用户名: 密码: 验证码:
健康青年脑力疲劳生理指标和认知功能的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长时间、不规律、夜航及其跨时区飞行等因素使飞行人员生物节律发生改变、睡眠不足,易于发生疲劳,严重影响工作能力,从而存在引发飞行安全的隐患,因此飞行脑力疲劳的预防和监控仍是当前航空航天医学研究的重要课题之一。
     飞行脑力疲劳是一个多维的构建,目前尚无统一的标准去测量。多种因素均可以引起脑力疲劳,其表现往往与诱发因素有关,常用的脑力疲劳研究模型包括睡眠剥夺、缺氧、饮酒等。上述研究模型中都存在自主神经功能的变化,因此自主神经功能变化是一个比较共性的指标。对操作者的认知活动进行生理测量是一个实时、客观的方式,生理测量的优势在于能在从低脑力负荷到脑力超负荷的较宽范围内提供敏感性较高的总体评价。本研究针对飞行员疲劳后的主要表现、飞行员职业的特殊要求等实际情况,挑选了相应的生理测验指标,要求对飞行疲劳的反应灵敏、测验时间短,准确度高,客观,无创,操作简单。我国在飞行脑力疲劳评价方面的研究起步较晚,经验较少,缺乏实际资料。本课题研究旨在通过饮酒方式对健康青年进行自主神经生理指标测试和认知功能检测,探讨飞行人员脑力疲劳的生理心理指标变化规律,了解其心率变异性、瞳孔孔径、立体视觉、眼底血管直径、视频眼震电图检查、隐斜、认知能力等指标的变化规律,重点是瞳孔孔径和心率变异性的相应变化曲线,对操作人员进行客观、科学、准确、系统的评价,进一步探讨飞行员生理状态适应性选拔标准,从而通过对飞行人员采用生理心理指标的变化来客观判断飞行员的身体及心理状况,以达到保障飞行安全,预防飞行事发生的目的。
     为探讨飞行员实际飞行过程中的脑力负荷水平的变化,本研究主要从生理测量方面对飞行员飞行前的实际情况进行了评定。通过视频眼震电图仪、瞳孔测量仪、免散瞳眼底照相仪、同视机等生理检测设备,采集记录了健康青年饮酒前后的多种生理参数的变化,同时采用三项认知能力测验进行心理学测试,分别是空间旋转测验(SCT)、数字、光点数相加测验(NPPPT)和速度估计测验(SET),以正确率和反应时间作为测试指标,分析了不同条件下健康青年生理心理各项评价指标的变化规律和脑力负荷水平的变化。
     生理指标主要测验项目名称及主要指标如下:
     (1)心率变异性(HRV):包括立位和平卧位两种姿势,时域指标包括Mean NN(NN间期平均值)、SDNN(NN间期的标准差);频域指标包括LF(低频成分)、HF(高频成分)、TF(总频谱)和LF/HF(低频和高频之比);
     (2)瞳孔孔径(PPD):包括瞳孔灰度直方图和瞳孔面积;
     (3)视频眼震图(VNG):包括OPTOKINETIC TESTS的左像和右像、TRACKING TESTS、SACCADE TESTS的速度和潜伏期;
     (4)同视机(CC):包括立体视觉(分为双眼的鼻侧、中间部分和颞侧)、隐斜测试(分为垂直隐斜和水平隐斜两种)、双眼红绿、黄蓝色觉检查结果;
     (5)免散瞳眼底照相仪(FC):包括眼底颞上动、静脉直径检查结果。心理测验的项目名称及主要目的如下:
     (1)空间旋转测验(SCT):检测空间认知、判断以及推理能力;
     (2)数字、光点数相加测验(NPPPT):检测短时记忆能力、计算能力以及注意的分配与选择能力;
     (3)速度估计测验(SET):检测对距离的空间知觉以及作为驾驶人员的预判能力。
     主要结果如下:
     1、在生理测验中,其中HRV的平卧位的HF、LF、TF三项结果、瞳孔面积、颞上静脉直径、垂直隐斜结果、左眼黄蓝色觉结果在饮酒前后呈现显著性变化,而其余的结果无明显差异;
     2、以瞳孔直径作为因变量Y,以HRV的时域指标SDNN和频域指标LF/HF作为自变量,得出的线性回归方程为:Y=215.198-0.217X_1+0.177X_2,其中X_1为LF/HF(r=-0.143,p< 0.05),X_2为SDNN(r=0.816,p< 0.01)。
     3、心理测验与生理检测结果指标间线性回归方程为:Y=2.688+1.19X_1+0.028X_2-27.83X_3+22.68X_4,其中:Y为心理测验结果,X_1为垂直隐斜(r = 0.810, p < 0.01),X_2为立位LF(r = 0.341, p < 0.05),X_3为左眼黄蓝色觉(r = - 0.535, p < 0.05),X_4为瞳孔孔径(r =0.632,p < 0.05)。
     脑力疲劳生理心理指标评定的研究结论:
     1、生理指标测试能客观地反映疲劳前后生理功能的变化,通过相应的软件分析和数据技术处理,能够敏感地评定飞行人员脑力疲劳的状态;
     2、3项心理学测验在饮酒前后,反应时以及正确率存在着显著差异,表明酒精所造成的脑力疲劳很大程度上存在着认知能力方面的变化;
     3、部分生理心理指标存在明显的相关性,回归成相应方程,说明指标间能够共同反映脑力疲劳,只是权重不同,瞳孔孔径、心率变异性和垂直隐斜均能一定程度上评定生理心理状态;
     4、生理指标的实验室研究指标能否评定飞行员实际工作中的工作绩效和脑力负荷还有待进一步探讨,但是自主神经生理指标评定脑力疲劳是最新的研究方向之一,与认知能力相结合,准确度能够大大提高,也能够解决实际飞行任务对脑力疲劳测量客观化、快速化和无创化的需要;
     总之,本研究说明,脑力疲劳的评定不能用单一的指标进行,应选用多层次、多角度多项指标同时进行评定。由于条件限制,本研究仅涉及脑力疲劳的自主神经生理信号检测和认知注意特征。本研究的方法和指标的实用性和可靠性有待进一步验证和完善。
