用户名: 密码: 验证码:
手性二元醇及α-氨基酸焓对相互作用的溶剂效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
手性选择过程在生命起源和进化的地球化学研究中已经成为一个中心课题。手性分子对映选择性相互作用,即手性识别的分子机制,在化学、生物、医药和材料等前沿研究领域也都是关键科学问题。而微量热法是研究溶液中溶质-溶质、溶质-溶剂非键弱相互作用(氢键,疏水键、盐键和范德华作用)能量效应的有效手段。本论文主要内容分为两部分:
     第一部分,选取五种手性和两种非手性的脂肪族二元醇为研究对象,利用等温滴定微量热法(ITC)分别测定其在纯水及不同质量分数的DMSO-H_2O混合溶剂中的稀释焓,根据McMillan-Mayer理论计算得到七种二元醇的同系焓对作用系数(hXX),通过溶质-溶质以及溶质-溶剂相互作用对实验结果进行讨论分析。结果表明,ITC可以区分不同手性的焓对作用系数,这七种二元醇焓作用系数随w的变化主要取决于疏水-疏水、疏水-亲水、亲水-亲水相互作用之间的竞争平衡。
     第二部分,选取L-脯氨酸和L-羟脯氨酸为研究对象,利用等温滴定微量热法分别测定其在纯水以及不同质量分数DMF-H_2O和DMSO-H_2O两种混合体系中的稀释焓,计算得到两种氨基酸的同系焓对作用系数,并讨论了两种溶剂的介入对焓对作用系数大小的影响。
Chiroselective process has become a central issue in the investigation of the origin of geochemistry and evolution of life. The molecular mechanism of chiral recognition is also a term which pervades a wide range of disciplines such as chemistry, biology, materials and pharmaceutics. For exploring weak nonbonding interactions in chiral molecular systems, the microcalorimetry is usually very useful. This paper consists of the following two parts:
     The first part: Five chiral diols and two kinds of nonchiral diols were choosen as research objects. The dilution enthalpies of all of them in dimethylsulfoxide (DMSO) + water mixtures have been determined respectively, using an isothermal titration calorimeter (ITC) at 298.15 K. On the basis of the McMillan-Mayer theory, the homochiral enthalpic pairwise interaction coefficients (hXX) of the sevev diols in the DMSO + water mixtures of various mass fractions (w = 0 to 0.3) have been calculated. The results are discussed from the point of view of solute-solute interaction and solute-solvent interaction. It was found that the method of ITC can differentiate the energies of homochiral interactions hXX between different pairs of optical isomers in aqueous solutions. The variations of with w for the four diols depend largely on the competition equilibrium between hydrophobic-hydrophobic, hydrophilic-hydrophilic and hydrophobic-hydrophilic interactions in DMSO + water mixtures.
     The second part: L-proline and L-hydroxyproline were choosen as research objects. By using Isothermal titration calorimetry (ITC), the enthalpies of dilution of the two amino acids in pure water and various mass fractions (w = 0 to 0.3) of DMSO-H_2O and DMF-H_2O mixtures have been determined. The enthalpic interaction coefficients have been calculated based on the statistical thermodynamics theory of McMillan-Mayer. The influence of solvent-mediated solute-solute interaction on the values of enthalpic interaction coefficients has been discussed.
引文
[1] W. A. Bonner, Parity violation and the evolution of biomolecular homochirality[J]. Chirality, 2000, 12(3): 114-126
    [2] R. M. Hazen, G. A. Goodfriend, H. Teng, M. Ewell, H. Churchill, S. Devogel, and G. H. Miller, Chiral Aasorption of Amino Acids on Calcite and Quartz: Implications for the Origins of Life’s Homochirality[J]. Geological Society of America Abstracts with Programs, 2003, 35(6): 275
    [3] W. M. Heckl, Molecular Self-Assembly and the Origin of Life, in: Astrobiology, The Quest for the Conditions of Life[M]. eds. Gerda Horneck, Christa Baumstarck-Khan, Springer, 2002, 316-327
    [4] S. E. Wolf, N. Loges, B. Mathiasch, M. Panth?fer, I. Mey, A. Janshoff, W. Tremel, Phase Selection of Calcium Carbonate through the Chirality of Adsorbed Amino Acids[J]. Angew. Chem. Inter. Ed., 2007, 46(29): 5618- 5623
    [5] Cintas, P. Chirality and Chemical Processes: A Few Afterthoughts[J]. Chirality 2008, 20: 2–4
    [6] Ariga, K.; Michinobu, T.; Nakanishi, T.; Hill, J. P. Chiral Recognition at the Air-Water Interface [J]. Curr. Opin. Colloid Interface Sci. 2008, 13: 23–30.
