用户名: 密码: 验证码:
辛伐他汀对精氨酸加压素诱导大鼠心脏成纤维细胞增殖的影响及与小窝蛋白-1关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景及目的高血压是心血管疾病发生重要的危险因素,而左室肥厚(LVH)是导致高血压患者心血管事件发生率显著增加独立的危险因素,也是心脏功能由代偿向失代偿转化重要的病理表现。因此,心脏重构的发病机制和防治研究已成为国内外热点研究课题。现已明确,神经体液因素的异常激活是心脏重构发生的重要机制。精氨酸加压素(AVP)是与心血管疾病相关的重要的神经体液因子。已有研究显示,AVP可诱导新生大鼠心脏成纤维细胞(CFs)增殖,但对其诱导CFs增殖的信号转导过程仍不十分清楚。他汀类药物是目前防治高脂血症等高血压发病危险因素的主要药物之一。大量研究表明,他汀还具有防治心肌纤维化等诸多非调脂作用。研究发现,他汀类药物可抑制心肌细胞肥大以及CFs增殖和胶原合成;在自发性高血压大鼠模型中也证实,辛伐他汀(Sim)可延缓心肌肥厚的发展。这些研究提示,他汀类药物可调控心脏重构过程,但其分子机制仍不十分清楚。晚近研究发现,小窝是细胞膜上的结构,它不仅具有储存和运输内源性胆固醇的作用,同时还是细胞信号分子富集和信号转导的枢纽,其主要的标志蛋白——小窝蛋白对许多关键信号分子的活性状态起直接的负性调控作用。目前,他汀类药物抑制心肌纤维化过程是否受到细胞膜上的小窝的影响,目前尚不明确。小窝蛋白在CFs增殖中的变化尚为未知数。本课题研究AVP诱导成年大鼠CFs增殖情况及细胞外信号调节激酶(erk1/2)信号通路信号转导特点;Sim干预后erk1/2通路转导变化及其与小窝蛋白-1(cav1)的关系,探讨Sim抑制CFs增殖的信号转导作用,胆固醇变化对细胞膜上cav1表达的影响、对Sim干预AVP诱导的CFs增殖的作用,旨在阐明高血压心脏重构的发病机制,为他汀类药物防治心脏重构的分子机制提供新认识,亦为高血压心脏重构的防治提供新思路和理论依据。
     研究方法本研究以体外培养的成年Sprague-Dawley (SD)大鼠CFs增殖为实验模型,采用[3H]-脱氧胸腺嘧啶苷酸掺入、流式细胞技术、体外激酶测定、Western blot、RT-PCR等方法和技术,观察和研究一下几项:(1) AVP对CFs增殖的影响;(2) PKC和erk1/2信号途径在AVP诱导CFs增殖中的作用;(3) Sim对CFs增殖的影响;(4) Sim对CFs增殖中PKC和erk1/2信号转导的调控效应;(5) cav1在Sim干预AVP诱导的CFs增殖中的变化;(6)外源性胆固醇对Sim调控CFs增殖的影响及其与cav1的关系。
     研究结果(1)给予10-9~10-6 mol/L的AVP作用大鼠CFs 24 h后,随着AVP浓度的升高,CFs内的[3H]-TdR掺入率呈增加趋势。其中10~(-7) mol/L和10-6 mol/L的AVP干预组[3H]-TdR掺入率较对照组(100.0±5.1)%分别增加(172.0±4.0)%和(258.0±19.1)%(P < 0.05)。(2) AVP的V1受体阻断剂d(CH2)5[Tyr2(Me), Arg8]-vasopressin与0.1μmol/L的AVP共同干预大鼠CFs后的[3H]-TdR掺入率相当于空白对照组(100.0±6.0)%的(103.7±10.5)%,与10~(-7) mol/L AVP单独干预组的(173.5±5.1)%相比,统计学差异显著(P < 0.05)。而V2受体阻断剂desglycinamide-[d(CH2)5,D-Ile2, Ile4, Arg8]-vasopressin对AVP干预下大鼠CFs [3H]-TdR掺入率为(165.7±9.6)%,无明显影响(P > 0.05)。(3) AVP可上调CFs内erk1/2活性,其活性在5 min后达峰值,随后逐渐下降,至2 h时逐渐趋近于基线水平。(4) PD98059预处理后[3H]-TdR掺入率为(116.0±3.2)%,可明显抑制0.1μmol/L的AVP对大鼠CFs内的诱导作用(P < 0.05)。(5) 30 nmol/L的佛波酯(PMA)或0.1μmol/L的AVP干预大鼠CFs 5 min可显著增强大鼠CFs内的erk1/2活性,大鼠CFs内的erk1/2活性分别相当于对照组的(5.1±0.6)倍和(4.8±0.2)倍(P < 0.05)。而在用2.5μmol/L的PMA孵育大鼠CFs 24 h耗竭PKC后,大鼠CFs内的erk1/2活性相当于对照组的(2.1±0.3)倍,可显著抑制AVP诱导的erk1/2激活(P < 0.05)。(6) PKC抑制剂-钙感光蛋白可显著抑制0.1μmol/L的AVP诱导的大鼠CFs内[~3H]-TdR掺入率,相当于对照组的(116.0±3.2)%(P < 0.05)。(7) AVP可上调CFs内PKC活性,其活性在5 min后达峰值,至30 min时降至基线水平。(8) Ca2+螯合剂BAPTA与0.1μmol/L的AVP共同干预大鼠CF,其[~3H]-TdR掺入率相当于对照组的(154.2±5.9)%,与0.1μmol/L的AVP单独干预组的(168.8±10.1)%相比,没有显著影响(P > 0.05)。(9) 0.1μmol/L的AVP作用大鼠CFs 24 h后,CFs内的p27kip1蛋白表达量相当于对照组的(21.7±1.6)%,而细胞周期蛋白D1、A、E表达量分别相当于对照组的(5.7±0.5)倍、(5.4±0.5)倍和(6.0±0.7)倍,与对照组相比,均有显著的差异(P < 0.05)。PD98059可显著抑制AVP对p27kip1、细胞周期蛋白D1、A、E的干预效应,CFs内的p27kip1蛋白表达量相当于对照组的(102.0±5.0)%,细胞周期蛋白D1、A、E表达量分别相当于对照组的(1.4±0.2)倍、(2.1±0.3)倍和(3.0±0.3)倍,与AVP组相比,均P < 0.05。(10) 0.1μmol/L的AVP干预24 h后,细胞周期由G0/G1期进入S期增加,同时伴有细胞增殖指数(PI)增大(P<0.05)。PD98059可显著抑制AVP干预下的S期细胞百分比和PI指数增加(P<0.05)。(11)在用10-8~10-5 mol/L的Sim预处理24 h后,再用0.1μmol/L的AVP干预24 h,CFs的[~3H]-TdR掺入率分别相当于对照组的(172.0±9.8)%、(151.3±7.7)%、(128.3±7.6)%和(121.7±11.5)%,其中10~(-7)~10-5 mol/L的Sim组较AVP单独作用组的(176.8±9.3)%显著降低(P<0.05)。(12) 10-8~10-5 mol/L的Sim与10~(-7) mol/L的AVP联合作用CFs 24 h,随着刺激浓度的升高,CFs的S期细胞百分率和PI呈递减趋势,其中10~(-7)mol/L、10-6mol/L Sim与AVP共同干预组显著低于AVP单独作用组(均P<0.05);10-8 mol/L Sim与AVP共同干预组PI指数显著低于AVP单独作用组(P<0.05)。(13) 10-8~10-5 mol/L的Sim预处理大鼠CFs 24 h后,再用AVP干预大鼠CFs 5 min,CFs的erk1/2活性分别相当于对照组的(2.5±0.2)倍、(1.9±0.1)倍、(1.5±0.1)倍和(1.3±0.1)倍,其中10~(-7)~10-5 mol/L的Sim与AVP共同干预组CFs显著低于AVP单独作用组(P<0.05)。(14)在10-8~10-5 mol/L的Sim预处理大鼠CFs 24 h后,再用AVP干预大鼠CFs 5 min,CFs的PKC活性分别相当于AVP单独作用组的(24.8±2.4)%、(21.5±2.6)%、(17.3±1.8)%和(15.0±1.3)%,其中10-6 mol/L和10-5 mol/L的Sim与AVP共同干预组显著低于AVP单独作用组(P<0.05)。(15) MVA预处理可逆转10-6 mol/L的Sim对10~(-7) mol/L的AVP诱导作用,使CFs的[~3H]-TdR掺入率增加,相当于对照组的(166.2±6.8)%,PKC活性、erk1/2活性增加(均P<0.05)。(16)焦磷酸牛龙牛儿基牛龙牛儿酯(GGPP)可逆转10-6 mol/L的Sim对10~(-7) mol/L的AVP诱导作用,使CFs的[~3H]-TdR掺入率增加,相当于空白对照组的(159.8±7.7)% (P < 0.05);erk1/2激活,相当于空白对照组的(5.2±0.4)倍,而焦磷酸法尼酯(FPP)对AVP诱导的[~3H]-TdR掺入率增加和erk1/2激活没有明显影响。(17) 10~(-7) mol/L的Sim可显著抑制10~(-7) mol/L AVP诱导的大鼠CFs内磷酸化肌球蛋白结合亚基(MBS-P)表达,相当于对照组的(1.9±0.1)倍(P<0.05)。(18)用10μmol/L的GGPP抑制剂GGTI或5μmol/L的ROK激酶特异性抑制剂Y27632预处理大鼠CFs 24 h后,继而加入10~(-7) mol/L的AVP干预5 min,大鼠CFs内erk1/2活性分别相当于AVP单独作用组的(41±4)%和(25±3)%,均较AVP单独作用组显著降低(P<0.05)。(19) cav1反义寡核苷酸可使大鼠CFs的[~3H]-TdR掺入率增加,相当于空白对照组的(172.0±4.2)%;erk1/2活性增加,相当于空白对照组的(2.3±0.3)倍;细胞周期蛋白D1、A、E的表达量增加,分别相当于空白对照组的(9.3±0.2)倍、(7.6±0.4)倍和(9.1±0.4)倍,p27kip1的表达量下降,相当于空白对照组的(16.8±2.3)%(均P < 0.05)。(20) 10-9~10-6 mol/L的AVP干预CFs 24 h后,cav1蛋白表达量分别相当于AVP单独作用组的(86.7±4.6)%、(79.0±8.6)%、(59.7±3.7)%和(46.0±3.1)%。其中10~(-7) mol/L和10-6 mol/L的AVP干预组较对照组显著降低(P < 0.05)。(21)在用10~(-8)~10~(-5) mol/L的Sim与10~(-7) mol/L的AVP共同干预大鼠CFs 24 h后,cav1的表达量分别相当于AVP单独作用组的(88.7±2.7)%、(70.3±2.6)%、(60.7±2.2)%和(56.3±1.9)%。其中10~(-7)~10-5 mol/L的Sim与10~(-7) mol/L AVP共同作用组与AVP单独作用组相比较,均有显著差异(P < 0.05)。10~(-4) mol/L的MVA与10~(-7) mol/L的AVP共同干预组的cav1蛋白表达量较AVP单独作用组增加(P < 0.05)。(22) 10、20、30μg/ml胆固醇可使10-6mol/L的Sim与10~(-7)mol/L AVP联合作用组cav1蛋白表达量增加,相当于10~(-7) mol/L的AVP组的(108.3±4.3)%、(133.5±5.4)%和(146.0±5.8)%(P < 0.05)。(23)用10%的FBS加20μg/ml的胆固醇干预大鼠CFs 24 h后,大鼠CFs胞膜上cav1蛋白的表达量较单用FBS组无显著差异(P > 0.05)。而在用2%的MβCD预处理大鼠CFs 2 h以除去细胞膜上胆固醇,再加入2%的MβCD-胆固醇干预大鼠CFs 1 h后,CFs胞膜上cav1蛋白的表达量是单用MβCD预处理组的(2.7±0.2)倍,两组比较差异显著(P < 0.05)。(24)外源性胆固醇(10、20或30μg/ml胆固醇)干预大鼠CFs 1 h后,CFs内胆固醇含量分别为(18.4±1.2)μg胆固醇/mg蛋白、(22.0±1.1)μg胆固醇/mg蛋白和(26.4±1.3)μg胆固醇/mg蛋白,可增加2%的MβCD预处理以及10~(-7) mol/L的AVP与10-6 mol/L的Sim联合干预后大鼠CFs内的胆固醇含量,[~3H]-TdR掺入率降低,分别是未加胆固醇组的(74.0±4.8)%、(62.0±2.9)%和(35.8±4.3)%,而对10%的FBS干预后CFs内的胆固醇含量及[~3H]-TdR掺入率的增加影响较小。(25)在用10-6 mol/L的Sim预处理大鼠CFs 24 h的同时加用20μg/ml胆固醇,与AVP + Sim组的相比,可显著降低大鼠CFs内erk1/2活性,相当于对照组的(1.1±0.2)倍(P < 0.05)。