It is one of the most important issues to monitor and prevent flight fatigue in the field of aerospace medicine. Fatigue, lack of sleep, and circadian disruption caused by long-haul, irregular, night and crossing time zone flight operations can degrade performance, alertness and safety. The aim of this study is to find the changing regulation of aircrew’s physiological indexes such as HRV、pupil pore diameter、stereoscopic vision、blood vessel diameter of eye ground、video-nystanography、heterophoria and cognitive ability with a focus on pupil aperture and heart rate variability of the corresponding curves of the operators to conduct an objective, scientific, accurate, systematic evaluation, and further study adaptive physiological state pilot selection criteria. By means of dynamic monitoring of the aircrew’s physiological status, their psycho physiological conditions can be found, which will ensure flight safety and prevent accident.
     It is general agreement that in-flight mental workload is a multidimensional construct, and there is no uniform standard to measure at present. Many factors can cause mental fatigue, and its performance is often induced by factors related to the commonly used model of mental fatigue, including sleep deprivation, lack of oxygen, drinking et al. The indexes of autonomic nervous system are relatively common indicators. Psycho physiological measurements are of particular importance in the flight environment since they offer a non-intrusive method to collect objective data about the mental workload of pilots and other crew members. We select some corresponding test items based on airplane pilots’mostly behavior after their fatigue, their professional request and their practical circs. These tests must be sensitive to flight fatigue short time cost and with good reliability, validity and distinction, small studying effect, brief maneuverability. Research on mental fatigue in our country is just underway, most of which was experimental or flight simulator study, but little real flight assessments reported.
     In order to evaluated in-flight mental fatigue of pilots of various kinds of flight course and flight phase, in the present study psycho physiological measures were obtained. We collect to record the changes of multi-physiological parameters in the condition of drinking alcohol by NVG、ETC、FC、CC etc equipment of physical detection. At the same time,we also have three psych tests involving spatial circumgyrate test (SCT)、numeral plus photic point test(NPPPT) and speed estimates test (SET),which is as the accuracy and response time as the test indexes. There is an exact correspondence between psycho physiological indexes and mental workload.