    [7] Amemiya, R.; Yamaguchi, M. Chiral Recognition in Noncovalent Bonding Interactions between Helicenes: Right-handed Helix favors Right-handed Helix over Left-handed Helix[J]. Org. Biomol. Chem. 2008, 6: 26–35
    [8] Blankenburg, S.; Schmidt, W. G. Long-Range Chiral Recognition due to Substrate Locking and Substrate-Adsorbate Charge Transfer[J]. Phys. Rev. Lett. 2007, 99: 196107/1–196107/4
    [9] Huang, W. H.; Zavalij, P. Y.; Isaacs, L. Chiral Recognition inside a Chiral Cucurbituril[J]. Angew. Chem., Int. Ed. 2007, 46: 7425–7427
    [10] Tran, C. D.; Shao, F. Y. Spectroscopic Investigations of Solvent Effect on Chiral Interactions[J]. J. Phys. Chem. B 2005, 109: 12627–12635
    [11] Iwahashi, M.; Ikumi, M.; Matsuzawa, H.; Moroi, Y.; Czarnecki, M. A.; Ozaki, Y. Molecular Self-assembling of Chiral and Racemic Butan-2-ol in Carbon Tetrachloride Solutions[J]. Vib. Spectrosc. 1999, 20(2): 113–119
    [12] Xu, Y. F.; McCarroll, M. E. Fluorescence Anisotropy as a Method to Examine the Thermodynamics of Enantioselectivity[J]. J. Phys. Chem. B 2005, 109: 8144–8152
    [13] Xu, Y. F.; McCarroll, M. E. Chiral Recognition and Behavior of [1,1’-Binaphthalene]-2,2’-Diol in Aqueous Solution by Fluorescence Spectroscopy[J]. J. Photochem. Photobiol., A 2006, 178: 50–56
    [14] Fini, P.; Catucci, L.; Castagnolo, M.; Cosma, P.; Pluchinotta, V.; Agostiano, A. Spectroscopic Investigation of Rose Bengal/cyclodextrin Interactions in Aqueous Solution: the Case of the Hydroxypropyl-cyclodextrins. [J]. J. Inclution Phenom. Macrocyclic Chem 2007, 57: 663–668
    [15] Bombelli, C.; Borocci, S.; Cruciani, O.; Mancini, G.; Monti, D.; Segre, A. L.;Sorrenti, A.; Venanzi, M. Chiral Recognition of Dipeptides in Bio-membrane Models: the Role of Amphiphile Hydrophobic Chains[J]. Tetrahedron: Asymmetry 2008, 19: 124–130
    [16] Liu, Y.; Zhang, Q.; Chen, Y. Spectrophotometric and Calorimetric Titration Studies on Molecular Recognition of Camphor and Borneol by Nucleobase-Modifiedβ-Cyclodextrins[J]. J. Phys. Chem. B 2007, 111: 12211–12218
    [17] Rekharsky, M.; Yamamura, H.; Kawai, M.; Inoue, Y. Critical Difference in Chiral Recognition of N-Cbz-D/L-aspartic and -glutamic Acids by Mono- and Bis(Trimethylammonio)-β-cyclodextrins[J]. J. Am. Chem. Soc. 2001, 123: 5360–5361
    [18] Liu, Y.; Yang, Y. W.; Cao, R.; Song, S. H.; Zhang, H. Y.; Wang, L. H. Thermodynamic Origin of Molecular Selective Binding of Bile Salts by Aminatedβ-Cyclodextrins[J]. J. Phys. Chem. B 2003, 107: 14130–14139