     研究结论:(1) AVP可浓度依赖地促进成年SD大鼠CFs增殖。(2) AVP对成年SD大鼠CFs增殖地促进作用是由AVP的V1受体和PKC-erk1/2通路介导实现的。(3) AVP可通过erk1/2信号通路使p27Kip1表达减少、细胞周期蛋白D1、A和E的表达增加,细胞增殖指数增加,进而促进成年大鼠CFs增殖。(4) Sim可抑制AVP诱导的成年SD大鼠CFs增殖以及PKC-erk1/2通路的激活,这些效应可被MVA阻断。(5)外源性胆固醇可上调cav1蛋白表达,从而增强Sim对AVP诱导CFs增殖的抑制效应。
     综上所述,该研究首次提出AVP可通过AVP的V1受体和PKC-erk1/2通路介导成年大鼠CFs增殖,该促增殖效应可被辛伐他汀所抑制。外源性胆固醇可上调cav1蛋白表达,从而增强Sim对AVP诱导CFs增殖的抑制效应。
Background and objective Hypertension is an important risk factor for the onset of cardiovascular diseases, whereas left ventricular hypertrophy (LVH) is an independent risk factor for the increased incidence of cardiovascular events and important pathological basis for the transition of cardiac function from a“compensated”state towards a“decompensated”one. Thus preventing and treating LVH has become one of the hot research issues in an international setting. It has now been established that the abnormal activation of neurohumoral factors is an important mechanism for the development of LVH. Arginine vasopressin (AVP) is a neurohumoral factor critically involved in cardiovascular disease. It has been shown that AVP can stimulate the proliferation of neonatal rat CFs, but it remains unclear how the signal transduction is achieved. 3-hydroxy- 3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor (statins) is one of the major drug types that control the risk factors for hypertension, among which is hyperlipemia. However, a large pool of research has shown its other effects beyond cholesterol-lowing, including its role in the prevention of cardiac fibrosis. It was observed that statins could inhibit cardiomyocytes hypertrophy and cell proliferation and collagen synthesis of CFs and attenuate the LVH of spontaneously hypertensive rats (SHR). These observations indicate that statins can modulate the process of cardiac remodeling, but its mechanisms are less than well defined. caveolae are structures located in the cell membrane which harbor and transport endogenous cholesterol and serve as‘hinges’for the gathering and transduction of signaling molecules. Caveolin, the protein marker of caveolae, has direct negative modulatory effects on the activation of a variety of the key signaling molecules. It has been shown to inhibit the onset and development of cardiac fibrosis. However, it still remains unclear so far whether the inhibitory effect of statins on cardiac fibrosis is influenced by caveolae. No report has ever examined the changes of caveolin in the process of CFs proliferation. In the present study, we examined the potential proliferation-inducing effect of AVP on adult rat CFs and the involvement of erk1/2 and the changes in the activation of erk1/2 in the presence of Sim. The role of caveolin1 (cav1) is also investigated. In addition, we further explored the mechanisms for the inhibitory effect of Sim on CFs proliferation, the effects of the changes in the abundance of cholesterol in the cell membrane on the expression of cav1 and the modulation of AVP-induced CFs proliferation by Sim. Our objectives are to elucidate further the mechanisms of cardiac remodeling during hypertension and further the understanding of the molecular mechanisms for statins in the prevention and treatment of cardiac remodeling, and to provide new theoretical evidences and prevention and treatment approaches for LVH of hypertension.
     Methods In this study, adult rat CFs isolated from Sprague-Dawley (SD) rats were cultured and used as experimental model. We employed [~3H]-thymidine incorporation, flow cytometry, in vitro kinase assay, Western blot analysis and RT-PCR in the present study to investigate: (1) Effect of AVP on CFs proliferation, (2) Role of PKC and erk1/2 pathway in the proliferatory effect of AVP on CFs proliferation, (3) Effect of Sim on CFs proliferation, (4) Modulatory effect of Sim on PKC and erk1/2 pathway during CFs proliferation, (5) Changes of cav1 in the modulation of AVP-induced CFs proliferation by Sim, (6) Effect of exogenous cholesterol on the modulation of Sim on CFs proliferation and its relationship with cav1 expression.
