用户名: 密码: 验证码:
脂肪干细胞增殖特性及向心肌细胞分化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前心肌梗死仍是发病率和死亡率较高的疾病之一。由于心肌细胞再生能力有限,坏死的心肌组织即使得到再灌注治疗也只能由无收缩功能的瘢痕组织替代,细胞移植治疗只能修复小面积心肌损伤,而组织工程技术为大面积心肌缺损提供了一个较好的治疗方法。组织工程包括种子细胞、支架材料和生物活性分子三大要素。
     干细胞由于具有自我更新和多向分化潜能将成为重要的组织工程种子细胞,但由于胚胎干细胞、骨髓干细胞以及诱导的多潜能干细胞存在着伦理道德或免疫排斥反应,甚至有致瘤的危险性,而脂肪干细胞由于来源简便充足,容易大量提取获得,移植后无免疫排斥反应,将成为组织工程比较有前景的种子细胞。因此我们用改进的方法分离培养脂肪干细胞,并对其增殖能力和多向分化潜能进行检测。通过胰酶和胶原酶联合分次消化和换液去除红细胞,我们改进了脂肪干细胞的分离方法,可从400~600mg脂肪组织收获约5×10~5个脂肪组织来源的干细胞,并且细胞可以重叠生长一个月以上,期间细胞表现出几个对数增殖期;所有增殖的细胞其干细胞相关表面标记(CD13,CD29,CD44,CD105和CD166)都呈阳性表达;多潜能细胞相关转录因子Nanog,Oct-4,Sox-2和Rex-1也呈强阳性表达;通过油红、甲苯胺兰、ALP、von Kossa及荧光染色证明脂肪组织来源的干细胞具有向多个胚层细胞分化的能力。此外,为获得更多具有强增殖能力的细胞,根据生长曲线,我们对细胞进行每14天传代而非常规的5天传代,发现所得到的细胞仍保持强的增殖能力、干细胞表型以及更强的多向分化潜能。
     制备适于种子细胞生长的支架材料也是构建工程化组织的关键。在各种生物材料中,天然生物材料胶原和壳聚糖都具有较好的生物相容性和生物可降解性,但胶原的机械强度差,而壳聚糖由于其晶体结构而较坚硬,因此结合胶原和壳聚糖来制备支架将可避免两种材料的缺点,从而制备出适于种子细胞生长的支架。我们采用冻干法制备不同比例的胶原—壳聚糖支架,研究支架的孔径、孔隙率、保水性、生物可降解性以及与脂肪干细胞的生物相容性。冻干后的支架内部呈海绵状多孔隙结构,其中以胶原/壳聚糖体积比为9:1的复合支架最为疏松,1:9的支架最致密。扫描电镜下支架的胶原含量越高,支架内的胶原丝越多,支架的孔与孔之间相互连通构成了通孔。交联前后支架的形态结构无明显改变。交联后体积比为9:1,7:3和5:5的复合支架孔径为50~200μm之间,可用于细胞的三维培养。体积比为5:5的复合支架的吸水性和含水量最高,7:3和3:7次之;多孔支架在水中未发生明显的溶胀现象;支架的孔隙率均在90%以上。交联后随着胶原含量的减少,降解速率减慢,交联后的复合支架降解速度较未交联慢。脂肪干细胞在支架上培养5d后扫描电镜和HE染色可见细胞在7:3的支架上爬行生长并融合成片,而5:5支架上黏附生长的细胞较少。
     组织工程构建过程中,提供适于种子细胞生长的微环境也是很重要的,体外细胞生长的环境要尽量模拟体内的三维动态微环境,而转瓶生物反应器可提供三维动态微环境,促进悬浮和贴壁细胞的增殖和分化。因此我们利用转瓶生物反应器提供三维动态微环境,对支架内的脂肪干细胞进行扩增,并检测扩增后干细胞的表型特性及多向分化潜能。脂肪干细胞在转瓶生物反应器中扩增14天后,与静态条件下相比,支架内的细胞具有更强的增殖活性,扩增倍数大约为26倍,而静态条件下细胞扩增倍数近20倍;所扩增的细胞能够保持原有的干细胞表型特性和多向分化潜能。
     局部微环境在干细胞的定向分化中起着决定性作用,而心肌样微环境可促进骨髓干细胞向心肌细胞分化,因此心肌样微环境也可能促进脂肪干细胞向心肌细胞分化。我们分别对脂肪干细胞和心肌细胞进行间接和直接共培养研究,并检测共培养后脂肪干细胞超微结构的变化以及心肌特异性蛋白和转录因子的表达。经2周共培养后,分化的脂肪干细胞呈现心肌样超微结构,并表达心肌特异性蛋白和转录因子,流式细胞仪分析结果显示,间接共培养2周后约20%的细胞表达心肌特异性蛋白,而直接共培养2周后约30~40%的细胞表达心肌特异性蛋白,并且直接共培养体系中分化的脂肪干细胞的心肌特异性蛋白和转录因子的表达率明显高于间接共培养体系中的表达率。
     在各种生长因子中,人胰岛素样生长因子(IGF-1)在心脏发生和发育过程中起着重要的作用,能促进早期心肌分化。因此我们利用IGF-1基因作为目的基因,整合到支架内并转染脂肪干细胞,应用心肌细胞培养基作为诱导培养基,转瓶生物反应器提供三维动态微环境,研究脂肪干细胞在胶原-壳聚糖支架内向心肌细胞分化的情况。结果显示动态微环境能促进质粒DNA的释放和转染;IGF-1可促进脂肪干细胞在胶原-壳聚糖支架内增殖以及向心肌细胞分化;动态微环境可加强IGF-1的促进脂肪干细胞增殖分化作用。
     本研究采用改进的方法可较容易的获得大量脂肪干细胞,并发现脂肪干细胞具有较强的增殖能力和多向分化潜能;所制备的胶原-壳聚糖多孔支架具有较好生物相容性和生物可降解性,适于脂肪干细胞的三维培养;所设计的支架—转瓶培养系统是一个简便有效的扩增脂肪干细胞的方法;心肌样微环境可促进脂肪干细胞向心肌细胞分化;将细胞生长的支架内的阳离子多聚物作为IGF-1基因转染的载体,这种转染方法较传统的方法更简易,效率更高;联合IGF-1基因、心肌细胞培养基和动态微环境多因素刺激,可促进脂肪干细胞在支架内向心肌细胞分化。此研究对体外构建工程化心肌样组织进行心肌再生有着重要的指导意义。
Myocardial infarction is one of the diseases with highest morbidity and mortality in the world.The end result of ischemic myocardial damage has long been considered irreversible as cardiomyocytes have been viewed as terminally differentiated and nonproliferating.Clinical studies are under way to investigate the safety and feasibility of cell implantation in patients, an alternative approach to injection or infusion of isolated cells into the heart is using the method of tissue engineering to design artificial cardiac muscle constructs in vitro for later implantation in vivo.Cells,scaffolds and biological factors are three main elements in tissue engineering.