    [19] Takagi, S.; Fujishiro, R; Amaya, K. Heats of Mixing of Optical Isomers in Solution: Calorimetric Evidence of the Stereospecific Effect[J]. Chem. Commun. ( Cambridge, U. K. ). 1968, 8: 480
    [20]邵爽.水溶液中氨基酸与尿素及其衍生物相互作用热力学研究[D].浙江大学,2001
    [21] Karla Ram?′rez-Gualito, Rosa Alonso-R?′os, Beatriz Quiroz-Garc?′a, et al. Enthalpic Nature of the CH/πInteraction Involved in the Recognition of Carbohydrates by Aromatic Compounds, Confirmed by a Novel Interplay of NMR, Calorimetry, and Theoretical Calculations[J] J. Am. Chem. Soc., 2009, 131 (50): 18129–18138
    [22] Lorena Bautista-Iba′n?ez, Karla Ram?′rez-Gualito, Beatriz Quiroz-Garc?′a, et al. Calorimetric Measurement of the CH/e Interaction Involved in the Molecular Recognition of Saccharides by Aromatic Compounds[J]. J. Org. Chem, 2008, 73(3): 849-857
    [23] Mikhail Rekharsky, Yoshihisa Inoue. Chiral Recognition Thermodynamics ofβ-Cyclodextrin: The Thermodynamic Origin of Enantioselectivity and the Enthalpy-Entropy Compensation Effect [J]. J. Am. Chem. Soc., 2000, 122: 4418-4435
    [24] Mikhail Rekharsky, Hatsuo Yamamura, Masao Kawai, et al. Critical Difference in Chiral Recognition of N-Cbz-D/L-aspartic and -glutamic Acids by Mono- and Bis(Trimethylammonio)-β-cyclodextrins[J]. J. Am. Chem. Soc., 2001, 123: 5360-536
    [25] Kimura, T.; Matsushita, T.; Ueda, K.; Aktar, F.; Matsuda, T.; Kamiyama, T.; Fujisawa, M. Enthalpic Changes on Mixing two Couples of S- and R-Enantiomers of Heptane-2-ol, Octane-2-ol, Nonane-2-ol, 3-Chloro-propane-1,2-diol, 2-Methyl-1,4-Butanediol at 298.15K[J]. Thermochim. Acta 2004, 414: 209–214
    [26] Kimura, T.; Khan, M. A.; Kamiyama, T. Enthalpic Changes on Mixing twoCouples of S- and R-enantiomers which Contained Amino Groups at 298.15K[J]. J. Therm. Anal. Calorim. 2006, 85: 575–580.
    [27] Kimura, T.; Khan, M. A.; Ishii, M.; Ueda, K.; Matsushita, T.; Kamiyama, T.; Fujisawa, M. Enthalpic Changes on Mixing two Couples of S- and R-enantiomers of Benzyl-(1-phenyl-ethyl)-amine, 1-Phenylethylamine, 1-Phenyl-ethanol, Butyric Acid Oxiranylmethyl Ester, 4-Methyl-[1,3]dioxolan-2-one, 2-Chloro-methyloxirane and 3-Hydroxyisobutyric Acid Methyl Ester at T = 298.15 K[J]. J. Chem. Thermodyn. 2006, 38: 1042–1048
    [28] Kimura, T.; Khan, M. A.; Ishii, M. Enthalpy Change on Mixing a Couple of S- and R-Enantiomers of Some Chiral Compounds at 298.15 K[J]. Chirality, 2006, 18: 581–586.