     Results (1) Treating cells with 10-9 ~ 10-6 mol/L AVP increased [~3H]-thymidine incorporation in a concentration-dependent manner. 10~(-7) mol/L and 10-6 mol/L AVP increased [~3H]-thymidine incorporation by (72.0±4.0)% and(158.0±19.1)%, respectively(P < 0.05). (2) The effect of AVP on [~3H]-thymidine incorporation was abolished by incubating adult rat CFs with V1 receptor antagonist, d(CH2)5[Tyr2(Me), Arg8]-vasopressin, but not V2 receptor antagonist, desglycinamide-[d(CH2)5, D-Ile2, Ile4, Arg8]-vasopressin. (3) Erk1/2 activation could be induced by AVP (0.1μmol/L). The activation peaked at 5 min, with subsequent decline to near baseline level at 2 hour after the initiation of the stimulation. (4) PD98059 abolished the mitogenic effect of AVP(P < 0.05). (5) Phorbol 12-myristate 13-acetate (PMA, 30 nmol/L), as well as AVP for 5 min activated erk1/2 phosphorylation as measured by Western blots(P<0.05). Depleting PKC by chronic PMA incubation (2.5μmol/L, 24 h) abolished the stimulating effect of AVP on erk1/2 phosphorylation(P < 0.05). (6) Calphostin C, a PKC inhibitor, markedly reduced [~3H]-thymidine incorporation upon 0.1μmol/L AVP stimulation(P < 0.05). (7) PKC activation could readily be induced by AVP (0.1μM). The activation peaked at 5 min (approx. 3-fold induction, P<0.05) and subsequently declined to near baseline level at 30 min after the initiation of AVP stimulation. (8) Ca2+ chelating agent BAPTA had no significant effect on DNA synthesis stimulated by AVP (P>0.05). (9) The protein level of p27Kip1 was markedly attenuated upon AVP treatment to (21.7±1.6)% of control level, while expression of cyclins D1, A and E increased to (5.7±0.5)-fold,(5.4±0.5)-fold and (6.0±0.7)-fold of control(P < 0.05). Inhibiting erk1/2 activation by PD98059 (30μmol/L) abolished the effect of AVP on protein expression of p27Kip1 as well as cyclins D1, E and A. (10) 0.1μmol/L AVP induced cell cycle progression from G0/G1 into S phase, accompanied by increased proliferation index (PI) (P<0.05). The effects of AVP on G0/G1-S phase progression and PI were inhibited by PD98059. (11) When pretreating cells with simvastatin (10-8 ~ 10-5 mol/L) for 24 h before 10~(-7) mol/L AVP stimulation for another 24 h, [~3H]-thymidine incorporation in adult rat CFs were (172.0±9.8)%, (151.3±7.7)%, (128.3±7.6)%, and (121.7±11.5)%, respectively, of control, all being significantly lower (P<0.05) than AVP single-drug treated cells, except in the 10-8 mol/L simvastatin treated group. (12) When pretreating cells with simvastatin (10-8 ~ 10-5 mol/L) for 24 h before 10~(-7) mol/L AVP stimulation for another 24 h, cells in S stage and PI tended to decrease, with those of 10~(-7) mol/L and 10-6 mol/L Sim groups being significantly lower (both P<0.05) than AVP single-drug treated cells. And PI was significantly lower (P<0.05) in 10~(-7) ~ 10-5 mol/L Sim cells than in AVP single-drug treated cells. (13) When pretreating cells with simvastatin (10-8 ~ 10-5 mol/L) for 24 h before 10~(-7) mol/L AVP stimulation for 5 min, erk1/2 activation reached (2.5±0.2)-fold, (1.9±0.1)-fold, (1.5±0.1)-fold, and(1.3±0.1)-fold, respectively, over control level, being significantly lower (P<0.05) in 10~(-7) ~ 10-5 mol/L Sim cells than in AVP single-drug treated cells. (14) When pretreating cells with simvastatin (10-8 ~ 10-5 mol/L) for 24 h before 10~(-7) mol/L AVP stimulation for 5 min, PKC activation reached (24.8±2.4)%, (21.5±2.6)%, (17.3±1.8)% and(15.0±1.3)%, respectively, of control level, being significantly lower (P<0.05) in 10-6 mol/L and 10-5 mol/L Sim cells than in AVP single-drug treated cells. (15) MVA pretreatment reversed the inhibitory effect of 10-6mol/L simvastatin on 10~(-7)mol/L AVP induced increase in [~3H]-thymidine incorporation and PKC and erk1/2 activation. (16) Geranylgeranyl pyrophosphate (GGPP) reversed the inhibitory effect of 10-6mol/L simvastatin on 10~(-7)mol/L AVP induced increase in [~3H]-thymidine incorporation and erk1/2 activation, whereas farnesyl pyrophosphate (FPP) had no significant effect. (17) 10~(-7) mol/L simvastatin significantly inhibited 10~(-7) mol/L AVP-induced increase in MBS-P expression(P<0.05). (18) Pretreating cells with 10μmol/L GGTI or 5μmol/L Y27632 for 24 h before 10~(-7) mol/L AVP stimulation for 5 min significantly inhibited the AVP-induced erk1/2 activation (P<0.05). (19) Cav1 antisense oligonucleotides significantly increased [~3H]-thymidine incorporation, PKC and erk1/2 activation and the expression of cyclins D1, A and E in CFs, and decreased the expression of p27kip1 (all P < 0.05). (20) The cav1 expression in CFs were (86.7±4.6)%, (79.0±8.6)%, (59.7±3.7)% and (46.0±3.1)% of control when treating cells with 10-9 ~ 10-6 mol/L AVP, with the expression levels in 10~(-7) mol/L and 10-6 mol/L AVP groups being significantly lower than that of control (P < 0.05). (21) When pretreating cells with simvastatin (10-8 ~ 10-5 mol/L) for 24 h before 10~(-7) mol/L AVP stimulation for 24 h, cav1 expression were (88.7±2.7)%, (70.3±2.6)%,(60.7±2.2)% and (56.3±1.9)% of AVP single-drug treated cells, respectively, being significantly lower (P<0.05) in 10~(-7) ~ 10-5 mol/L Sim cells than in AVP single-drug treated cells. The addition of 10-4 mol/L MVA to 10~(-7) mol/L AVP significantly increased cav1 expression (P < 0.05). (22) 10μg/ml, 20μg/ml and 30μg/ml cholesterol significantly increased cav1 expression in cells treated with 10-6mol/L simvastatin and 10~(-7)mol/L AVP (all P < 0.05). (23) When cells were incubated with 10% FBS, the addition of 20μg/ml cholesterol showed no apparent effect on cav1 protein expression (P > 0.05). However, when cells were incubated with 2% Methyl-β-cyclodextrin (MβCD), a maneuver to deplete cells of cholesterol, the restoration of cholesterol by MβCD-cholesterol complex (containing 20μg/ml cholesterol) caused a (2.7±0.2)-fold increase from the cholesterol-depleted condition (P < 0.05). (24) Exogenous cholesterol increased the cholesterol content in cells treated with 2% MβCD and 10-7 mol/L AVP combined with 10-6 mol/L simvastatin. Exogenous cholesterol also inhibited the increase in [3H]-thymidine incorporation upon 2% MβCD treatment, whereas it had little effects on cellular cholesterol and the increase in [3H]-thymidine incorporation when cells were treated with 10% FBS. (25) Erk1/2 activation was significantly attenuated when 20μg/ml cholesterol was added simultaneously with 10-6 mol/L simvastatin to 10-7 mol/L AVP treated cells when compared with AVP and simvastatin treated cells (P < 0.05).
     Conclusions (1) AVP acts as a growth-factor for adult rat CFs. (2) The mitogenic effect of AVP is mediated via type 1 receptor and PKC–erk1/2 pathway. (3) AVP modulates the expression of cell cycle regulatory proteins p27Kip1 and cyclins D1, A and E, which lie down-stream of erk1/2 activation, and induces cell cycle progression of adult rat CFs. (4) Simvastatin inhibits AVP induced CFs proliferation, PKC and erk1/2 pathway activation, an effect that can be reversed by MVA. (5) Cav1 restoration by cholesterol enhances the inhibitory effect of simvastatin on AVP-induced CFs proliferation.
     In summary, AVP can stimulate the proliferation of adult rat CFs via type 1 receptor and PKC–erk1/2 pathway, an effect can be inhibited by simvasatin. The inhibitory effect of simvastatin on AVP-induced CFs proliferation can be enhanced by exogenous cholesterol via the induction of cav1 exression.
引文
1. Gupta A, Carter JN, Truter SL, Leer EH, Herrold EM,Borer JS. Cellular response of human cardiac fibroblasts to mechanically simulated aortic regurgitation. Am J Ther, 2006. 13(1):8-11.
    2. Cowley AW, Jr., Switzer SJ,Guinn MM. Evidence and quantification of the vasopressin arterial pressure control system in the dog. Circ Res, 1980. 46(1):58-67.
    3. Simon JS, Brody MJ,Kasson BG. Characterization of a vasopressin-like peptide in rat and bovine blood vessels. Am J Physiol, 1992. 262(3 Pt 2):H799-805.
    4. Lincoln J, Loesch A,Burnstock G. Localization of vasopressin, serotonin and angiotensin II in endothelial cells of the renal and mesenteric arteries of the rat. Cell Tissue Res, 1990. 259(2):341-344.
    5. Loesch A, Bodin P,Burnstock G. Colocalization of endothelin, vasopressin and serotonin in cultured endothelial cells of rabbit aorta. Peptides, 1991. 12(5):1095-1103.
    6. Loesch A, Tomlinson A,Burnstock G. Localization of arginine-vasopressin in endothelial cells of rat pulmonary artery. Anat Embryol (Berl), 1991. 183(2):129-134.
    7. Hupf H, Grimm D, Riegger GA,Schunkert H. Evidence for a vasopressin system in the rat heart. Circ Res, 1999. 84(3):365-370.
    8. 袁勇,许顶立,刘伊丽,贾满盈.血管平滑肌细胞增殖与 Cdk 抑制蛋白 p27 的表达.生理学报,1999.51(3):285-290.
    9. Marche P, Herembert T,Zhu DL. [Activation mechanisms by thrombin and vasopressin of fibroblasts in spontaneously hypertensive rats]. Arch Mal Coeur Vaiss, 1991. 84(8):1243-1245.
    10. Lozach A, Garrel G, Lerrant Y, Berault A,Counis R. GnRH-dependent up-regulation of nitric oxide synthase I level in pituitary gonadotrophs mediates cGMP elevation during rat proestrus. Mol Cell Endocrinol, 1998. 143(1-2):43-51.
    11. Lee S,Rivier C. Interaction between corticotropin-releasing factor and nitric oxide in mediating the response of the rat hypothalamus to immune and non-immune stimuli. Brain Res Mol Brain Res, 1998. 57(1):54-62.
    12. Abboud FM, Aylward PE, Floras JS,Gupta BN. Sensitization of aortic and cardiacbaroreceptors by arginine vasopressin in mammals. J Physiol, 1986. 377:251-265.
    13. Barazanji MW,Cornish KG. Vasopressin potentiates ventricular and arterial reflexes in the conscious nonhuman primate. Am J Physiol, 1989. 256(6 Pt 2):H1546-1552.
    14. Garcia-Villalon AL, Garcia JL, Fernandez N, Monge L, Gomez B,Dieguez G. Regional differences in the arterial response to vasopressin: role of endothelial nitric oxide. Br J Pharmacol, 1996. 118(7):1848-1854.