     Adipose-tissue derived stem cell(ADSC) is a promising cell for tissue engineering because it can be easily and considerably obtained,and it also has the renewable and multi-potential abilities.So we isolated ADSC with improved method,and examined the proliferation and differentiation abilities of ADSC.With improved method,about 5×10~5 stem cells could be obtained from 400~600mg adipose tissue.And ADSCs can be continuously cultured in vitro for up to 1 month without passage and they have several logarithmic growth phases during the culture period.Also the flow cytometry analysis showed that ADSCs expressed high level of stem cell-related antigens(CD13,CD29,CD44,CD105 and CD166),while didn't express hematopoiesis-ralated antigens CD34 and CD45,and human leukocyte antigen HLA-DR was also negative.Meanwhile stem cell related transcription factors,Nanog,Oct-4,Sox-2 and Rex-1,were positively expressed in ADSCs.The expression of alkaline phosphatase was detected in the early osteogenic induction and the calcified nodules were observed by von Kossa staining.Intracellular lipid droplets could be observed by Oil Red staining.And differentiated cardiomyocytes were observed by connecxin43 fluorescent staining.In order to obtain more stem cells,we can subculture ADSCs every 14 days in stead of normal 5 days. ADSCs still keep strong proliferation ability,maintain their phenotypes,and have stronger multi-differentiation potential after 25 passages.Our future approach with ADSC is combinational therapies with genes.
     Collagen and chitosan all have good biocompatibility and biodegradability,and can be used as scaffold and gene carrier.However,collagen has low mechanical strength,and chitosan is a rigid crystalline structure.If we combine collagen and chitosan to fabricate polymer scaffold, the disadvantages of the two materials should be avoided.We mixed 2%chitosan with 3.55mg/ml rat tail typeⅠcollagen with different volume ratio:9:1,7:3,5:5,3:7 and 1:9 (collagen:chitosan),the mixtures were then freeze-dried and cross-linked with
引文
[1] Hare, J. & Chaparro, S. Cardiac regeneration and stem cell therapy[J]. Current Opinion In Organ Transplantation, 2008, 13(5): 536-542.
    
    [2] Lapar, D., Kron, I. & Yang, Z. Stem cell therapy for ischemic heart disease: where are we[J]? Current Opinion In Organ Transplantation, 2009, 14(1): 79-84.
    [3] Jawad, H. et al. Myocardial tissue engineering: a review. J Tissue Eng Regen Med,2007, 1(5): 327-342.
    [4] Schaffler, A. & Buchler, C. Concise review: adipose tissue-derived stromal cells—basic and clinical implications for novel cell-based therapies[J]. Stem Cells,2007, 25(4): 818-827.
    [5] Hong, L., Peptan, I. A., Colpan, A., et al. Adipose tissue engineering by human adipose-derived stromal cells[J]. Cells Tissues. Organs, 2006, 183(3): 133-140.
    
    [6] Bozkurt, A., Brook, G. A., Moellers, S. et al. In vitro assessment of axonal growth using dorsal root ganglia explants in a novel three-dimensional collagen matrix[J].Tissue Eng, 2007, 13(12): 2971-2979.
    [7] Song, E., Kim, S. Y., Chun, T., et al. Collagen scaffolds derived from a marine source and their biocompatibility[J]. Biomaterials, 2006, 27(15): 2951-2961.
    [8] Dunn, C. A. BMP gene delivery for alveolar bone engineering at dental implant defects[J]. Molecular Therapy, 2005, 11(2): 294.
    [9] Yan, J., Li, X., Liu, L. et al. Potential use of collagen-chitosan-hyaluronan tri-copolymer scaffold for cartilage tissue engineering[J]. Artif. Cells Blood Substit. Immobil.Biotechnol. , 2006, 34(1): 27-39.
    [10] Zhang, Y. F., Cheng, X. R. ; Wang, J. W. et al. Novel chitosan/collagen scaffold containing transforming growth factor-beta 1 DNA for periodontal tissue engineering[J]. Biochemical and Biophysical Research Communications, 2006, 344(1):362-369.
    
    [11] Chen, R. N., Wang, G. M., Chen, C. H., et al. Development of N,O-(carboxymethyl)chitosan/collagen matrixes as a wound dressing[J].Biomacromolecules, 2006, 7(4): 1058-1064.
    
    [12] Matsumoto, G., Kushibiki, T. ; Kinoshita, Y. et al. Cationized gelatin delivery of a plasmid DNA expressing small interference RNA for VEGF inhibits murine squamous cell carcinoma[J]. Cancer Sci, 2006, 97(4): 313-321.
    
    [13] Lee, M. Water-soluble and low molecular weight chitosan-based plasmid DNA delivery[J].Pharmaceutical Research, 2001, 18(4): 427.