     The names and indexes of physiological tests were as follows:
     (1) Heart Rate Variability (HRV): including two postures as erect position and prostration position. The indexes of time domain contains Mean NN and SDNN while indexes of frequency domain contains LF、HF、TF and LF/HF.
     (2) Pupil Pore Diameter (PPD): including pupil gray scale histogram and pupil area.
     (3) Video-Nystanography (VNG): including leftward and rightward of OPTOKINETIC TESTS、TRACKING TESTS、velocity and latency of SACCADE TESTS.
     (4) Clement Clarke (CC): including stereoscopic vision of binocular nasal side、temple side and intermedius side,vertical and horizontal heterophoria and binocular chromatometry.
     (5) Fundus Camera (FC): including diameter of artery and vein in eye ground.
     The names and main purposes were as follows:
     (1)The Spatial Circumgyrate Test (SCT): To examine the ability of space cognition, judgment and inference.
     (2)The Numeral Plus Photic Point Test (NPPPT): To examine the ability of short–term memory, calculation ability and attention distribution and choices.
     (3)The Speed Estimates Test (SET): To examine space cognition ability of distance and prejudgment of pilot.
     The main results were as follows:
     (1) Among physiological tests, the results from these tests involving HF、LF、TF、pupil area、diameter of superior temporal vein、vertical heterophoria and left eye chromatometry have shown that under the different condition, these indexes are significantly different. However, other results are not highly satisfactory.
     (2) The linear regression equation between pupil diameter as dependent variable Y and SDNN、LF/HF as independent variable was: Y=215.198-0.217X_1+0.177X_2, LF/HF as X_1, which the coefficient of correlation was -0.143 (p< 0.05), SDNN as X_2,which the coefficient of correlation was 0.816 (p< 0.01).
     (3) The linear regression equation between dependent variable Y and independent variable X was: Y=2.688+1.19X_1+0.00028X_2-27.83X_3+22.68X_4 vertical heterophoria as X_1 and the coefficient of correlation was 0.810 (p<0.01), LF of erect position as X2 and the coefficient of correlation was 0.341 (p<0.05), left eye chromatometry as X3 and the coefficient of correlation was -0.535(p<0.05), pupil diameter as X4 and the coefficient of correlation was 0.632(p<0.05).
     The research conclusion of psycho physiological indexes to assessment on mental fatigue:
     1. There are obviously expressed that these physical tests are sensitive to the special ability request of mental fatigue. These tests can evaluate pilots’mental status sensitively by the corresponding software analyses and technique disposal.
     2. The reaction time and right rate of 3 psychological tests are significantly different under the condition of mental fatigue,which indicates that alcohol can cause the changes of cognitive ability on mental fatigue.
     3. Some psycho physiological indexes are significantly correlative and can regress the corresponding equations, which indicates that these indexes can reflect mental fatigue,but different power, the pupil aperture, the heart rate changeability and vertical heterophoria can evaluate the physiological psychology to a certain extent.
     4 .Whether the laboratory research physiological indexes could evaluate the work achievements and mental ability workload of pilot remains to be further probed, but the autonomic nervous physiological indexes evaluate the mental fatigue is one of latest research directions, with the cognition ability union, the accuracy is able to be improved greatly and the measure of the mental fatigue which caused by actual flight mission can be objectively, rapidly and atraumatically.
     In brief, this research shows that mental fatigue should not use the sole index to carry on the evaluation, which should do with multi-level and multiple perspective indexes simultaneously. As a result of the condition limit, this research only involves autonomic nerve physiology signal examination and the cognition ability characteristic of mental fatigue. The practically and reliability of the research methods and indexes depend on further verification and consummation.
引文
1. Akselrod S, Gordon D, Ubel FA, et al. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat to beat cardiovascular control. Science,1981;213:220-2.