    15. 张露青,左国平,丁炯.加压素在自发性高血压大鼠与正常大鼠下丘脑视上核、室旁核神经元内表达.解剖科学进展,2005.11(3),213-215.
    16. 曹世平,赵连友.精氨酸加压素在高血压发病中的作用及其与 P 物质的关系.中华内科学杂志,1993.32(5):306-309.
    17. Webb RL, Osborn JW, Jr.,Cowley AW, Jr. Cardiovascular actions of vasopressin: baroreflex modulation in the conscious rat. Am J Physiol, 1986. 251(6 Pt 2):H1244-1251.
    18. Osborn JW, Jr., Skelton MM,Cowley AW, Jr. Hemodynamic effects of vasopressin compared with angiotensin II in conscious rats. Am J Physiol, 1987. 252(3 Pt 2):H628-637.
    19. Wilson MF, Brackett DJ, Archer LT,Hinshaw LB. Mechanisms of impaired cardiac function by vasopressin. Ann Surg, 1980. 191(4):494-500.
    20. Sun K, Gong A, Wang CH, Lin BC,Zhu HN. Effect of peripheral injection of arginine vasopressin and its receptor antagonist on burn shock in the rat. Neuropeptides, 1990. 17(1):17-22.
    21. Sun K, Lin BC, Wang CH,Zhu HN. Comparison of selective arginine vasopressin V1 and V2 receptor antagonists on burn shock in the rat. Cardiovasc Res, 1991. 25(4):265-269.
    22. Furukawa Y, Takayama S, Ren LM, Sawaki S, Inoue Y,Chiba S. Blocking effects of V1 (OPC-21268) and V2 (OPC-31260) antagonists on the negative inotropic response to vasopressin in isolated dog heart preparations. J Pharmacol Exp Ther, 1992. 263(2):627-631.
    23. Endoh M, Takanashi M,Norota I. Effects of vasopressin on phosphoinositide hydrolysis and myocardial contractility. Eur J Pharmacol, 1992. 218(2-3):355-358.
    24. Morland J. Reduced inactivation of tyrosine aminotransferase in the prefused rat liver in the presence of ethanol. Acta Pharmacol Toxicol (Copenh), 1977. 40(1):106-114.
    25. Palazzo AJ, Malik KU,Weis MT. Vasopressin stimulates the mobilization and metabolism of triacylglycerol in perfused rabbit hearts. Am J Physiol, 1991. 260(2 Pt 2):H604-612.
    26. 宋开梅,赵连友,林树新. 精氨酸加压素和降钙基因相关肽对实验性心肌细胞脂质过氧化的影响.第四军医大学学报,1994.15(6):466-467.
    27. 陈永清,赵连友,彭育红. p27 蛋白表达对精氨酸加压素介导心脏成纤维细胞增殖的影响.心脏杂志,2001,13(2):122-124.
    28. Burnier M, Centeno G, Burki E,Brunner HR. Confocal microscopy to analyze cytosolic and nuclear calcium in cultured vascular cells. Am J Physiol, 1994. 266(4 Pt 1):C1118-1127.
    29. Evora PR, Pearson PJ, Schaff HV. Arginine vasopressin induces endothelium-dependent vasodilatation of the pulmonary artery. V1-receptor-mediated production of nitric oxide. Chest, 1993. 103(4):1241-1245.
    30. Stebbins CL, Ortiz-Acevedo A,Hill JM. Spinal vasopressin modulates the reflex cardiovascular response to static contraction. J Appl Physiol, 1992. 72(2):731-738.
    31. Endo A. Monacolin K, a new hypocholesterolemic agent produced by a Monascus species. J Antibiot (Tokyo), 1979. 32(8):852-854.
    32. Serizawa N, Nakagawa K, Hamano K, Tsujita Y, Terahara A,Kuwano H. Microbial hydroxylation of ML-236B (compactin) and monacolin K (MB-530B). J Antibiot (Tokyo), 1983. 36(5):604-607.
    33. Alberts AW, Chen J, Kuron G, Hunt V, Huff J, Hoffman C, Rothrock J, Lopez M, Joshua H, Harris E, Patchett A, Monaghan R, Currie S, Stapley E, Albers-Schonberg G, Hensens O, Hirshfield J, Hoogsteen K, Liesch J,Springer J. Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc Natl Acad Sci U S A, 1980. 77(7):3957-3961.
    34. Marwick C. Bayer is forced to release documents over withdrawal of cerivastatin. BMJ, 2003. 326(7388):518.
    35. McTaggart F, Buckett L, Davidson R, Holdgate G, McCormick A, Schneck D, Smith G,Warwick M. Preclinical and clinical pharmacology of Rosuvastatin, a new 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor. Am J Cardiol, 2001. 87(5A):28B-32B.
    36. Davidson MH. Rosuvastatin: a highly efficacious statin for the treatment ofdyslipidaemia. Expert Opin Investig Drugs, 2002. 11(1):125-141.
    37. Paoletti R, Fahmy M, Mahla G, Mizan J,Southworth H. Rosuvastatin demonstrates greater reduction of low-density lipoprotein cholesterol compared with pravastatin and simvastatin in hypercholesterolaemic patients: a randomized, double-blind study. J Cardiovasc Risk, 2001. 8(6):383-390.
    38. Blum CB. Comparison of properties of four inhibitors of 3-hydroxy-3- methylglutaryl-coenzyme A reductase. Am J Cardiol, 1994. 73(14):3D-11D.
    39. Schmitz G,Drobnik W. Pharmacogenomics and pharmacogenetics of cholesterol- lowering therapy. Clin Chem Lab Med, 2003. 41(4):581-589.
    40. Jacobson TA. Combination lipid-lowering therapy with statins: safety issues in the postcerivastatin era. Expert Opin Drug Saf, 2003. 2(3):269-286.
    41. Istvan E. Statin inhibition of HMG-CoA reductase: a 3-dimensional view. Atheroscler Suppl, 2003. 4(1):3-8.
    42. McKenney JM. Pharmacologic characteristics of statins. Clin Cardiol, 2003. 26(4 Suppl 3):III32-38.
    43. Lennernas H,Fager G. Pharmacodynamics and pharmacokinetics of the HMG-CoA reductase inhibitors. Similarities and differences. Clin Pharmacokinet, 1997. 32(5):403-425.
    44. Sato A, Watanabe K, Fukuzumi H, Hase K, Ishida F,Kamei T. Effect of simvastatin (MK-733) on plasma triacylglycerol levels in rats. Biochem Pharmacol, 1991. 41(8):1163-1172.
    45. Muck W, Ritter W, Ochmann K, Unger S, Ahr G, Wingender W,Kuhlmann J. Absolute and relative bioavailability of the HMG-CoA reductase inhibitor cerivastatin. Int J Clin Pharmacol Ther, 1997. 35(6):255-260.
    46. Boberg M, Angerbauer R, Fey P, Kanhai WK, Karl W, Kern A, Ploschke J,Radtke M. Metabolism of cerivastatin by human liver microsomes in vitro. Characterization of primary metabolic pathways and of cytochrome P450 isozymes involved. Drug Metab Dispos, 1997. 25(3):321-331.
    47. Joukhadar C, Klein N, Prinz M, Schrolnberger C, Vukovich T, Wolzt M, Schmetterer L,Dorner GT. Similar effects of atorvastatin, simvastatin and pravastatin on thrombogenic and inflammatory parameters in patients with hypercholesterolemia. Thromb Haemost, 2001. 85(1):47-51.
    48. Bischoff H, Angerbauer R, Bender J, Bischoff E, Faggiotto A, Petzinna D, Pfitzner J, Porter MC, Schmidt D,Thomas G. Cerivastatin: pharmacology of a novel synthetic and highly active HMG-CoA reductase inhibitor. Atherosclerosis, 1997. 135(1):119-130.
    49. Moghadasian MH, Mancini GB,Frohlich JJ. Pharmacotherapy of hypercholesterolaemia: statins in clinical practice. Expert Opin Pharmacother, 2000. 1(4):683-695.
    50. Igel M, Sudhop T,von Bergmann K. Metabolism and drug interactions of 3-hydroxy-3-methylglutaryl coenzyme A-reductase inhibitors (statins). Eur J Clin Pharmacol, 2001. 57(5):357-364.
    51. Piepho RW. The pharmacokinetics and pharmacodynamics of agents proven to raise high-density lipoprotein cholesterol. Am J Cardiol, 2000. 86(12A):35L-40L.
    52. Grundy SM. Consensus statement: Role of therapy with "statins" in patients with hypertriglyceridemia. Am J Cardiol, 1998. 81(4A):1B-6B.
    53. Marais AD, Naoumova RP, Firth JC, Penny C, Neuwirth CK,Thompson GR. Decreased production of low density lipoprotein by atorvastatin after apheresis in homozygous familial hypercholesterolemia. J Lipid Res, 1997. 38(10):2071-2078.
    54. Evans M, Roberts A, Davies S,Rees A. Medical lipid-regulating therapy: current evidence, ongoing trials and future developments. Drugs, 2004. 64(11):1181-1196.
    55. Yamazaki H, Fujino H, Kanazawa M, Tamaki T, Sato F, Suzuki M,Kitahara M. [Pharmacological and pharmacokinetic features and clinical effects of pitavastatin (Livalo Tablet)]. Nippon Yakurigaku Zasshi, 2004. 123(5):349-362.
    56. Williams JK, Sukhova GK, Herrington DM,Libby P. Pravastatin has cholesterol- lowering independent effects on the artery wall of atherosclerotic monkeys. J Am Coll Cardiol, 1998. 31(3):684-691.