    [29] Kimura, T.; Khan, M. A.; Kamiyama, T. Enthlpies of Mixing and Apparent Molar Volumes of Ethanol Solution of Chiral Dicarboxylic Acids[J]. J. Therm. Anal. & Calorim, 2006, 85: 559–565
    [30] Castronuovo, G.; Elia, V.; Magliulo, M. Chiral Recognition in Aqueous Solutions at 25°C. A Calorimetric Study of the Interaction between Enantiomericα-Amino Acids of Different Alkyl Chain Length[J]. Can. J. Chem. 1991, 69: 794–797
    [31] Giuseppina Castronuovo, Vittorio Elia, Ciro Postiglione, et al. Interactions of aminoacids in concentrated aqueous solutions of urea or ethanol. Implications for the mechanism of protein denaturation[J]. Thermochimica Acta, 1999, 339 : 11-19
    [32] Palecz, B. Enthalpies of Solution and Dilution of Some L-α-Amino Acids in Water at 298.15 K[J]. J. Therm. Anal. Calorim, 1998, 4: 257–263
    [33] Palecz, B. Enthalpic homogeneous pair interaction coefficients of L-α-amino acids as a hydrophobicity parameter of amino acid side chains[J]. J. Am. Chem. Soc., 2002, 124: 6003–6008
    [34] Andini, S., Castronuovo, G., Elia, V. Chiral recognition in aqueous solutions: On the role of urea in hydrophilic and hydrophobic interactions of unsubstitutedα-amino acids[J]. J. Solution Chem., 1996, 25: 837-848
    [35]邵爽,胡新根,林瑞森.水溶液中八种氨基酸与尿素的焓相互作用[J].化学学报,2000, 58(10):1240-1246
    [36] Zhao Qiang, Lu Qing-Xiang, Sun De-Zhi et al. Enthalpies of Dilution of Colchicine in Aqueous NaCl Solutions[J]. J. Solution Chem., 2009, 38: 231–240
    [37] Yu Li, Yuan Shi-Ling, Hu Xin-Gen, etal. Studies on the interactions between someα-amino acids with a non-polar side chain and two saturated cyclic ethers at 298.15 K: enthalpic measurement and computer simulation[J]. Chemical Engineering Science, 2006, 61: 794– 801
    [38] Yu Li, Hu Xin-Gen, Lin Rui-Sen, et al. Studies on the interaction between a-amino acids with polar side-chains and heterocyclic compounds at T =298.15 K[J]. J. Chem. Thermodynamics, 2004, 36: 483–490
    [39] Yu, L., Lin, R. S., Hu, X. G. Enthalpies of dilution and enthalpies of mixing of R-amino acids +pyridine and R-amino acids + methylpyridine in aqueoussolutions at 298.15 K[J]. J. Chem. Eng. Data., 2003, 48: 990–994
    [40] Ren Xiaoling, Ni Yaming, Lin Ruisen. Enthalpies of dilution of glycine, L-serine and L-valine in mixtures of water and N,N-dimethylformamide at 298.15 K[J]. Thermochimica Acta, 2000, 348: 19-24
    [41] Palecz B, Piekarski Henryk, Romanowski Stanislaw. Studies on homogeneous interactions between zwiteerions of several L-α-amino acids in water at a temperature of 298.15 K[J]. Joural of Molecular Liquids, 2000, 84: 279-288
    [42] Palecz B.The enthalpies of interactions of some L-a-amino acids with urea molecule in aqueous solutions at 298.15K[J]. Amino Acids, 2004, 27: 299–303
    [43] Palecz B, Taniewska-Osinska Stefania. Enthalpies of solution of glycine in solutions of aqueous at 298.15 K[J]. Thermochimica Acta, 1990, 173: 295-299
    [44] Palecz B .Enthalpic Pair Interaction Coefficient between Zwitterions of L-а-Amino Acids and Urea Molecule as a Hydrophobicity Parameter of Amino Acid Side Chains[J]. J. AM. CHEM. SOC., 2005, 127: 17768-17771
    [45] Pa?ecz B, Nadolna Agnieszka. Heterogeneous interaction between zwitterions of some L-α-amino acids and ethanol molecule in water at 298.15K[J]. Fluid Phase Equilibria, 2006, 250: 49–52