    2. Barr NL, Voas RB. Telemetring physiologic responses during experimental flights. Amer J Cardiol,1960;6(1):54-61.
    3. Bellenkes AH, Wickens CD, kramer AF. Visual scanning and pilot expertise: the role of attentional flexibility and mental model development. Aviat Space Environ Med,1997;68(7):569-79.
    4. Berntson GG, Bigger JT, Eckberg DL, et al. Heart rate variability: origins, methods and interpretive caveats. Psychophysiol,1997;34:623-48.
    5. Boiten FA, Frijda NH, Wientjes CJE. Emotions and respiratory patterns: review and critical analysis. Int J Psychophysiol,1994;17:103–28.
    6. Bonner MA, Wilson GF. Heart rate measures of flight test and evaluation. Inter J of Aviat Psych,2002;12(1): 63–77.
    7. Brookings JB, Wilson GF, Swain CR. Psychophysiological responses to changes in workload during simulated air traffic control. Bio Psych,1996; 42:361-77.
    8. Brown DL, Vistense HS, Wetzel PA, et al. Instrument scan strategies of f-117A pilots. Aviat Space Environ Med. 2002;73(10):1007-13.
    9. Cowan MJ, Burr RL, Narayanan SB, et al. Comparison of autoregression and fast Fourier transform techniques for power spectral analysis of heart period variability of persons with sudden cardiac arrest before and after therapy to increase heart period variability. J Electrocardiol, 1992;25(Suppl):234-9.
    10.Crandall CG, Engelke KA, Pawekzyk JA, et al. Power spectral and time based analysis of heart rate variability following 15 days head-down bed rest. Aviat Space Environ Med,1994;65(12):1185-90.
    11.Dahlstrom N, Nahlinder S. A Comparison of Two Recorders for Obtaining In-flight Heart Rate Data. Applied Psycho and Bio,2006;31(3):273-9.
    12.De Bruyne MC, Kors JA, Hoes AW, et al. Both decreased andincreasedheart rate variability on the standard 10-second electrocardiogram predict cardiac mortality in the elderly: the Rotterdam study. Am J Epidemiol,1999;150:1282–8.
    13.Dussault C, Jouanin JC, Guezennec CY. EEG and ECG changes during selected flight sequences. Aviat Space Environ Med,2004; 75(10):889-97.
    14.Dussault C, Jouanin JC, Philippe M, et al. EEG and ECG changes during simulator operation reflect mental workload and vigilance. Aviat Space Environ Med,2005;76(4):344-51
    15. Ewing DJ, Martin CN, Young RJ, et al. The value of cardiovascular autonomic function tests: 10 years' experience in diabetes. Diabetes Care, 1985;8:491-8.
    16. Fournier LR, Wilson GF, Swain CR. Electrophysiological, behavioral, and subjective indexes of workload when performing multiple tasks: manipulations of task difficulty and training. Inter J of Psycho,1999;31:129-45.
    17. Gaillard AWK, Wientjes CJE. Mental load and work stress as two types of energy mobilization. Work & Stress,1994;8:141-52.
    18. Gawron VJ, Schiflett SG., Miller JC. Measures of in-flight workload. In R.S. Jensen (Ed.). Aviat psych,Aldershot: Brooktield,1989: 240-87.
    19. Gopher D, Donchin E. Workload: An examination of the concept. In Handbook of Perception and Human Performance, K.R. Boff, L. Kaufman and J.P. Thomas (Eds.). New York: Wiley,1986:41-9.
    20. Hamilton RM, McKechnie PS, Macfarlane PW. Can cardiac vagal tone be estimated from the 10-second ECG? Int J Cardiol,2004; 95:109-15.
    21. Hankins TC, Wilson GF. A comparison of heart rate, eye activity, EEG and subjective measures of pilot mental workload during flight. Aviat Space Environ Med,1998; 69: 360–7.
    22. Hart SG & Staveland LE. Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In Human Mental Workload, P.A. Handcock & N. Meshkati (Eds.).North Holland: Elesvier Science Publshers,1988:139-83
    23. Hart SG, Hauser JR. Inflight application of three pilot workload measurement techniques. Aviat Space Environ Med,1987; 58:402-10.