    57. Lefer AM, Campbell B, Shin YK, Scalia R, Hayward R,Lefer DJ. Simvastatin preserves the ischemic-reperfused myocardium in normocholesterolemic rat hearts. Circulation, 1999. 100(2):178-184.
    58. Laufs U, Fata VL,Liao JK. Inhibition of 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase blocks hypoxia-mediated down-regulation of endothelial nitric oxide synthase. J Biol Chem, 1997. 272(50):31725-31729.
    59. Laufs U, La Fata V, Plutzky J,Liao JK. Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation, 1998. 97(12):1129-1135.
    60. Patel R, Nagueh SF, Tsybouleva N, Abdellatif M, Lutucuta S, Kopelen HA, QuinonesMA, Zoghbi WA, Entman ML, Roberts R,Marian AJ. Simvastatin induces regression of cardiac hypertrophy and fibrosis and improves cardiac function in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circulation, 2001. 104(3):317-324.
    61. Takemoto M, Node K, Nakagami H, Liao Y, Grimm M, Takemoto Y, Kitakaze M,Liao JK. Statins as antioxidant therapy for preventing cardiac myocyte hypertrophy. J Clin Invest, 2001. 108(10):1429-1437.
    62. Nava E, Noll G,Luscher TF. Increased activity of constitutive nitric oxide synthase in cardiac endothelium in spontaneous hypertension. Circulation, 1995. 91(9):2310-2313.
    63. 林志鸿,谢良地,吴可贵,许昌声,王华军. 氟伐他汀对自发性高血压大鼠心肌纤维化的抑制作用.中华医学杂志,2000.80(9): 718-719.
    64. Luo JD, Zhang WW, Zhang GP, Guan JX,Chen X. Simvastatin inhibits cardiac hypertrophy and angiotensin-converting enzyme activity in rats with aortic stenosis. Clin Exp Pharmacol Physiol, 1999. 26(11):903-908.
    65. Bauersachs J, Galuppo P, Fraccarollo D, Christ M,Ertl G. Improvement of left ventricular remodeling and function by hydroxymethylglutaryl coenzyme a reductase inhibition with cerivastatin in rats with heart failure after myocardial infarction. Circulation, 2001. 104(9):982-985.
    66. 徐琳,李志梁,赵连友,刘映峰,李公信,丁明学,赵一俏,傅强,赵霞. 辛伐他汀对心脏成纤维细胞 DNA 合成的影响.南方医科大学学报,2006.26 (2) :205-207.
    67. Sutton MG,Sharpe N. Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation, 2000. 101(25):2981-2988.
    68. Iwanciw D, Rehm M, Porst M,Goppelt-Struebe M. Induction of connective tissue growth factor by angiotensin II: integration of signaling pathways. Arterioscler Thromb Vasc Biol, 2003. 23(10):1782-1787.
    69. Hayashidani S, Tsutsui H, Shiomi T, Suematsu N, Kinugawa S, Ide T, Wen J,Takeshita A. Fluvastatin, a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor, attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation, 2002. 105(7):868-873.
    70. Indolfi C, Di Lorenzo E, Perrino C, Stingone AM, Curcio A, Torella D, Cittadini A, Cardone L, Coppola C, Cavuto L, Arcucci O, Sacca L, Avvedimento EV,Chiariello M. Hydroxymethylglutaryl coenzyme A reductase inhibitor simvastatin prevents cardiac hypertrophy induced by pressure overload and inhibits p21ras activation. Circulation, -119-2002. 106(16):2118-2124.
    71. van Vliet AK, Negre-Aminou P, van Thiel GC, Bolhuis PA,Cohen LH. Action of lovastatin, simvastatin, and pravastatin on sterol synthesis and their antiproliferative effect in cultured myoblasts from human striated muscle. Biochem Pharmacol, 1996. 52(9):1387-1392.
    72. 徐琳, 赵连友, 范延红, 田建伟,杨学东,张海涛,陈永清,彭育红. 辛伐他汀对血管升压素诱导大鼠心脏成纤维细胞增殖的影响.第三军医大学学报,2001.23(12): 1447-1449.
    73. 李爱国, 赵连友, 郑强荪, 薛玉生, 于心亚, 王斌, 田建伟, 杨学东, 尚福军. 阿伐他汀对自发性高血压大鼠心脏成纤维细胞增殖及胶原合成的影响.高血压杂志, 2004.12 (1): 54-57.
    74. Yamada E. The fine structure of the gall bladder epithelium of the mouse. J Biophys Biochem Cytol, 1955. 1(5):445-458.
    75. Rothberg KG, Heuser JE, Donzell WC, Ying YS, Glenney JR,Anderson RG. Caveolin, a protein component of caveolae membrane coats. Cell, 1992. 68(4):673-682.
    76. Engelman JA, Zhang XL, Galbiati F,Lisanti MP. Chromosomal localization, genomic organization, and developmental expression of the murine caveolin gene family (Cav-1, -2, and -3). Cav-1 and Cav-2 genes map to a known tumor suppressor locus (6-A2/7q31). FEBS Lett, 1998. 429(3):330-336.
    77. Engelman JA, Zhang XL,Lisanti MP. Genes encoding human caveolin1 and -2 are co-localized to the D7S522 locus (7q31.1), a known fragile site (FRA7G) that is frequently deleted in human cancers. FEBS Lett, 1998. 436(3):403-410.
    78. Sotgia F, Minetti C,Lisanti MP. Localization of the human caveolin3 gene to the D3S18/D3S4163/D3S4539 locus (3p25), in close proximity to the human oxytocin receptor gene. Identification of the caveolin3 gene as a candidate for deletion in 3p-syndrome. FEBS Lett, 1999. 452(3):177-180.
    79. Scherer PE, Okamoto T, Chun M, Nishimoto I, Lodish HF,Lisanti MP. Identification, sequence, and expression of caveolin2 defines a caveolin gene family. Proc Natl Acad Sci U S A, 1996. 93(1):131-135.
    80. Mora R, Bonilha VL, Marmorstein A, Scherer PE, Brown D, Lisanti MP,Rodriguez-Boulan E. Caveolin-2 localizes to the golgi complex but redistributes to plasma membrane, caveolae, and rafts when co-expressed with caveolin1. J Biol Chem,1999. 274(36):25708-25717.
    81. Tang Z, Scherer PE, Okamoto T, Song K, Chu C, Kohtz DS, Nishimoto I, Lodish HF,Lisanti MP. Molecular cloning of caveolin3, a novel member of the caveolin gene family expressed predominantly in muscle. J Biol Chem, 1996. 271(4):2255-2261.
    82. Li S, Okamoto T, Chun M, Sargiacomo M, Casanova JE, Hansen SH, Nishimoto I,Lisanti MP. Evidence for a regulated interaction between heterotrimeric G proteins and caveolin. J Biol Chem, 1995. 270(26):15693-15701.
    83. Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B, Menne J, Lindschau C, Mende F, Luft FC, Schedl A, Haller H,Kurzchalia TV. Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin1 gene-disrupted mice. Science, 2001. 293(5539):2449-2452.
    84. Fra AM, Williamson E, Simons K,Parton RG. De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin. Proc Natl Acad Sci U S A, 1995. 92(19):8655-8659.
    85. Thyberg J, Calara F, Dimayuga P, Nilsson J,Regnstrom J. Role of caveolae in cholesterol transport in arterial smooth muscle cells exposed to lipoproteins in vitro and in vivo. Lab Invest, 1998. 78(7):825-837.
    86. Okamoto T, Schlegel A, Scherer PE,Lisanti MP. Caveolins, a family of scaffolding proteins for organizing "preassembled signaling complexes" at the plasma membrane. J Biol Chem, 1998. 273(10):5419-5422.
    87. Uittenbogaard A,Smart EJ. Palmitoylation of caveolin1 is required for cholesterol binding, chaperone complex formation, and rapid transport of cholesterol to caveolae. J Biol Chem, 2000. 275(33):25595-25599.
    88. Smart EJ, Graf GA, McNiven MA, Sessa WC, Engelman JA, Scherer PE, Okamoto T,Lisanti MP. Caveolins, liquid-ordered domains, and signal transduction. Mol Cell Biol, 1999. 19(11):7289-7304.
    89. Ghosh S, Gachhui R, Crooks C, Wu C, Lisanti MP,Stuehr DJ. Interaction between caveolin1 and the reductase domain of endothelial nitric-oxide synthase. Consequences for catalysis. J Biol Chem, 1998. 273(35):22267-22271.
    90. Speed CJ,Mitchell CA. Sustained elevation in inositol 1,4,5-trisphosphate results in inhibition of phosphatidylinositol transfer protein activity and chronic depletion of the agonist-sensitive phosphoinositide pool. J Cell Sci, 2000. 113 ( Pt 14):2631-2638.
    91. Yamamoto M, Toya Y, Schwencke C, Lisanti MP, Myers MG, Jr.,Ishikawa Y. Caveolin is an activator of insulin receptor signaling. J Biol Chem, 1998. 273(41):26962-26968.
    92. Iwanishi M, Haruta T, Takata Y, Ishibashi O, Sasaoka T, Egawa K, Imamura T, Naitou K, Itazu T,Kobayashi M. A mutation (Trp1193-->Leu1193) in the tyrosine kinase domain of the insulin receptor associated with type A syndrome of insulin resistance. Diabetologia, 1993. 36(5):414-422.