    [46] Pa?ecz Bart?omiej, Joanna Dunal, Dariusz Waliszewski. Enthalpic Interaction Coefficients of Several L-r-Amino Acids in Aqueous Sodium Chloride Solutions at 298.15 K [J]. J. Chem. Eng. Data, 2010, 55: 5216–5218
    [47] Pa?ecz Bart?omiej, The enthilies of glycine with some alkan-1-ols in aqueous solutions at 298.15 K[J]. Fluid Phase Equilibria, 1996, 126: 299-303
    [48] Pa?ecz Bart?omiej, Barczynska Jolanta, Taniewska-Osinska Stefania. Enthalpies of solution of some nitrates in aqueous methanol solutions at 298.15 K[J]. Thermochimica Acta, 1989, 150: 121-123
    [49] Pa?ecz Bart?omiej, Piekarski Henryk. Dissolution enthalpy of glycine in aqueous solutions of bivalent metal electrolytes[J]. Fluid Phase Equilibria, 1999, 164: 257–265
    [50] Pa?ecz Bart?omiej, Taniewska-Osinska Stefania. Enthalpy of KNO3 and CaCl2 solution water-hydrophilic urea derivatives mixtures[J]. Thermochimica Acta, 1987, 116: 349-355
    [51] Pa?ecz Bart?omiej.Thermodynamics of interactions between zwitterions of several L-α-amino acids and ethanol in aqueous solution[J]. Thermochimica Acta, 2005, 435: 99–101
    [52] Pa?ecz Bart?omiej. Thermochemical properties of L-а-Amino Acids in electrolyte-water mixtures[J]. Fluid Phase Equilibria, 2000, 167: 253-261
    [53] Nowicka B., Pa?ecz B, Belica S., et al. The interactions between some N-acetyl-N’-methyl-L-α-amino acid amides and urea in water at 298.15K[J] Thermochimica Acta, 2006, 448: 41–43
    [54] Pa?ecza Bart?omiej, Belicaa Sylwia, Piekarskia Henryk, et al. Studies of homogeneous interactions of N-acetyl-N’-methyl-L-α-amino acid amides in water at 298.15K[J]. Thermochimica Acta, 2009, 489: 1–4
    [55] Belicaa Sylwia, Pa?ecza Bart?omiej, Nowickaa Bozenna, et al. Studies of heterogeneous interactions between N-acetyl-N’-methyl-L-α-amino acid amides and urea molecules in water at 298.15K[J]. Thermochimica Acta, 2010, 501: 19–23
    [56] Shao, S., Hu, X, G., Lin, R, S. Enthalpic interactions of L-alanine and L-serine in aqueous urea solutions[J]. Thermochimica Acta ., 2000, 360: 93-100
    [57] Yu, L., Lin, R, S., Hu, X, G. Enthalpic interaction of amino acids with ethanol in aqueous solutions at 25℃[ J]. J. Solution Chem., 2003, 32: 273-281
    [58] Liu, Q, W., Hu, X, G., Lin, R, S. Enthalpies of dilution of glycine, L-alanine and L-serine in aqueous ethylene glycol solutions at 298.15 K[J]. J. Thermochimica Acta ., 2001, 369: 31-37
    [59] Yu Li, Hu Xin-gen, Lin Rui-sen, et al. Enthalpic Interaction of Amino Acids with 2-Chloroethanol in Aqueous Solutions at 298.15 K[J]. Journal of Solution Chemistry, 2004, 33 (2): 131-141
    [60] Li, S, Q., Hu, X, G., Lin, R, S. Enthalpic interaction of glycine in aqueous glucose and sucrose solutions at 298.15 K[J]. J. Thermochimica Acta ., 1999, 342: 1-6
    [61] Wei, X, M., Hu, X, G., Hu, X, G., Shao, S. Enthalpic interactions of amino acids in aqueous glucose solutions at 298.15 K[J]. J. Thermochimica Acta., 2000, 362: 1-6
    [62] Zhang H. J.; Hu X. G.; Shao S. Enthalpies of Dilution of L-Alanine in Dimethylsulfoxide + Water and Dimethylformamide + Water Mixtures at 298.15K[J]. J. Chem. Eng. Data 2010, 52: 941–946
    [63] Fini, P.; Castagnolo, M. Determination of Enthalpic Interaction Coefficients by ITC Measurements[J]. J. Therm. Anal. Calorim. 2001, 66: 91–102