    24. Hendy KC, Liao J, Milgram P. Combining time and intensity effects in assessing operator information-processing load. Human Factors,1997;39:30-47.
    25.Hill SG, Iavecchia HP, Byers JC, et al. Comparison of four subjective workload rating scales. Human Factors, 1992;34: 429-39.
    26. Itoh Y, Hayashi Y. The ergonomic evaluation of eye movement and mental workload in aircraft pilots. Ergonomics,1990; 33:719-33.
    27. Jorna PGAM. Heart rate and workload variations in actual and simulated flight. Ergonomics,1993; 36(9):1043-54.
    28. Burton RR, Jaggars JL. Influence of ethyl alcohol ingestion on a target task during sustained +GZ centrifugation. Aero Med,1974,45(3):290-6.
    29. Henry PH, Flueck JA, Sanford JF,et al. Assessment of performance in a link GAT-1 flight simulator at three alcohol dose level. Aero Med,1974,45(1): 33-44.
    30. Mohler SR. Continued caution urged for pilot use of alcohol. Human Factor Aviat Med,1998,45(2):1-4.
    31. Li G,Hooten EG, Baker SP,et al. Alcohol in Aviation-related fatalities: North Carolina, 1985 ~ 1994. Aviat Space Environ Med,1998,69(8):755-60.
    32. Mohler SR. Continued caution urged for pilot use of alcohol. Human Factor Aviat Med,1998,45(2):1-4.
    33. Soper JW, Chaturvedi AK, Canfield DV. Prevalence of Chlorpheniramine in Aviation accident pilot fatalaties,1991-1996. Aviat Space Environ Med,1999,70(4):416
    34. Kakimoto Y, Nakamura A, Tarui H, et al. Crew workload in JASDF C-1 transport flights: 1. change in heart rate and salivary cortisol. Aviat Space Environ Med,1988; 59(6):511-6.
    35.Kamath MV, Upton AR, Talalla A, et al. Neurocardiac responses to vagoafferent electrostimulation in humans. Pacing Clin Electrophysiol,1992;15:1581-7.
    36.Lamoureux T. The influence of aircraft proximity data on subjective mental workload of controllers in the air traffic control task. Human Factors,1999;42:1482-91.
    37. Lee YH, Liu BS. Inflight workload assessment: comparison of subjective and physiological measurements. Aviat Space Environ Med,2003; 74(10):1078-84.
    38. Leino T, Leppaluoto J, Huttunen P, et al. Neuroendocrine responses to real and simulated BA Hawk MK 51 flight. Aviat Space Environ Med,1995; 66(2):108-13.
    39. Lindqvist A, Keskinen E, Antila K, et al. Heart rate variability, cardiac mechanics, and subjectively evaluated stress during simulator flight. Aviat Space Environ Med,1983; 54(8):685-90.
    40. Loukopoulos LD, Dismukes RK, Barshi I. Concurrent task demands in the cockpit: challenges and vulnerabilities in routine flight operations. Proceedings of the 12th International Symposium on Aviation Psychology (Dayton, OH: The Wright State University),2003:737-42.
    41. Luximon AL, Goonetilleke RS. Simplified subjective workload assessment technique. Ergonomics,2001;44(3):229-43.
    42. Magnusson S. Similarities and differences in psychophysiological reactions between simulated and real air-to-ground missions. International Journal of Aviat Psychology,2002;12(1): 49–61.
    43. Malik M, Camm AJ. Heart rate variability and clinical cardiology. Br Heart J,1994;71:3-6.
    44. Miyake S. Multivariate workload evaluation combining physiological and subjective measures. Inter J of Psycho,2001;40: 233-8.
    45. Moray N. Subjective mental workload. Hum Factors,1982; 24:25-40.
    46.Moroney WF, Biers DW, Eggemeier FT. Some measurement and methodological considerations in the application of subjective worltload measurement techniques. The Inter J of Aviat Psych,1995;5(1):87-106.