    93. Andoh A, Saotome T, Sato H, Tsujikawa T, Araki Y, Fujiyama Y,Bamba T. Epithelial expression of caveolin2, but not caveolin1, is enhanced in the inflamed mucosa of patients with ulcerative colitis. Inflamm Bowel Dis, 2001. 7(3):210-214.
    94. Razani B, Wang XB, Engelman JA, Battista M, Lagaud G, Zhang XL, Kneitz B, Hou H, Jr., Christ GJ, Edelmann W,Lisanti MP. Caveolin-2-deficient mice show evidence of severe pulmonary dysfunction without disruption of caveolae. Mol Cell Biol, 2002. 22(7):2329-2344.
    95. Galbiati F, Engelman JA, Volonte D, Zhang XL, Minetti C, Li M, Hou H, Jr., Kneitz B, Edelmann W,Lisanti MP. Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and t-tubule abnormalities. J Biol Chem, 2001. 276(24):21425-21433.
    96. Galbiati F, Razani B,Lisanti MP. Caveolae and caveolin3 in muscular dystrophy. Trends Mol Med, 2001. 7(10):435-441.
    97. Tateyama M, Aoki M, Nishino I, Hayashi YK, Sekiguchi S, Shiga Y, Takahashi T, Onodera Y, Haginoya K, Kobayashi K, Iinuma K, Nonaka I, Arahata K,Itoyama Y. Mutation in the caveolin3 gene causes a peculiar form of distal myopathy. Neurology, 2002. 58(2):323-325.
    98. Marx J. Caveolin-3 helps build muscles. Science, 2001. 294(5548):1864.
    99. Galbiati F, Volonte D, Chu JB, Li M, Fine SW, Fu M, Bermudez J, Pedemonte M, Weidenheim KM, Pestell RG, Minetti C,Lisanti MP. Transgenic overexpression of caveolin3 in skeletal muscle fibers induces a Duchenne-like muscular dystrophy phenotype. Proc Natl Acad Sci U S A, 2000. 97(17):9689-9694.
    100. Sotgia F, Lee JK, Das K, Bedford M, Petrucci TC, Macioce P, Sargiacomo M, Bricarelli FD, Minetti C, Sudol M,Lisanti MP. Caveolin-3 directly interacts with the C-terminal tail of beta -dystroglycan. Identification of a central WW-like domain within caveolin family members. J Biol Chem, 2000. 275(48):38048-38058.
    101. 俞梦越,吴维力,高润霖.内皮功能不全与冠心病.心血管病学进展,2002.23(4): 193-199.
    102. Campbell L, Gumbleton M,Ritchie K. Caveolae and the caveolins in human disease. Adv Drug Deliv Rev, 2001. 49(3):325-335.
    103. Bucci M, Gratton JP, Rudic RD, Acevedo L, Roviezzo F, Cirino G,Sessa WC. In vivo delivery of the caveolin1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation. Nat Med, 2000. 6(12):1362-1367.
    104. 覃丽,秦旭平,朱炳阳,廖端芳.小窝蛋白 1 在载脂蛋白 E 基因敲除小鼠动脉粥样硬化形成中的作用.中国临床药理学与治疗学,2004.9 (9) :978-982.
    105. 姚康,徐标.细胞质膜微囊—微囊蛋白及其相关信号分子.中国病理生理杂志,2001.17 (4): 370-372.
    106. Park DS, Woodman SE, Schubert W, Cohen AW, Frank PG, Chandra M, Shirani J, Razani B, Tang B, Jelicks LA, Factor SM, Weiss LM, Tanowitz HB,Lisanti MP. Caveolin-1/3 double-knockout mice are viable, but lack both muscle and non-muscle caveolae, and develop a severe cardiomyopathic phenotype. Am J Pathol, 2002. 160(6):2207-2217.
    107. Woodman SE, Park DS, Cohen AW, Cheung MW, Chandra M, Shirani J, Tang B, Jelicks LA, Kitsis RN, Christ GJ, Factor SM, Tanowitz HB,Lisanti MP. Caveolin-3 knock-out mice develop a progressive cardiomyopathy and show hyperactivation of the p42/44 MAPK cascade. J Biol Chem, 2002. 277(41):38988-38997.
    108. Cohen AW, Hnasko R, Schubert W,Lisanti MP. Role of caveolae and caveolins in health and disease. Physiol Rev, 2004. 84(4):1341-1379.
    109. Razani B, Engelman JA, Wang XB, Schubert W, Zhang XL, Marks CB, Macaluso F, Russell RG, Li M, Pestell RG, Di Vizio D, Hou H, Jr., Kneitz B, Lagaud G, Christ GJ, Edelmann W,Lisanti MP. Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem, 2001. 276(41):38121-38138.
    110. Labrecque L, Royal I, Surprenant DS, Patterson C, Gingras D,Beliveau R. Regulation of vascular endothelial growth factor receptor-2 activity by caveolin1 and plasma membrane cholesterol. Mol Biol Cell, 2003. 14(1):334-347.
    111. Malakoff D. Biomedical research. Case Institute a false start. Science, 2001. 294(5551):2449.
    112. Gratton JP, Bernatchez P,Sessa WC. Caveolae and caveolins in the cardiovascular system. Circ Res, 2004. 94(11):1408-1417.
    113. Ushio-Fukai M, Zuo L, Ikeda S, Tojo T, Patrushev NA,Alexander RW. cAbl tyrosine kinase mediates reactive oxygen species- and caveolindependent AT1 receptor signaling in vascular smooth muscle: role in vascular hypertrophy. Circ Res, 2005. 97(8):829-836.
    114. Zuo L, Ushio-Fukai M, Ikeda S, Hilenski L, Patrushev N,Alexander RW. Caveolin-1 is essential for activation of Rac1 and NAD(P)H oxidase after angiotensin II type 1 receptor stimulation in vascular smooth muscle cells: role in redox signaling and vascular hypertrophy. Arterioscler Thromb Vasc Biol, 2005. 25(9):1824-1830.
    115. 庹勤慧,廖端芳.小窝蛋白胞内胆固醇转运复合物的矛盾运动与启示.中国医学理论与实践,2005.15 (4) : 504-511
    116. Frank PG,Lisanti MP. Caveolin-1 and caveolae in atherosclerosis: differential roles in fatty streak formation and neointimal hyperplasia. Curr Opin Lipidol, 2004. 15(5):523-529.
    117. Cohen AW, Park DS, Woodman SE, Williams TM, Chandra M, Shirani J, Pereira de Souza A, Kitsis RN, Russell RG, Weiss LM, Tang B, Jelicks LA, Factor SM, Shtutin V, Tanowitz HB,Lisanti MP. Caveolin-1 null mice develop cardiac hypertrophy with hyperactivation of p42/44 MAP kinase in cardiac fibroblasts. Am J Physiol Cell Physiol, 2003. 284(2):C457-474.
    118. Kikuchi T, Oka N, Koga A, Miyazaki H, Ohmura H,Imaizumi T. Behavior of caveolae and caveolin3 during the development of myocyte hypertrophy. J Cardiovasc Pharmacol, 2005. 45(3):204-210.
    119. Rothnie A, Theron D, Soceneantu L, Martin C, Traikia M, Berridge G, Higgins CF, Devaux PF,Callaghan R. The importance of cholesterol in maintenance of P-glycoprotein activity and its membrane perturbing influence. Eur Biophys J, 2001. 30(6):430-442.
    120. Cornelius F. Modulation of Na,K-ATPase and Na-ATPase activity by phospholipids and cholesterol. I. Steady-state kinetics. Biochemistry, 2001. 40(30):8842-8851.
    121. Scanlon SM, Williams DC,Schloss P. Membrane cholesterol modulates serotonin transporter activity. Biochemistry, 2001. 40(35):10507-10513.
    122. Opekarova M,Tanner W. Specific lipid requirements of membrane proteins--a putative bottleneck in heterologous expression. Biochim Biophys Acta, 2003. 1610(1):11-22.
    123. Ikonen E. Roles of lipid rafts in membrane transport. Curr Opin Cell Biol, 2001. 13(4):470-477.
    124. Massimino ML, Griffoni C, Spisni E, Toni M,Tomasi V. Involvement of caveolae and caveolae-like domains in signalling, cell survival and angiogenesis. Cell Signal, 2002. 14(2):93-98.
    125. Fielding CJ,Fielding PE. Relationship between cholesterol trafficking and signaling in rafts and caveolae. Biochim Biophys Acta, 2003. 1610(2):219-228.
    126. Hooper NM. Detergent-insoluble glycosphingolipid/cholesterol-rich membrane domains, lipid rafts and caveolae (review). Mol Membr Biol, 1999. 16(2):145-156.
    127. Marwali MR, Rey-Ladino J, Dreolini L, Shaw D,Takei F. Membrane cholesterol regulates LFA-1 function and lipid raft heterogeneity. Blood, 2003. 102(1):215-222.
    128. Anderson HA, Hiltbold EM,Roche PA. Concentration of MHC class II molecules in lipid rafts facilitates antigen presentation. Nat Immunol, 2000. 1(2):156-162.
    129. Young RM, Holowka D,Baird B. A lipid raft environment enhances Lyn kinase activity by protecting the active site tyrosine from dephosphorylation. J Biol Chem, 2003.
    278(23):20746-20752.
    130. Fielding CJ. Caveolae and signaling. Curr Opin Lipidol, 2001. 12(3):281-287.
    131. Razani B,Lisanti MP. Caveolins and caveolae: molecular and functional relationships. Exp Cell Res, 2001. 271(1):36-44.
    132. Stahlhut M, Sandvig K,van Deurs B. Caveolae: uniform structures with multiple functions in signaling, cell growth, and cancer. Exp Cell Res, 2000. 261(1):111-118.