    [64] McMillan, W. G.; Mayer, J. E. The Statistical Thermodynamics of Multicomponent Systems[J]. J. Chem. Phys., 1945, 13: 276-305
    [65] G. Castronuovo, M. Niccoli, Water-mediated interactions between benzene rings. Calorimetric studies of aromatic model compounds in aqueous solutions at 298 K[J]. Thermochim. Acta, 2005, 433(1-2): 51-55
    [66] B. S. Ibrahim, V. Pattabhi, Role of weak interactions in thermal stability of proteins[J], Biochem. Biophys. Res. Commun., 2004, 325(3): 1082-1089
    [67] A. V. Morozov, T. Kortemme, Potential functions for hydrogen bonds in protein structure prediction and design[J], Adv. Protein Chem., 2006, 72(Peptide Solvation and H-Bonds): 1-38
    [68] I.-C. Lin, O. A. von Lilienfeld, M. D. Coutinho-Neto, I. Tavernelli, U. Rothlisberger, Predicting Noncovalent Interactions between Aromatic Biomolecules with London-Dispersion-Corrected DFT[J]. J. Phys. Chem. B, 2007, 111(51): 14346-14354
    [69] Subash C. Sahoo, Manabendra Ray. Three Point Chiral Recognition and Resolution of Amino Alcohols ThroughWell-Defined Interaction Inside a Metallocavity [J]. Chem. Eur. J., 2010, 16: 5004–5007
    [70] Giusppina Castronuovo, Vittorio Elia, Filomena Velleca. Chiral Recognition in Aqueous solutions. Preferential Configurations ofα–Amimoacids Bearing Substituted Alkyl Chains at 25℃[J]. Journal of Solution Chemistry, 1995, 24(12): 1209-1217
    [71] Barone G., G. Castronuovo, P. Del Vecchio, et al. Chiral Recognition Between Enantiomericα–Amimoacids. A Calorimetric Study at 25℃[ J]. Journal of Solution Chemistry, 1989, 18(12) 1105-1116
    [72] Barone G., G. Castronuovo, P. Del Vecchio, et al. Calorimetric determination of chiral interactions in aqueous solutions[J]. Thermochimica Acta., 1987, 122: 105-115
    [73] G. Castronuovo, R. P. Dario, V. Elia. The Hydrophobic effect in aqueous solutions of positional isomers of Alkan-n-ols. A Calorimetric study at 298.15 K[J]. Thermochimica Acta., 1991,181: 305-313
    [74] Giusppina Castronuovo, Vittorio Elia, Filomena Velleca. Hydrophilic groups determine preferential configurations in aqueous solutions. A colorimetric study of monocarboxylic acids and monoalkylamines at 298.15 K[J]. Thermochimica Acta, 1997, 291: 21-26
    [75] Giuseppina Castronuovo , Vittorio Elia, Giovanni Petrone, et al. The role of hydrophilic interactions in determining preferential configurations in aqueous solution: alkan- 1 -ols, alkan- 1,2-diols, alkan-α,ω-diols, and a-aminoacids interacting with glycine and its oligomers at 298.15 K[J].Thermochimica Acta 1994, 247: 273-282
    [76] Barone G., G. Castronuovo, V. Elia, etal. Chiral recognition of enantiomeric peptides in water at 25℃by calorimetry[J]. Journal of Thermal Analysis, 1985, 30: 1367-1374
    [77] Giuseppina Castronuovo, Vittorio Elia, Filomena Velleca. Chiral Recognition in Aqueous Solutions. Preferential Configuations ofα-amino acids Bearing Substituted Alkyl Chains at 25℃[J]. Journal of Solution Chemistry, 1995, 24, 12, 1209-1217
    [78] Atik, Z.; Ewing, M. B.; McGlashan, M. L. Chiral Discrimination in Liquids.Ⅱ. Excess Molar Enthalpies of {(1-x)A+ + xA–}, Where A Denotes Fenchone orα-Methylbenzylamine[J]. J. Chem. Thermodyn. 1983, 15: 159–163
    [79] Fujisawa, M.; Matsushita, T.; Kimura, T. Excess Molar Heat Capacities of ((R)-(+)-α-Pinene+ (S)-(-)-α-Pinene) at Temperatures between 293.15-308.15 K[J]. J. Therm. Anal. Calorim., 2005, 81: 137–139