    47. Morris CH, Leung YK. Pilot mental workload: how well do pilots reallyperform? Ergonomics,2006,49(15):1581-96.
    48. Newman D. Cockpit overload. Flight Safety,2000;4:34-5.
    49. Nygren TE. Psychometric properties of subjective workload measurement technique: implications for their use in the assessment of perceived menta1 workload. Human Factors,1991;33(1):17.
    50.O’Donnell RD & Eggemeier FT. Workload assessment methodology. In Boff KR, Kaufman L & Thomas JP (Eds.), Handbook of perception and human performance. New York: Wiley,1986: 42-9.
    51.O’Hare D. Cognitive Functions and Performance Shaping Factors in Aviation Accidents and Incidents. The Inter J of Aviat Psych,2006;16(2):145–56.
    52. Olson R, Austin J. Performance-based evaluation of flight student landings: implications for risk management. The Inter J of Aviat Psych,2006;16(1): 97-112.
    53.Opmeer CHJM, Krol JP. Towards an objective assessment of cockpit workload:1. Physiological variables during different flight phases. Aero Med. 1973; 44:527-32.
    54. Pagani M, Lombardi F, Guzzetti S, et al. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympathovagal interaction in man and conscious dog. Circ Res,1986;59:178-93.
    55. Penttila J, KuuselaT, Scheinin H. Analysis of rapid heart rate variability in the assessment of anticholinergic drug effects in humans. Eur J Clin Pharmacol,2005; 61: 559-65.
    55. Pinter EJ. Metabolic and endocrine changes in aerobatic flight. Aero Med,1974; 45(10):1159-63.
    56. Pomeranz M, Macaulay RJB, Caudill MA, et al. Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol, 1985;248:H151-3.
    57. Raby M, Wickens CD.Strategic workload management and decision biases in Aviation. The Inter J of Aviat Psych,1994;4(3):211-40.
    58. Reardon M, Malik M. Changes in heart rate variability with age.PACE,1996;19:1863-6.
    59. Reid GB, Nygren TE. The subjective workload assessment technique: scaling procedure for measuring mental workload In:Hancock PA,Meshkati N, eds. Human Mental WorkLoad. Amsterdam: Elsevier Science Publishers BV,1988: 185-218.
    60. Roman J. Cardiorespiratory functioning in flight. Aero Med,1963;34(4):322-37.
    61. Roman JA. Flight research program:2. Risk and responsibility as factors affecting heart rate in test pilots. Aero Med. 1965; 36:518-23.
    62. Roscoe AH. Assessing pilot workload. Why measure heart rate, HRV and respiration. Bio Psych,1992; 34:259-87.
    63. Roscoe AH. Heart rate as a psychophysiological measure for in-flight workload assessment. Ergonomics,1993; 36:1055-62
    63. Roscoe AH. Stress and workload in pilots. Aviat Space Environ Med,1978; 49(4):630-6.
    64.Roscoe AH. Use of pilot heart rate measurement in flight evaluation. Aviat Space Environ Med,1976; 47(1):86-90.
    65.Rouse WB, Edwards SL, Hammer JM. Modeling the dynamics of mental workload and human performance in complex systems. IEEE transactions on systems, man, and cybernetics,1993, 23:1662-71.
    66.Schumacher A. Linear and Nonlinear Approaches to the Analysis of R-R Interval Variability. Bio Res for Nursing,2004;5(3):211-21.
    67.Schutte PC, Trujillo AC. Flight crew task management in non-normal situations. Proceedings of the 40th annual meeting of Human Factors and Ergonomics Society (Santa Monica, CA: Human Factors and Ergonomics Society),1996:244-8.
    68.Sekiguchi C, Handa Y, Gotoh M, et al. Evaluation method of mental workload under flight conditions. Aviat Space Environ Med,1978;49:920-5.
    69.Skinner MJ, Simpson PA. Workload issues in military tactical airlift. The Inter J of Aviat Psych, 2002;12(1):79-93.
    70. Sohn SY, Jo YK. A study on the student pilot’s mental workload due to personality types of both instructor and student. Ergonomics, 2003;46(15):1566-77.