    133. Spisni E, Griffoni C, Santi S, Riccio M, Marulli R, Bartolini G, Toni M, Ullrich V,Tomasi V. Colocalization prostacyclin (PGI2) synthase--caveolin1 in endothelial cells and new roles for PGI2 in angiogenesis. Exp Cell Res, 2001. 266(1):31-43.
    134. Sowa G, Pypaert M,Sessa WC. Distinction between signaling mechanisms in lipid rafts vs caveolae. Proc Natl Acad Sci U S A, 2001. 98(24):14072-14077.
    135. Lee AG. Lipid-protein interactions in biological membranes: a structural perspective. Biochim Biophys Acta, 2003. 1612(1):1-40.
    136. Gimpl G, Burger K,Fahrenholz F. Cholesterol as modulator of receptor function. Biochemistry, 1997. 36(36):10959-10974.
    137. Pang L, Graziano M,Wang S. Membrane cholesterol modulates galanin-GalR2 interaction. Biochemistry, 1999. 38(37):12003-12011.
    138. Yang T, Espenshade PJ, Wright ME, Yabe D, Gong Y, Aebersold R, Goldstein JL,Brown MS. Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell, 2002. 110(4):489-500.
    139. Simons K,Ikonen E. How cells handle cholesterol. Science, 2000. 290(5497):1721-1726.
    140. Anderson RG. Joe Goldstein and Mike Brown: from cholesterol homeostasis to new paradigms in membrane biology. Trends Cell Biol, 2003. 13(10):534-539.
    141. Miquel K, Pradines A,Favre G. Farnesol and geranylgeraniol induce actin cytoskeleton disorganization and apoptosis in A549 lung adenocarcinoma cells. Biochem Biophys Res Commun, 1996. 225(3):869-876.
    142. Addeo R, Altucci L, Battista T, Bonapace IM, Cancemi M, Cicatiello L, Germano D, Pacilio C, Salzano S, Bresciani F,Weisz A. Stimulation of human breast cancer MCF-7 cells with estrogen prevents cell cycle arrest by HMG-CoA reductase inhibitors. Biochem Biophys Res Commun, 1996. 220(3):864-870.
    143. Ginsberg HN. Update on the treatment of hypercholesterolemia, with a focus on HMG-CoA reductase inhibitors and combination regimens. Clin Cardiol, 1995. 18(6):307-315.
    144. Simons K,Ehehalt R. Cholesterol, lipid rafts, and disease. J Clin Invest, 2002. 110(5):597-603.
    145. Chatterjee K. Neurohormonal activation in congestive heart failure and the role of vasopressin. Am J Cardiol, 2005. 95(9A):8B-13B.
    146. Rouleau JL, Packer M, Moye L, de Champlain J, Bichet D, Klein M, Rouleau JR, Sussex B, Arnold JM, Sestier F,et al. Prognostic value of neurohumoral activation in patients with an acute myocardial infarction: effect of captopril. J Am Coll Cardiol, 1994. 24(3):583-591.
    147. Tahara A, Tsukada J, Tomura Y, Suzuki T, Yatsu T,Shibasaki M. Effect of YM218, a nonpeptide vasopressin V(1A) receptor-selective antagonist, on rat mesangial cell hyperplasia and hypertrophy. Vascul Pharmacol, 2007. 46(6):463-469.
    148. Bhora FY, Kothary PC, Imanishi H, Eckhauser FE,Raper SE. Vasopressin stimulates DNA synthesis in cultured rat hepatocytes. J Surg Res, 1994. 57(6):706-710.
    149. Lagumdzija A, Pernow Y, Bucht E, Gonon A,Petersson M. The effects ofarg-vasopressin on osteoblast-like cells in endothelial nitric oxide synthase-knockout mice and their wild type counterparts. Peptides, 2005. 26(9):1661-1666.
    150. Chiu T, Wu SS, Santiskulvong C, Tangkijvanich P, Yee HF, Jr.,Rozengurt E. Vasopressin-mediated mitogenic signaling in intestinal epithelial cells. Am J Physiol Cell Physiol, 2002. 282(3):C434-450.
    151. McNeill JR. Role of vasopressin in the control of arterial pressure. Can J Physiol Pharmacol, 1983. 61(11):1226-1235.
    152. Uretsky BF, Verbalis JG, Generalovich T, Valdes A,Reddy PS. Plasma vasopressin response to osmotic and hemodynamic stimuli in heart failure. Am J Physiol, 1985. 248(3 Pt 2):H396-402.
    153. Cohn JN, Ferrari R,Sharpe N. Cardiac remodeling--concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol, 2000. 35(3):569-582.
    154. Weber KT, Brilla CG,Janicki JS. Myocardial fibrosis: functional significance and regulatory factors. Cardiovasc Res, 1993. 27(3):341-348.
    155. Yang F, Liu YH, Yang XP, Xu J, Kapke A,Carretero OA. Myocardial infarction and cardiac remodelling in mice. Exp Physiol, 2002. 87(5):547-555.
    156. Fan YH, Zhao LY, Zheng QS, Xue YS, Yang XD, Tian JW,Xu L. [Arginine vasopressin-induced nitric oxide content changes in cultured cardiac fibroblasts and its relation to nuclear factor-kappaB]. Sheng Li Xue Bao, 2003. 55(4):417-421.
    157. 杨学东.精氨酸加压素介导心脏成纤维细胞增殖和胶原合成的作用及白细胞介素-1干预的研究.第四军医大学硕士学位论文.2000
    158. Nakamura Y, Haneda T, Osaki J, Miyata S,Kikuchi K. Hypertrophic growth of cultured neonatal rat heart cells mediated by vasopressin V(1A) receptor. Eur J Pharmacol, 2000. 391(1-2):39-48.
    159. Fukuzawa J, Haneda T,Kikuchi K. Arginine vasopressin increases the rate of protein synthesis in isolated perfused adult rat heart via the V1 receptor. Mol Cell Biochem, 1999. 195(1-2):93-98.
    160. Tahara A, Tomura Y, Wada K, Kusayama T, Tsukada J, Ishii N, Yatsu T, Uchida W,Tanaka A. Effect of YM087, a potent nonpeptide vasopressin antagonist, on vasopressin-induced protein synthesis in neonatal rat cardiomyocyte. Cardiovasc Res, 1998. 38(1):198-205.
    161. Chen D, Fong HW,Davis JS. Induction of c-fos and c-jun messenger ribonucleic acid expression by prostaglandin F2alpha is mediated by a protein kinase C-dependent extracellular signal-regulated kinase mitogen-activated protein kinase pathway in bovine luteal cells. Endocrinology, 2001. 142(2):887-895.
    162. 高本波,雷蓓蕾,韩启德.激动 α1B 肾上腺受体对 DDTIMF-2 细胞生长德刺激作用及其途径.中国药理学通报,2001.17(1):30-33.
    163. Xu YJ, Ouk Kim S, Liao DF, Katz S,Pelech SL. Stimulation of 90- and 70-kDa ribosomal protein S6 kinases by arginine vasopressin and lysophosphatidic acid in rat cardiomyocytes. Biochem Pharmacol, 2000. 59(9):1163-1171.
    164. Aharonovitz O, Aboulafia-Etzion S, Leor J, Battler A,Granot Y. Stimulation of 42/44 kDa mitogen-activated protein kinases by arginine vasopressin in rat cardiomyocytes. Biochim Biophys Acta, 1998. 1401(1):105-111.
    165. Coats S, Flanagan WM, Nourse J,Roberts JM. Requirement of p27Kip1 for restriction point control of the fibroblast cell cycle. Science, 1996. 272(5263):877-880.
    166. Bhatt KV, Spofford LS, Aram G, McMullen M, Pumiglia K,Aplin AE. Adhesion control of cyclin D1 and p27Kip1 levels is deregulated in melanoma cells through BRAF-MEK-ERK signaling. Oncogene, 2005. 24(21):3459-3471.
    167. Foster JS, Fernando RI, Ishida N, Nakayama KI,Wimalasena J. Estrogens down-regulate p27Kip1 in breast cancer cells through Skp2 and through nuclear export mediated by the ERK pathway. J Biol Chem, 2003. 278(42):41355-41366.
    168. Kortylewski M, Heinrich PC, Kauffmann ME, Bohm M, MacKiewicz A,Behrmann I. Mitogen-activated protein kinases control p27kip1 expression and growth of human melanoma cells. Biochem J, 2001. 357(Pt 1):297-303.
    169. Girard F, Strausfeld U, Fernandez A,Lamb NJ. Cyclin A is required for the onset of DNA replication in mammalian fibroblasts. Cell, 1991. 67(6):1169-1179.
    170. Kim K, Nose K,Shibanuma M. Significance of nuclear relocalization of ERK1/2 in reactivation of c-fos transcription and DNA synthesis in senescent fibroblasts. J Biol Chem, 2000. 275(27):20685-20692.
    171. Nofer JR, Junker R, Pulawski E, Fobker M, Levkau B, von Eckardstein A, Seedorf U, Assmann G,Walter M. High density lipoproteins induce cell cycle entry in vascular smooth muscle cells via mitogen activated protein kinase-dependent pathway. Thromb Haemost, 2001. 85(4):730-735.
    172. Lavoie JN, L'Allemain G, Brunet A, Muller R,Pouyssegur J. Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J Biol Chem, 1996. 271(34):20608-20616.
    173. Brown RD, Ambler SK, Mitchell MD,Long CS. The cardiac fibroblast: therapeutic target in myocardial remodeling and failure. Annu Rev Pharmacol Toxicol, 2005. 45:657-687.