    [80] Fujisawa, M.; Matsushita, T.; Khan, M. A.; Kimura, T. Excess Molar Heat Capacities of (L-glutamine Aqueous Solution + D-glutamine Aqueous Solution) at Temperatures between 293.15 and 303.15 K[J]. J. Therm. Anal. Calorim., 2005, 82: 319–321
    [81] Salam, A. The Role of Chirality in the Origin of Life[J]. J. Mol. Evol., 1991, 33: 105–113
    [82] Mason, S. F. Universal Dissymmetry and the Origin of Biomolecular Chirality[J].Biosystems., 1987, 20: 27–35
    [83] Lv, S. The Influence of Hydrogen Bond on the Raman Spectrum of S=O in DMSO Aqueous Solution[D]. Ji Lin University, China, 2007
    [84] Ma, X. Y.; Wang, J. P. Differentiating Subtle Variation of Weak Intramolecular Hydrogen Bond in Vicinal Diols by Linear Infrared Spectroscopy[J]. J. Phys. Chem. A, 2009, 113: 6070–6076
    [85] Wang, F.; Polavarapu, P. L. Predominant Conformations of (2R,3R)-(-)-2,3-Butanediol[J]. J. Phys. Chem. A, 2001, 105: 6991–6997
    [86] Wang, Y. X.; Li, H. P.; Wang, J. B.; Zhang, F. Q.; Zhao, J. P.; Dai, M. Infrared Spectroscopic Studies of Interactions of the Diols with Aprotic Solvent. Acta[J]. Phys. Chim., 1998, 14: 514–519
    [87] Busfield, W. K.; Ennis, M. P.; Mcewen, I. J. An Infrared Study of Intramolecular Hydrogen Bonding inα,ωDiols[J]. Spectrochim. Acta, Part A, 1973, 29: 1259–1264
    [88] Hilary E. Kent, Terence H. Lilley, Peter J.Milburn, et al. Interactions between terminally substituted amino acids in an aqueous and a non-aqueous environment. Ehthalpic Interaction Coefficients in Water and in N,N-Dimethylformamide at 25℃[J]. Journal of Solution Chemistry, 1985, 14(2): 101-115
    [89] Byron Y. Okamoto, Robert H. Wood, Peter T. Thompson Freezing points of aqueous alcohols. Free energy of interaction of the CHOH, CH2, CONH and CC functional groups in dilute aqueous solutions[J]. J. Chem. Soc., Faraday Trans. 1, 1978, 74: 1990-2007
    [90] Terence H. Lilley, Robert H. Wood. Freezing temperatures of aqueous solutions containing formamide, acetamide, propionamide and N,N-dimethylformamide. Free energy of interaction between the CONH and CH2 groups in dilute aqueous solutions[J]. J. Chem. Soc., Faraday Trans. 1, 1980, 76: 901-905
    [91] Nandi, P. K., Robinson, D. R. Effects of salts on the free energy of peptide groups[J]. J. Am. Chem. Soc., 1972, 94: 1299–1315
    [92] Wohlfarth, C. Dielectric constant of N, N-dimethylformamide. In Static Dielectric Constants of Pure Liquids and Binary Liquid Mixtures. Madelung, O., Ed.; Springer: Berlin, 2008, 17: 175-182
    [93] Bass, S. J., Nathan, W. I., Cole, R. H. Dielectric properties of alkyl amides.II. Liquid dielectric constant and loss[J]. J. Phys. Chem., 1964, 68: 509–51
    [94] Lin, R, S., Hu, X, G., Ren, X, L. Homogeneous enthalpic interaction of amino acids in DMF+H2O mixed solvents[J]. Thermochimica Acta., 2000, 352-353: 31-37
    [95] Chu, D.-Y., Zhang, Y., Hu, J.-D. Fourth symposium on solution chemistry, thermodynamics, Thermochemistry and Thermal Analysis, Shenyang, China, 1988
    [96] VanderVegt, N. F. A., VanGunsteren, W. F. Entropic Contributions in cosolvent binding to hydrophobic solutes in water[J]. J. Phys. Chem. B, 2004, 108:1056–1064
    [97]马林.水溶液中氨基酸与小分子酰胺相互作用的热力学研究[D].浙江大学,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700