    [14] Hosseinkhani, H., Inatsugu, Y., Hiraoka, Y. et al. Impregnation of plasmid DNA into three-dimensional scaffolds and medium perfusion enhance in vitro DNA expression of mesenchymal stem cells[J]. Tissue Engineering, 2005, 11(9-10): 1459-1475.
    [15] Hosseinkhani, H., Yamamoto, M., Inatsugu, Y. et al. Enhanced ectopic bone formation using a combination of plasmid DNA impregnation into 3-D scaffold and bioreactor perfusion culture[J]. Biomaterials, 2006, 27(8): 1387-1398.
    [16] Laustsen, P. G., Russell, S. J., Cui, L. et al. Essential role of insulin and insulin-like growth factor 1 receptor signaling in cardiac development and function[J].Mol Cell Biol, 2007, 27(5): 1649-1664.
    [17] Kofidis, T., de Bruin, J. L., Yamane, T. et al. Insulin-like growth factor promotes engraftment, differentiation, and functional improvement after transfer of embryonic stem cells for myocardial restoration[J]. Stem Cells, 2004, 22(7): 1239-1245.
    [18] Radisic, M. , Park, H., Martens, T. P., et al. Pre-treatment of synthetic elastomeric scaffolds by cardiac fibroblasts improves engineered heart tissue[J]. Journal of Biomedical Materials Research Part A, 2008, 86(3): 12.
    [19] Liu, H. & Roy, K. Biomimetic three-dimensional cultures significantly increase hematopoietic differentiation efficacy of embryonic stem cells[J]. Tissue Engineering, 2005, 11(1-2): 319-330.
    [20] Gimble, J. M. & Guilak, F. Adipose-derived adult stem cells: isolation,characterization, and differentiation potential[J]. Cytotherapy , 2003, 5(5):362-369.
    [21] Boquest, A. C. , Shahdadfar, A., Brinchmann, J. E. , et al. Isolation of stromal stem cells from human adipose tissue[J]. Methods Mol Biol, 2006, 325, 35-46.
    [22] Gwak, S. J., Bhang, S. H. , Kim, I. K. et al. The effect of cyclic strain on embryonic stem cell-derived cardiomyocytes[J]. Biomaterials, 2008, 29(7): 844-856.
    [23] Rosellini, E., Cristallini, C. , Barbani, N., et al. Preparation and characterization of alginate/gelatin blend films for cardiac tissue engineering[J]. J Biomed Mater Res A, 2008.
    [24] Rong, S. L. , Lu, Y. X., Liao, Y. H. et al. Effects of recombinant retroviral vector mediated human insulin like growth factor-1 gene transfection on skeletal muscle growth in rat[J]. Chin Med J (Engl), 2006, 119(23): 1991-1998.
    [25] Bian, J., Popovic, Z. B., Benejam, C. et al. Effect of cell-based intercellular delivery of transcription factor GATA4 on ischemic cardiomyopathy[J]. Circ Res, 2007, 100(11):1626-1633.
    [26] Haider, H. K., Elmadbouh, I., Jean-Baptiste, M., et al. Nonviral vector gene modification of stem cells for myocardial repair[J]. Mol Med, 2008, 14(1-2): 79-86.
    [27] Sekine, H., Shimizu, T., Hobo, K. et al. Endothelial cell coculture within tissue-engineered cardiomyocyte sheets enhances neovascularization and improves cardiac function of ischemic hearts[J]. Circulation, 2008, 118(14): S145-S152.
    [28] Fujita, H., Shimizu, K. &Nagamori, E. Application of a cell sheet-polymer film complex with temperature sensitivity for increased mechanical strength and cell alignment capability[J]. Biotechnol Bioeng, 2009.
    
    [29] Li, S. C., Wang, L. ; Jiang, H. et al. Stem cell engineering for treatment of heart diseases: Potentials and challenges[J]. Cell Biol Int, 2009, 33(3): 255-267.
    [30] Capogrossi, M. C. Cardiac stem cells fail with aging: a new mechanism for the age-dependent decline in cardiac function[J]. Circ Res, 2004, 94(4): 411-413.
    [31] Oettgen, P., Boyle, A. J., Schulman, S. P., et al. Cardiac Stem Cell Therapy. Need for Optimization of Efficacy and Safety Monitoring[J]. Circulation, 2006, 114(4):353-358.
    [32] Dezawa, M. Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation[J]. Journal of Clinical Investigation,2004, 113(12): 1701.
    [33] Schwartz, R. E. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells[J]. Journal of Clinical Investigation, 2002, 109(10):1291.
    [34] Shi, Q. Evidence for circulating bone marrow-derived endothelial cells[J]. Blood,1998, 92(2): 362.
    [35] Bjornson, C. R. R. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo[J]. Science, 1999, 283(5401): 534.
    [36] Maitra, A., Arking, D. E., Shivapurkar, N. et al. Genomic alterations in cultured human embryonic stem cells[J]. Nat Genet, 2005, 37(10): 1099-1103.
    [37] GEOGHEGAN, E. & BYRNES, L. Mouse induced pluripotent stem cells[J]. Int. J. Dev. Biol.,2008, 52: 8.
    [38] Zhang, J., Wilson, G F., Soerens, A G. et al. Functional Cardiomyocytes Derived From Human Induced Pluripotent Stem Cells[J]. Circ Res, 2009, 104(4): 12.
    [39] Rodriguez, A. M., Elabd, C., Amri, E. Z., et al. The human adipose tissue is a source of multipotent stem cells[J]. Biochimie, 2005, 87(1): 125-128.
    [40] Lee, R. H., Kim, B., Choi, I. et al. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue[J]. Cellular Physiology and Biochemistry, 2004, 14(4-6): 311-324.
