225~1228
    [113]日本润滑学会编,霍庶辉译,磨损,北京:中国铁道出版社,1985,13~25
    [114]H. Visscher, M. B. de Rooij, P. H. Vroegop, et al.The influence of laser linehardening of carbon steel AISI 1045 on the lubricated wear against steel AISI52100[J]. Wear, 1995, 181-183:638~647
    [115]邵荷生、曲敬信、许小棣、陈华辉编著,摩擦与磨损,北京:煤炭工业出版社,1992,142~150
    [116] E.A.马尔钦柯[苏]著,何世禹译,金属表面摩擦破坏实质,北京:国防工业出版社,1990,105~112
    [117]沈心敏,闻英梅,孙希同,等,摩擦学基础,北京:北京航空航天大学出版社,1991,288~299
    [118]鲁德曼[美]著,赵玉和等译,摩擦、磨损、粘着与润滑,四川:成都科技大学出版社,1988,83~85

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700