    174. Yang XD, Zhao LY, Zheng QS,Li X. Effects of arginine vasopressin on growth of rat cardiac fibroblasts: role of V1 receptor. J Cardiovasc Pharmacol, 2003. 42(1):132-135.
    175. Newton CJ, Xie YX, Burgoyne CH, Adams I, Atkin SL, Abidia A,McCollum PT. Fluvastatin induces apoptosis of vascular endothelial cells: blockade by glucocorticoids. Cardiovasc Surg, 2003. 11(1):52-60.
    176. Kuwahara F, Kai H, Tokuda K, Takeya M, Takeshita A, Egashira K,Imaizumi T. Hypertensive myocardial fibrosis and diastolic dysfunction: another model of inflammation? Hypertension, 2004. 43(4):739-745.
    177. Futterman LG,Lemberg L. Statin pleiotropy: fact or fiction? Am J Crit Care, 2004. 13(3):244-249.
    178. Lee TM, Lin MS, Chou TF,Chang NC. Effect of simvastatin on left ventricular mass in hypercholesterolemic rabbits. Am J Physiol Heart Circ Physiol, 2005. 288(3):H1352-1358.
    179. Loch D, Levick S, Hoey A,Brown L. Rosuvastatin attenuates hypertension-induced cardiovascular remodeling without affecting blood pressure in DOCA-salt hypertensive rats. J Cardiovasc Pharmacol, 2006. 47(3):396-404.
    180. Tian JW, Zhao LY, Wang SW, Zhang HT, Zheng QS, Yang XD, Xu L,Fan YH. [Effects of atorvastatin on the proliferation and collagen synthesis of rat cardiac fibroblasts]. Zhonghua Yi Xue Za Zhi, 2003. 83(2):118-122.
    181. Moiseeva OM, Semyonova EG, Polevaya EV,Pinayev GP. Effect of pravastatin on phenotypical transformation of fibroblasts and hypertrophy of cardiomyocytes in culture. Bull Exp Biol Med, 2007. 143(1):54-57.
    182. 赵连友,陈永清,田建伟,王士雯,彭育红,杨学东,徐琳,范延红.蛋白激酶 C 抑制剂对精氨酸升压素调控心脏成纤维细胞增殖及 p27 蛋白表达的影响.中华医学杂志,2003.83(5):421-424.
    183. Porter KE, Turner NA, O'Regan DJ, Balmforth AJ,Ball SG. Simvastatin reduces humanatrial myofibroblast proliferation independently of cholesterol lowering via inhibition of RhoA. Cardiovasc Res, 2004. 61(4):745-755.
    184. Satoh T, Nakafuku M,Kaziro Y. Function of Ras as a molecular switch in signal transduction. J Biol Chem, 1992. 267(34):24149-24152.
    185. Denhardt DT. Signal-transducing protein phosphorylation cascades mediated by Ras/Rho proteins in the mammalian cell: the potential for multiplex signalling. Biochem J, 1996. 318 ( Pt 3):729-747.
    186. Seasholtz TM, Majumdar M, Kaplan DD,Brown JH. Rho and Rho kinase mediate thrombin-stimulated vascular smooth muscle cell DNA synthesis and migration. Circ Res, 1999. 84(10):1186-1193.
    187. Liu Y, Suzuki YJ, Day RM,Fanburg BL. Rho kinase-induced nuclear translocation of ERK1/ERK2 in smooth muscle cell mitogenesis caused by serotonin. Circ Res, 2004. 95(6):579-586.
    188. Yamakawa T, Tanaka S, Numaguchi K, Yamakawa Y, Motley ED, Ichihara S,Inagami T. Involvement of Rho-kinase in angiotensin II-induced hypertrophy of rat vascular smooth muscle cells. Hypertension, 2000. 35(1 Pt 2):313-318.
    189. Kanda T, Hayashi K, Wakino S, Homma K, Yoshioka K, Hasegawa K, Sugano N, Tatematsu S, Takamatsu I, Mitsuhashi T,Saruta T. Role of Rho-kinase and p27 in angiotensin II-induced vascular injury. Hypertension, 2005. 45(4):724-729.
    190. Mukai Y, Shimokawa H, Matoba T, Kandabashi T, Satoh S, Hiroki J, Kaibuchi K,Takeshita A. Involvement of Rho-kinase in hypertensive vascular disease: a novel therapeutic target in hypertension. FASEB J, 2001. 15(6):1062-1064.
    191. Maekawa M, Ishizaki T, Boku S, Watanabe N, Fujita A, Iwamatsu A, Obinata T, Ohashi K, Mizuno K,Narumiya S. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science, 1999. 285(5429):895-898.
    192. 郑文建,梁平. Rho 亚家族蛋白与恶性肿瘤的侵袭和转移.国际病理科学与临床杂志,2006.26(4):286-290.
    193. Zhao YY, Liu Y, Stan RV, Fan L, Gu Y, Dalton N, Chu PH, Peterson K, Ross J, Jr.,Chien KR. Defects in caveolin1 cause dilated cardiomyopathy and pulmonary hypertension in knockout mice. Proc Natl Acad Sci U S A, 2002. 99(17):11375-11380.
    194. Verdecchia P,Angeli F. Reversal of left ventricular hypertrophy: what have recent trials taught us? Am J Cardiovasc Drugs, 2004. 4(6):369-378.
    195. Schillaci G. Pharmacogenomics of left ventricular hypertrophy reversal: beyond the 'one size fits all' approach to antihypertensive therapy. J Hypertens, 2004. 22(12):2273-2275.
    196. D'Amours M, Lebel M, Grose JH,Lariviere R. Renal and vascular effects of chronic nitric oxide synthase inhibition: involvement of endothelin 1 and angiotensin II. Can J Physiol Pharmacol, 1999. 77(1):8-16.
    197. Liu P, Rudick M,Anderson RG. Multiple functions of caveolin1. J Biol Chem, 2002. 277(44):41295-41298.
    198. Sottile J,Chandler J. Fibronectin matrix turnover occurs through a caveolin1-dependent process. Mol Biol Cell, 2005. 16(2):757-768.
    199. Liu P, Ying Y,Anderson RG. Platelet-derived growth factor activates mitogen-activated protein kinase in isolated caveolae. Proc Natl Acad Sci, 1997. 94(25):13666-13670.
    200. Piech A, Massart PE, Dessy C, Feron O, Havaux X, Morel N, Vanoverschelde JL, Donckier J,Balligand JL. Decreased expression of myocardial eNOS and caveolin in dogs with hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol, 2002. 282(1):H219-231.
    201. Beltinger C, Saragovi HU, Smith RM, LeSauteur L, Shah N, DeDionisio L, Christensen L, Raible A, Jarett L,Gewirtz AM. Binding, uptake, and intracellular trafficking of phosphorothioate-modified oligodeoxynucleotides. J Clin Invest, 1995. 95(4):1814-1823.
    202. Lopez B, Gonzalez A, Querejeta R,Diez J. The use of collagen-derived serum peptides for the clinical assessment of hypertensive heart disease. J Hypertens, 2005. 23(8):1445-1451.
    203. Diez J, Lopez B, Gonzalez A,Querejeta R. Clinical aspects of hypertensive myocardial fibrosis. Curr Opin Cardiol, 2001. 16(6):328-335.
    204. Mancia G, De Backer G, Dominiczak A, Cifkova R, Fagard R, Germano G, Grassi G, Heagerty AM, Kjeldsen SE, Laurent S, Narkiewicz K, Ruilope L, Rynkiewicz A, Schmieder RE, Boudier HA, Zanchetti A, Vahanian A, Camm J, De Caterina R, Dean V, Dickstein K, Filippatos G, Funck-Brentano C, Hellemans I, Kristensen SD, McGregor K, Sechtem U, Silber S, Tendera M, Widimsky P, Zamorano JL, Erdine S, Kiowski W, Agabiti-Rosei E, Ambrosioni E, Lindholm LH, Viigimaa M, Adamopoulos S, Bertomeu V, Clement D, Farsang C, Gaita D, Lip G, Mallion JM, Manolis AJ, Nilsson PM, O'Brien E, Ponikowski P, Redon J, Ruschitzka F, Tamargo J, van Zwieten P, WaeberB,Williams B. 2007 Guidelines for the Management of Arterial Hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens, 2007. 25(6):1105-1187.
    205. Simko F, Matuskova J, Luptak I, Krajcirovicova K, Kucharska J, Gvozdjakova A, Babal P,Pechanova O. Effect of simvastatin on remodeling of the left ventricle and aorta in L-NAME-induced hypertension. Life Sci, 2004. 74(10):1211-1224.
    206. Zhang GG,Zhang SD. [Effect of simvastatin on cardiac fibrosis in patients with essential hypertension]. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2005. 30(3):280-282.
    207. Rothblat GH, de la Llera-Moya M, Atger V, Kellner-Weibel G, Williams DL,Phillips MC. Cell cholesterol efflux: integration of old and new observations provides new insights. J Lipid Res, 1999. 40(5):781-796.
    208. Furuchi T,Anderson RG. Cholesterol depletion of caveolae causes hyperactivation of extracellular signal-related kinase (ERK). J Biol Chem, 1998. 273(33):21099-21104.
    209. Laufs U, Marra D, Node K,Liao JK. 3-Hydroxy-3-methylglutaryl-CoA reductase inhibitors attenuate vascular smooth muscle proliferation by preventing rho GTPase-induced down-regulation of p27(Kip1).J Biol Chem,1999. 274(31):21926-21931.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700