    [41] Zuk, P. A., Zhu, M., Mizuno, H. et al. Multilineage cells from human adipose tissue:Implications for cell-based therapies[J]. Tissue Engineering, 2001, 7(2): 211-228.
    [42] Follmar, K. E., Decroos, F. C., Prichard, H. L. et al. Effects of glutamine, glucose,and oxygen concentration on the metabolism and proliferation of rabbit adipose-derived stem cells[J]. Tissue Engineering, 2006, 12(12): 3525-3533.
    [43] Guilak, F., Lott, K. E. ; Awad, H. A. et al. Clonal analysis of the differentiation potential of human adipose-derived adult stem cells[J]. Journal of Cellular Physiology, 2006, 206(1): 229-237.
    [44] Kern, S., Eichler, H., Stoeve, J., et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue[J]. Stem Cells, 2006,24(5): 1294-1301.
    [45] De Ugarte, D. A. Comparison of multi-lineage cells from human adipose tissue and bone marrow[J]. Cells Tissues Organs, 2003, 174(3): 101.
    [46] Nakagami, H., Morishita, R., Maeda, K. et al. Adipose tissue-derived stromal cells as a novel option for regenerative cell therapy[J]. Journal of Atherosclerosis and Thrombosis, 2006, 13(2): 77-81.
    [47] Planat-Benard, V. Plasticity of human adipose lineage cells toward endothelial cells physiological and therapeutic perspectives[J]. Circulation, 2004, 109(5): 656.
    [48] Strem, B. M., Hicok, K. C., Zhu, M. et al. Multipotential differentiation of adipose tissue-derived stem cells[J]. Keio J Med, 2005, 54(3): 132-141.
    [49] Ashjian, P. H. In Vitro Differentiation of Human Processed Lipoaspirate Cells into Early Neural Progenitors[J]. Plastic and Reconstructive Surgery, 2003, 111(6): 1922.
    [50] Rangappa, S., Entwistle, J. W. C., Wechsler, A. S., et al. Cardiomyocyte-mediated contact programs human mesenchymal stem cells to express cardiogenic phenotype[J].Journal of Thoracic and Cardiovascular Surgery, 2003, 126(1): 124-132.
    [51] Rangappa, S. , Fen, C., Lee, E. H., et al. Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes[J]. Annals of Thoracic Surgery, 2003, 75(3): 775-779.
    [52] Zhu, Y., Liu, T., Song, K. et al. Adipose-derived stem cell: a better stem cell than BMSC[J]. Cell Biochemistry and Function, 2008, 26(6): 664-675.
    [53] Zhu, Y., Liu, T., Song, K. et al. ADSCs differentiated into cardiomyocytes in cardiac microenvironment[J]. Molecular and Cellular Biochemistry, 2009, 324(1-2): 117-129.
    [54] McKay, R. Stem cell-hype and hope[J]. Nature, 2000, 406(6794): 361-364.
    [55] Kim, Y. Direct comparison of human mesenchymal stem cells derived from adipose tissues and bone marrow in mediating neovascularization in response to vascular ischemia[J].Cellular Physiology and Biochemistry, 2007, 20(6): 867-872.
    [56] Suzuki, K. Highly efficient transient gene expression and gene targeting in primate embryonic stem cells with helper-dependent adenoviral vectors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(37):13781-13786.
    [57] Soares, M. A. Optimizing adenoviral transfection of mesenchymal stem cells is necessary for accelerated osteogenesis and angiogenesis[J]. Journal of the American College of Surgeons, 2008, 207(3S): 69.
    [58] Morizono, K. Multilineage cells from adipose tissue as gene delivery vehicles[J]. Human Gene Therapy, 2003, 14(1): 59.
    [59] Jabbarzadeh, E. Induction of angiogenesis in tissue-engineered scaffolds designed for bone repair: A combined gene therapy -cell transplantation approach[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(32):11099-11104.
    [60] Miranville, A. Improvement of postnatal neovascularization by human adipose tissue-derived stem cells[J]. Circulation, 2004, 110(3): 349-355.
    [61] Zhu, X. Y., Zhang, X. Z., Xu, L. et al. Transplantation of adipose-derived stem cells overexpressing hHGF into cardiac tissue[J]. Biochemical and Biophysical Research Communications, 2009, 379(4): 1084-1090.
    [62] Scherberich, A., Galli, R., Jaquiery, C., Farhadi, J. & Martin, I. Three-dimensional perfusion culture of human adipose tissue-derived endothelial and osteoblastic progenitors generates osteogenic constructs with intrinsic vascularization capacity[J]. Stem Cells, 2007, 25(7): 1823-1829.
    [63] Nakagami, H. Adipose tissue-derived stromal cells as a novel option for regenerative cell therapy[J]. Journal of Atherosclerosis and Thrombosis, 2006, 13(2): 77-81.
    [64] Zaragosi, L. E. Autocrine fibroblast growth factor 2 signaling is critical for self-renewal of human multipotent adipose-derived stem cells[J]. Stem Cells, 2006,24(11): 2412-2419.
    [65] Wang, M. Human progenitor cells from bone marrow or adipose tissue produce VEGF, HGF and IGF-1 in response to TNF by a p38 mitogen acivated protein kinase dependent mechanism[J]. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 2006, 1-21.
    [66] Nakagami, H. Novel autologous cell therapy in ischemic limb disease through growth factor secretion by cultured adipose tissue-derived stromal cells[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25(12): 2542-2547.
    [67] Kinnaird, T. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms[J]. Circulation, 2004, 109(12): 1543-1549.
    [68] Puissant, B. Immunomodulatory effect of human adipose tissue-derived adult stem cells:comparison with bone marrow mesenchymal stem cells[J]. British Journal of Haematology,2005, 129(1): 118-129.
    
    [69] Yanez, R. Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease[J]. Stem Cells,2006, 24(11): 2582-2591.