    71.Svensson E, Angelborg-Thanderz M, Sjoberg L, et al. Information complexity-mental workload and performance in combat aircraft. Ergonomics,1997;40(3):362-80.
    72.Task force of the european society of cardiology and the north american society of pacing and electrophysiology. Heart rate variability-standards of measurement, physiological interpretation, and clinical use. Circulation,1996;93:1043-65.
    73.Veltman JA, Gaillard, AWK. Physiological indices of workload in a simulated flight task. Bio Psych,1996;42:323-42.
    74.Vidulich MA, Tsang PS. Techniques of subjective workload assessment: a comparison of SWAT and the NASA-Bipolar methods. Ergonomics,1986; 29:1385-98.
    75.Wichens CD, Hollands JG. Assessing mental workload. In Engineering psychology and human performance. Third Edition. Upper Saddle River, NJ: Prentice-Hall,2000:459–71.
    76. Wickens CD. Pilot actions and tasks: selection, execution, and control. In Principles and Practice of Aviation Psychology, P. Tsang and M. Vidulich (Eds.). Mahwah, NJ: Erlbaum,2003:239–63.
    77.Wientjes CJE. Respiration in psychophysiology: measurement issues and applications. Bio Psych,1992;34(2-3):179–203.
    78.Wiggins M, Stevens C, Howard A, et al. Expert, intermediate and novice performance during simulated pre-flight decision-making. Aus J of Psych, 2002;54(3): 162-7.
    79.Wilson GF, Eggemeier FT. Psychophysiological assessment of workload in multi-task environments. In D.L. Damos (Ed.). Multiple-task performance (London: Taylor and Francis),1991: 229-60.
    80.Wilson GF, Fullenkamp P, Davis I. Evoked potential, cardiac, blink, and respiration measures of pilot workload in air-to-ground missions. Aviat Space Environ Med,1994; 65(2):100-5.
    81.Wilson GF. A comparison of three cardiac ambulatory recorders using flight data. Inter J of Aviat Psych,2002;12(1):111–9.
    82.Wilson GF. Air-to-ground training missions: a psychophysiological workload analysis. Ergonomics,1993; 36(9):1071-87.
    83.Wilson GF. An analysis of mental workload in pilots during flight using multiple psychophysiological measure. The Inter J of Aviat Psych, 2002;12(1):3–18.
    84.Wolf MM, Varigos GA, Hunt D, et al. Sinus arrhythmia in acute myocardial infarction. Med J Aust,1978;2:52-3.
    85.Young MS, Stanton NA. Mental workload: theory, measurement, and application.W Karwowski (Eds.), Inter encyclopedia of ergonomics and human factors. London: Taylor & Francis,2001;1:507-9.
    86. Ann M. Williamson, Anne-Marie Feyer, Richard P, et al. Mattick c, Developing measures of fatigue using an alcohol comparison to validate the effects of fatigue on performance.Accid Analy and Preven,2001;33:313–26.
    87.Hovis JK, Ramaswamy S. Color vision and fatigue: an incidental finding. Aviat Space Environ Med, 2007;78(11):1068-71.
    88. Gur S, Ron S, Heicklen-Klein A. Objective evaluation of visual fatigue in VDU workers. Occup Med (Lond). 1994;44(4):201-4.
    88.董明清, 马瑞山, 程宏伟. 双任务脑力负荷评定的多变量判别分析. 航天医学与医学工程,1997;10(5):358-62.
    89.董明清, 马瑞山. 多级评估量表在脑力负荷主观评定中的应用. 航天医学与医学工程,1998;11(3):202-4.
    90.郭继鸿,张萍主编. 动态心电图学.-北京:人民卫生出版社, 2003
    91.韩东旭, 周传岱, 刘月红. 状态相关脑波复杂度用于脑负荷评价的研究. 航天医学与医学工程,2001;14(2):102-6.
    92.纪桂英,欧文斌,肖晓光. 飞行员心率变异性的可重复性研究(摘要).中华航空航天医学杂志,2002;13(2):118.
    93.纪桂英,武留信,陈同欣,等.立位耐力不良飞行员的血液动力学指标与心率变异性的改变.中华航空航天医学杂志,1997;8(2):94-7.