    
    [70] Planat-Benard, V., Menard, C. , Andre, M. et al. Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells[J]. Circulation Research, 2004,94(2): 223-229.
    [71] Gaustad, K. G., Boquest, A. C., Anderson, B. E., et al. Differentiation of human adipose tissue stem cells using extracts of rat cardiomyocytes[J]. Biochemical and Biophysical Research Communications, 2004, 314(2): 420-427.
    [72] Zhang, D. Z., Gai, L. Y. , Liu, H. W. et al. Transplantation of autologous adipose-derived stem cells ameliorates cardiac function in rabbits with myocardial infarction[J]. Chinese Medical Journal, 2007, 120(4): 300-307.
    [73] Lin, L. I. N. Rat adipose-derived stromal cells expressing BMP4 induce ectopic bone formation in vitro and in vivo [J]. Acta pharmacologica Sinica (monthly), 2006, 27(12):1608.
    [74] Muller-Borer, B. J. , Cascio, W. E., Esch, G. L. et al. Acquired cell-to-cell coupling and "cardiac-like" calcium oscillations in adult stem cells in a cardiomyocyte microenvironment[J]. Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Conference, 2006, 1: 576-579.
    [75] Reinlib, L. Cell transplantation as future therapy for cardiovascular disease? A workshop of the National Heart, Lung, and Blood Institute[J]. Circulation, 2000,101(18): e182-e187.
    [76] Wahl, D. A. Collagen-hydroxyapatite composites for hard tissue repair[J]. European Cells & Materials, 2006, 11: 43.
    [77] Sun, X. D. Non-viral endostatin plasmid transfection of mesenchymal stem cells via collagen scaffolds[J]. Biomaterials, 2008, 30(6): 1222-1231.
    [78] Kofidis, T. In vitro engineering of heart muscle: artificial myocardial tissue[J].Journal of Thoracic and Cardiovascular Surgery, 2002, 124: 63.
    [79] Ma, Z. Cartilage tissue engineering PLLA scaffold with surface immobilized collagen and basic fibroblast growth factor[J]. Biomaterials, 2005, 26(11): 1253-1259.
    [80] Park, S. N., Park, J. C., Kim, H. O., et al. Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylatninopropyl)carbodiiraide cross-1inking[J]. Biomaterials, 2002,23(4): 1205-1212.
    [81] Buttafoco, L. Electrospinning of collagen and elastin for tissue engineering applications[J]. Biomaterials, 2006, 27(5): 724-734.
    [82] Cornwell, K. G. Crosslinking of discrete self-assembled collagen threads: Effects on mechanical strength and cell-matrix interactions Journal of biomedical materials research[J]. Part A., 2007, 80(2): 362-371.
    [83] Tang, S. S., Mou, S. S., Mao, X. X., et al. Agar/collagen membrane as skin dressing for wounds[J]. Biomedical Materials, 2008, 3(4): 44108.
    [84] Dai, N. T. Composite cell support membranes based on collagen and polycaprolactone for tissue engineering of skin[J]. Biomaterials, 2004, 25(18): 4263-4271.
    [85] Jungreuthmayer, C. Deformation simulation of cells seeded on a collagen-GAG scaffold in a flow perfusion bioreactor using a sequential 3D CFD-elastostatics model[J].Medical Engineering & Physics, 2009, 31(4): 420-431.
    [86] Uematsu, K. Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold[J]. Biomaterials, 2005,26(20): 4273-4279.
    [87] Kutschka, I. Collagen matrices enhance survival of transplanted cardiomyoblasts and contribute to functional improvement of ischemic rat hearts[J]. Circulation, 2006,114(l_suppl).
    [88] Naito, H., Melnychenko, I., Didie, M. et al. Optimizing engineered heart tissue for therapeutic applications as surrogate heart muscle[J]. Circulation, 2006, 114:172-178.
    [89] Zimmermann, W. H. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts[J]. Nature Medicine, 2006, 12(4): 452-458.
    [90] Kim, I. Y., Seo, S. J., Moon, H. S. et al. Chitosan and its derivatives for tissue engineering applications[J]. Biotechnol Adv, 2008, 26(1): 1-21.
    [91] Abarrategi, A., Moreno-Vicente, C., Ramos, V. et al. Improvement of porous beta-TCP scaffolds with rhBMP-2 chitosan carrier film for bone tissue application[J]. Tissue Eng Part A, 2008, 14(8): 1305-1319.
    [92] Lin, L. C., Chang, S. J., Kuo, S. M., Chen, S. F. & Kuo, C. H. Evaluation of chitosan/beta-tricalcium phosphate microspheres as a constituent to PMMA cement[J].J Mater Sci Mater Med, 2005, 16(6): 567-574.
    [93] Panos, I., Acosta, N. & Heras, A. New drug delivery systems based on chitosan[J]. Curr Drug Discov Technol, 2008, 5(4): 333-341.
    [94] Suri, S. S. , Fenniri, H. & Singh, B. Nanotechnology-based drug delivery systems[J].J Occup Med Toxicol, 2007, 2(1): 16-25.
    [95] Bowman, K. & Leong, K. W. Chitosan nanoparticles for oral drug and gene delivery[J].Int J Nanomedicine, 2006, 1(2): 117-128.
    [96] Kushibiki, T., Tomoshige, R., Iwanaga, K., et al. In vitro transfection of plasmid DNA by cationized gelatin prepared from different amine compounds[J]. J Biomater Sci Polym Ed, 2006, 17(6): 645-658.
    [97] Martin, Y. &Vermette, P. Bioreactors for tissue mass culture: design, characterization,and recent advances[J]. Biomaterials, 2005, 26(35): 7481-7503.
    
    [98] Carlo, D. D. Dynamic single cell culture array[J]. Lab on a Chip, 2006, 6(11): 1445-1460.
    [99] Xie, Y., Hardouin, P. , Zhu, Z. et al. Three-dimensional flow perfusion culture system for stem cell proliferation inside the critical-size beta-tricalcium phosphate scaffold[J]. Tissue Eng, 2006, 12(12): 3535-3543.
    [100]Freed, L. E. Advanced tools for tissue engineering: scaffolds, bioreactors, and signaling[J]. Tissue Engineering, 2006, 12(12): 3285-3294.
    [101]Alvarez-Barreto, J. F. Flow perfusion improves seeding of tissue engineering scaffolds with different architectures[J]. Annals of Biomedical Engineering, 2007, 35(3):429-438.
    [102]Hu, Y. C. Bioreactors for tissue engineering[J]. Biotechnology Letters, 2006, 28(18):1415-1421.
    [103]Chen, X., Xu, H., Wan, C., et al. Bioreactor expansion of human adult bone marrow-derived mesenchymal stem cells[J]. Stem Cells, 2006, 24(9): 2052-2059.
    [104]0hyabu, Y. , Kida, N. , Kojima, H. et al. Cartilaginous tissue formation from bone marrow cells using rotating wall vessel (RWV) bioreactor[J]. Biotechnology and Bioengineering, 2006, 95(5): 1003-1008.
    [105]King, J. A. & Miller, W. M. Bioreactor development for stem cell expansion and controlled differentiation[J]. Current Opinion in Chemical Biology, 2007, 11(4):394-398.
    [106]Radisic, M. Cardiac tissue engineering using perfusion bioreactor systems[J]. Nature Protocols, 2008, 3(4): 719-734.
    [107]Wu, K. H., Mo, X. M. & Liu, Y. L. Cell sheet engineering for the injured heart[J].Med Hypotheses, 2008, 71(5): 700-702.
    [108]Shapira-Schweitzer, K. , Habib, M., Gepstein, L. & Seliktar, D. A photopolymerizable hydrogel for 3-D culture of human embryonic stem cell-derived cardiomyocytes and rat neonatal cardiac cells[J]. J Mol Cell Cardiol, 2009, 46(2): 213-224.
    [109]Zimmermann, W. H. Remuscularizing Failing Hearts with Tissue Engineered Myocardium[J].Antioxid Redox Signal, 2009.
    [110]Theo, K., Knut, M.-S. &Axel, H. Myocardial Restoration and Tissue Engineering of Heart Structures[J]. Tissue Engineering, 2007, 140: 18-29.
    [111]Chen, H. C. Bioreactors for tissue engineering[J]. Biotechnology letters, 2006, 28(18):1415-1421.
    [112]Fernandes, A. M., Fernandes, T. G., Diogo, M. M. et al. Mouse embryonic stem cell expansion in a microcarrier-based stirred culture system[J]. Journal of Biotechnology, 2007, 132(2): 227-236.
    [113]Frauenschuh, S., Reichmann, E., Ibold, Y. et al. A microcarrier-based cultivation system for expansion of primary mesenchymal stem cells[J]. Biotechnology Progress,2007, 23(1): 187-193.
    [114]Stevens, K. R., Pabon, L., Muskheli, V., et al. Scaffold-Free Human Cardiac Tissue Patch Created from Embryonic Stem Cells[J]. Tissue Eng Part A, 2008, 15(6): 1211-1223.
    [115]Li, Z., Gu, T. X. & Zhang, Y. H. Hepatocyte growth factor combined with insulin like growth factor-1 improves expression of GATA-4 in mesenchymal stem cells cocultured with cardiomyocytes[J]. Chin Med J (Engl) 2008, 121(4): 336-340.
    [116]A1-Rubeai, M. Apoptosis in cell culture[J]. Current Opinion in Biotechnology, 1998,9(2): 152-156.
    [117]Lai, Z. W. Differential effects of diethylstilbestrol and 2, 3, 7,8-tetrachlorodibenzo-p-dioxin on thymocyte differentiation, proliferation, and apoptosis in bcl-2 transgenic mouse fetal thymus organ culture[J]. Toxicology and Applied Pharmacology, 2000, 168(1): 15-24.
    [118]Lee, M. S. &Makkar, R. R. Stem-cell transplantation in myocardial infarction: A status report[J]. Annals of Internal Medicine, 2004, 140(9): 729-737.
    [119]Kada, K., Yasui, K., Naruse, K. et al. Orientation change of cardiocytes induced by cyclic stretch stimulation: time dependency and involvement of protein kinases[J].J Mol Cell Cardiol, 1999, 31(1): 247-259.
    [120]Ruwhof, C., Van Wamel, A. E., Egas, J. M., et al. Cyclic stretch induces the release of growth promoting factors from cultured neonatal cardiomyocytes and cardiac fibroblasts[J]. Mol Cell Biochem, 2000, 208(1-2): 89-98.
    [121]Akhyari, P., Fedak, P. W., Weisel, R. D. et al. Mechanical stretch regimen enhances the formation of bioengineered autologous cardiac muscle grafts[J]. Circulation,2002, 106(12 Suppl 1): 1137-142.
    [122]Berry, C. C. Cell-generated forces influence the viability, metabolism and mechanical properties of fibroblast-seeded collagen gel constructs[J]. Journal of Tissue Engineering and Regenerative Medicine, 2009, 3(1): 43-53.
    [123]Kim, B. S., Nikolovski, J. , Bonadio, J. , et al. Cyclic mechanical strain regulates the development of engineered smooth muscle tissue[J]. Nat Biotechnol, 1999, 17(10) :979-983.
    [124]Yang, X., Vezeridis, P. S. , Nicholas, B. et al. Differential expression of type X collagen in a mechanically active 3~D chondrocyte culture system: a quantitative study[J]. J Orthop Surg Res, 2006, 1: 15-28.
    [125]Dawn, B. & Bolli, R. Adult bone marrow-derived cells: regenerative potential, plasticity, and tissue commitment[J]. Basic Res Cardiol, 2005, 100(6): 494-503.