    94.廖建桥, 王文弼. 时间长短对脑力负荷强度影响的研究. 人类工效学,1997;3(4):16-21.
    95.廖建桥. 脑力负荷及其测量. 系统工程学报,1995;10(3):119-23.
    96.廖旺才,胡广书,杨福生,等.精神负荷对心率变异性影响的非线性动力学分析.航天医学与医学工程,1996;9;l18-23.
    97.刘宝善, 廖建桥, 王玉红,等. 战斗机飞行员脑力负荷评价模型的研究. 中华航天医学杂志,2000;11(1):24-8.
    98.刘宝善. “康柏-哈柏”方法在脑力负荷评价中的应用. 人类工效学,1997;3(3):40-1.
    99.刘伟,袁修干,柳忠起,等. 飞行员扫视、操作绩效及工作负荷的实验研究. 航天医学与医学工程,2005; 18(4):293-6.
    100.柳忠起,袁修干,刘伟,等.飞行员注意力分配的定量测量方法.北京航空航天大学学报,2006;32(5):518-20.
    101.柳忠起,袁修干,刘涛,等. 航空工效中的脑力负荷测量技术. 人类工效学,2003;9(2):19-22.
    102.倪世宏, 史忠科, 谢川,等. 军用战机机动飞行动作识别知识库的建立. 计算机仿真,2005;22(4):23-6.
    103.任建华,熊一力,姚晓宙,等. 飞行员心率变异性与血浆儿茶酚胺含量的关系. 中华航空航天医学杂志,1997;8(1):30.
    104.时翠华, 江声选, 郭云辉. 冠心病Lorenz散点图与时域指标分析. 临床心电学杂志,2005;14(4):244-6.
    105.孙京霞,白延强. 心率变异性分析方法的研究进展. 航天医学与医学工程,2001;14:230-4.
    106.郭继鸿,张萍主编. 动态心电图学.-北京:人民卫生出版社, 2003.
    107.孙喜庆主编. 航空航天生物动力学.-西安:第四军医大学出版社, 2005.
    108.佟德学, 韩永林, 吴英萍,等. 飞行对尿儿茶酚胺的影响. 中华航空医学杂志,1992;3(4):202-3.
    109.王正伦, 杨磊, 丁嘉顺. 心率变异性在脑力负荷评价中的应用. 中华劳动卫生职业病杂志,2005;23(3):182-4.
    110.徐先慧, 葛盛秋, 张宏金. 跨时区飞行对飞行员心率变异性的影响. 中华航空航天医学杂志,2003;14(3):170-2.
    111.张宏金, 焦志刚, 朱亚芬,等. 心率变异性分析的新指标及其在航空医学中的应用. 中华航空航天医学杂志,1998;9(1):44-7.
    112.张智君, 朱祖详. 视觉追踪作业心理负荷的多变量评估研究. 心理科学,1995;18:337-40.
    113.张智君, 朱祖详.追踪作业中几种心理负荷评估指标敏感性的研究. 应用心理科学,1997;3(2):27-31.
    114.张智君,朱祖祥.次任务追踪负荷的敏感性.中华航空航天医学杂志, 1997;8(3):154-7.
    115.张智君. 生理测量技术在职业心理负荷评估中的应用. 中华劳动卫生职业病杂志,1995;13(3):160-2.
    116.张智君.主观评定方法在飞行员心理负荷评定中的作用.中华航空医学杂志,1994;5(1):57-9.
    117.郭北苑,方为宁.基于眼动仪的疲劳检测方法. 航天医学与医学工程,2004;17(4):256—60.
    118.姚永杰. 军机飞行员空中脑力负荷的生理心理评定.博士论文. 第四军医大学,2007.
    119. 康卫勇,袁修干,柳忠起,等. 瞳孔的变化与脑力负荷关系的试验分析. 航天医学与医学工程,2007;20(5):364—6.
    120. 曹雪亮. 脑力疲劳的注意特征及主观评定方法的实验研究. 博士论文. 第四军医大学,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700