    [126]Ryan, J. M., Barry, F. P., Murphy, J. M. & Mahon, B. P. Mesenchymal stem cells avoid allogeneic rejection[J]. J.Inflamm. (Lond), 2005, 2: 8-20.
    [127]Roche, R., Hoareau, L., Mounet, F. & Festy, F. Adult stem cells for cardiovascular diseases: the adipose tissue potential[J]. Expert Opinion on Biological Therapy,2007, 7(6): 791-798.
    [128]Lei, L., Liao, W. M. , Sheng, P. Y. et al. Biological character of human adipose-derived adult stem cells and influence of donor age on cell replication in culture[J]. Science in China Series OLife Sciences, 2007, 50(3): 320-328.
    [129]Malladi, P. Effect of reduced oxygen tension on chondrogenesis and osteogenesis in adipose-derived mesenchymal cells[J]. American Journal of Physiology. Cell Physiology, 2006, 290(4): 1139-1146.
    [130]Wang, D. W. Influence of oxygen on the proliferation and metabolism of adipose derived adult stem cells[J]. Journal of Cellular Physiology, 2005, 204: 184-191.
    [131]Aust, L. Yield of human adipose-derived adult stem cells from liposuction aspirates[J].Cytotherapy, 2004, 6(1): 7-22.
    [132]Guo, Y. , Mantel, C., Hromas, R. A., et al. Oct-4 is critical for survival/antiapoptosis of murine embryonic stem cells subjected to stress: Effects associated with Stat3/Survivin[J]. Stem Cells, 2008, 26(1): 30-34.
    [133]Fraser, J. K., Schreiber, R. E. , Zuk, P. A., et al. Adult stem cell therapy for the heart[J]. International Journal of Biochemistry & Cell Biology, 2004, 36(4) : 658-666.
    [134]Dennis, J. E. The STRO-1+ marrow cell population is multipotential[J]. Cells Tissues Organs, 2002, 170: 73-85.
    [135]Roubelakis, M. G. , Pappa, K. I., Bitsika, V. et al. Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid:comparison to bone marrow mesenchymal stem cells[J]. Stem Cells Dev, 2007, 16(6):931-952.
    [136]Li, X. Comparative analysis of development-related gene expression in mouse preimplantation embryos with different developmental potential Xiangping Li and Yoko Kato contributed equally to this work[J]. Molecular Reproduction and Development,2005, 72(2): 152-160.
    
    [137]Liu, Y. W., Gan, L. H., Carlsson, D. J. et al. A simple, cross-linked collagen tissue substitute for corneal implantation[J]. Investigative Ophthalmology & Visual Science,2006, 47(5): 1869-1875.
    
    [138]Chen, D. C., Lai, Y. L., Lee, S. Y., et al. Osteoblastic response to collagen scaffolds varied in freezing temperature and glutaraldehyde crosslinking[J]. Journal of Biomedical Materials Research Part A, 2007, 80A(2): 399-409.
    [139]Hao, W., Hu, Y. Y., Wei, Y. Y. et al. Collagen I Gel Can Facilitate Homogenous Bone Formation of Adipose-Derived Stem Cells in PLGA-beta-TCP Scaffold[J]. Cells Tissues. Organs, 2008, 187(2): 89-101.
    [140]Ravi Kumar, M. N. V. A review of chitin and chitosan applications[J]. Reactive & Functional Polymers, 2000, 46(1): 1-27.
    [141]Ma, L., Gao, C. Y., Mao, Z. W. et al. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering[J]. Biomaterials, 2003, 24(26): 4833-4841.
    [142]Wang, X. H. Crosslinked collagen/chitosan matrix for artificial livers[J]. Biomaterials, 2003, 24(19): 3213-3220.
    [143]Powell, H. M. & Boyce, S. T. EDC cross-linking improves skin substitute strength and stability[J]. Biomaterials, 2006, 27, 5821-5.827.
    [144]Yunoki, S., Nagai, N., Suzuki, T., et al. Novel biomaterial from reinforced salmon collagen gel prepared by fibril formation and cross-linking[J]. Journal of Bioscience and Bioengineering, 2004, 98(1): 40-47.
    [145]Mygind, T., Stiehler, M., Baatrup, A. et al. Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds[J]. Biomaterials, 2007, 28(6):1036-1047.
    [146]Rubin, J. P., Bennett, J. M., Doctor, J. S., et al. Collagenous microbeads as a scaffold for tissue engineering with adipose-derived stem cells[J]. Plastic and Reconstructive Surgery, 2007, 120(2): 414-424.
    [147]Vance, J. Mechanical stimulation of MC3T3 osteoblastic cells in a bone tissue-engineering bioreactor enhances prostaglandin E2 release[J]. Tissue Engineering, 2005, 11(11-12): 1832-1841.
    [148]Singh, A. K., Patel, J., Litbarg, N. O. et al. Stromal cells cultured from omentum express pluripotent markers, produce high amounts of VEGF, and engraft to injured sites[J]. Cell Tissue Res, 2008, 332(1): 81-88.
    [149]Engelmann, M. G. & Franz, W. M. Stem cell therapy after myocardial infarction: Ready for clinical application? [J] Current Opinion in Molecular Therapeutics, 2006, 8(5):396-414.
    [150]Van Dijk, A., Niessen, H. W. M., Doulabi, B. Z. , et al. Differentiation of human adipose-derived stem cells towards cardiomyocytes is facilitated by laminin[J]. Cell and Tissue Research, 2008, 334(3): 457-467.
    [151]Strem, B. M. , Zhu, M., Alfonso, Z. et al. Expression of cardiomyocytic markers on adipose tissue-derived cells in a murine model of acute myocardial injury[J].Cytotherapy, 2005, 7(3): 282-291.
    [152]Belema Bedada, F., Technau, A., Ebelt, H., et al. Activation of myogenic differentiation pathways in adult bone marrow-derived stem cells[J]. Molecular and cellular biology, 2005, 25(21): 9509-9519.
    [153]Schuleri, K. H. , Boyle, A. J. & Hare, J. M. Mesenchymal stem cells for cardiac regenerative therapy[J]. Handb Exp Pharmacol, 2007, (180): 195-218.
    [154]Bin, Z. , Sheng, L. G. , Gang, Z. C. et al. Efficient cardiomyocyte differentiation of embryonic stem cells by bone morphogenetic protein-2 combined with visceral endoderm-like cells[J]. Cell Biology International, 2006, 30(10): 769-776.
    [155]Passier, R., Oostwaard, D. W. V., Snapper, J. et al. Increased cardiomyocyte differentiation from human embryonic stem cells in serum-free cultures[J]. Stem Cells,2005, 23(6): 772-780.
    [156]Li, X. H., Yu, X. Y., Lin, Q. X. et al. Bone marrow mesenchymal stem cells differentiate into functional cardiac phenotypes by cardiac microenvironment[J]. Journal of Molecular and Cellular Cardiology, 2007, 42(2): 295-303.
    
    [157]杨晓宁,田宗文,黄焕斌等.新生大鼠心肌细胞的体外培养[J].解剖学杂志, 2005, 28(3):361-363.
    [l58]Liao, R., Pfister, O., Jain, M. et al. The bone marrow—cardiac axis of myocardial regeneration[J]. Prog Cardiovasc Dis, 2007, 50(1): 18-30.
    [159]Camelliti, P., McCulloch, A. D. & Kohl, P. Microstructured cocultures of cardiac myocytes and fibroblasts: A two-dimensional in vitro model of cardiac tissue[J].Microscopy and Microanalysis, 2005, 11(3): 249-259.
    [160]Xu, M. F., Wani, M., Dai, Y. S. et al. Differentiation of bone marrow stromal cells into the cardiac phenotype requires intercellular communication with myocytes[J].Circulation, 2004, 110(17): 2658-2665.
    [161]Chen, J., Wang, C. , Lu, S. et al. In vivo chondrogenesis of adult bone-marrow-derived autologous mesenchymal stem cells[J]. Cell Tissue Res, 2005, 319(3): 429-438.
    [162]Mauritz, C. Generation of functional murine cardiac myocytes from induced pluripotent stem cells[J]. Circulation, 2008, 118(5): 507-517.
    [163]Kado, M., Lee, J. K., Hidaka, K. et al. Paracrine factors of vascular endothelial cells facilitate cardiomyocyte differentiation of mouse embryonic stem cells[J]. Biochem Biophys Res Commun, 2008, 377(2): 413-418.
    [164]Bai, X. W., Pinkernell, K., Song, Y. H. et al. Genetically selected stem cells from human adipose tissue express cardiac markers[J]. Biochemical and Biophysical Research Communications, 2007, 353(3): 665-671.
    [165]Terada, N. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion[J]. Nature, 2002, 416: 542-560.
    
    [166]Ying, Q. L. Changing potency by spontaneous fusion[J]. Nature, 2002, 416: 545-559.
    [167]Tandon, N., Cannizzaro, C., Chao, P. H. et al. Electrical stimulation systems for cardiac tissue engineering[J]. Nat Protoc, 2009, 4(2): 155-173.
    [168]Mauney, J. R., Nguyen, T., Gillen, K., et al. Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds[J]. Biomaterials, 2007, 28(35): 5280-5290.
    [169]Zhu, Y., Liu, T., Song, K., et al. Collagen-chitosan polymeric scaffolds for the in vitro expansion of human adipose tissue-derived stem cells[J]. J Mater Sci: Mater Med,2009, 20(3): 799-808.
    [170]Cheng, M., Moretti, M., Engelmayr, G. C. & Freed, L. E. Insulin-like Growth Factor-I and Slow, Bi-directional Perfusion Enhance the Formation of Tissue-Engineered Cardiac Grafts[J]. Tissue Eng Part A, 2009, 15(3): 645-653.
    [171]Zhu, Y. , Liu, T., Song, K. et al. Ex vivo expansion of adipose tissue-derived stem cell in spinner flask[J]. Biotechnology Journal, 2009.
    [172]Torella, D., Rota, M., Nurzynska, D. et al. Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression[J]. Circ Res, 2004, 94(4):514-524.
    [173]Li, Q., Yang, X., Sreejayan, N. & Ren, J. Insulin-like growth factor I deficiency prolongs survival and antagonizes paraquat-induced cardiomyocyte dysfunction: role of oxidative stress[J]. Rejuvenation Res, 2007, 10(4): 501-512.
    [174]Suleiman, M. S., Singh, R. J. & Stewart, C. E. Apoptosis and the cardiac action of insulin-like growth factor I[J]. Pharmacol Ther, 2007, 114(3): 278-294.
    [175]Gassanov, N., Devost, D., Danalache, B. et al. Functional activity of the carboxyl-terminally extended oxytocin precursor Peptide during cardiac differentiation of embryonic stem cells[J]. Stem Cells, 2008, 26(1): 45-54.
    
    [176]Webb, K., Hlady, V. & Tresco, P. A. Relationships among cell attachment, spreading,cytoskeletal organization, and migration rate for anchorage-dependent cells on model surfaces[J]. Journal of Biomedical Materials Research Part A, 2000, 49(3): 362-368.
    [177]Suzuki, K. Cell transplantation for the treatment of acute myocardial infarction using vascular endothelial growth factor-expressing skeletal myoblasts[J]. Circulation,2001, 104(90001): 207-218.
    [178]Tandon, N., Marsano, A., Cannizzaro, C., et al. Design of electrical stimulation bioreactors for cardiac tissue engineering[J]. Conf Proc IEEE Eng Med Biol Soc, 2008,2008: 3594-3597.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700