用户名: 密码: 验证码:
铝合金脉冲MIG焊过程多信息分析及解耦控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着铝合金在汽车、列车等运载工具中的广泛应用,对铝合金焊接结构生产的自动化、智能化及焊接质量的稳定性要求越来越高。本文针对铝合金脉冲MIG焊过程在恒定规范下铝合金热积累现象明显,参数不匹配情况下焊接过程不稳定这些关键问题,通过焊接过程中多信息传感与分析,过程建模仿真及实时解耦控制等方面对铝合金脉冲MIG焊过程进行了深入的研究。
     由于铝合金脉冲MIG焊接过程中存在较多的不确定因素,实时检测和控制是保证其焊接过程稳定与焊接质量的重要方法,本文通过LabVIEW与COM技术结合的实时视觉传感,利用xPC目标实时建立了针对铝合金脉冲MIG焊的快速原型试验平台。
     对于铝合金脉冲MIG焊过程,首先通过视觉传感的方法提出了一种焊丝干伸长提取算法,针对固定模板的传统微分算子边缘提取的不足,研究并利用蚁群算法、遗传算法进行熔池边缘提取。对于铝合金脉冲MIG焊过程稳定性进行了分析,得出了电弧电压概率密度、近似熵值与焊接过程稳定性的相关性。为克服已有信息对焊接过程的表征不足,对焊接过程中声音信号进行采集,分析得到不同熔滴过渡下电弧声信号特征进行熔滴过渡类型辨识,利用小波变换后得到特定频率范围的电弧声信号能量变化与焊接过程焊缝塌陷的相关性。进一步对弧焊过程多信息融合进行了初步研究,采用U-I二维相空间统计、二维近似熵信息源级多信息融合的算法确立了焊接过程电流、电压信息融合后特征与焊接过程稳定性的相关性。
     本文在已有铝合金脉冲MIG焊过程辨识的基础上对其进行MIMO控制模型分析,确立了以熔宽和干伸长为目标,通过调节送丝速度与占空比来进行解耦控制的控制方案,采用经典补偿解耦控制理论、神经网络对象逆模型解耦理论进行仿真控制研究。并针对铝合金脉冲MIG焊电弧系统特点,在考虑熔滴过渡的基础上建立了焊丝熔化动态电弧模型,对所建立的模型进行了仿真,获得了与实际焊接过程相近的结果,揭示了电弧系统不稳定性的原因,并进一步在所建模型上进行了干伸长控制仿真,为电弧稳定控制提供了参考。
     在传感与仿真的基础上,通过快速原型平台,首先通过送丝速度的调节来对干伸长进行单独控制,使焊接过程电弧系统稳定,接着针对以占空比来进行熔宽控制使得参数匹配困难而失稳的问题,利用双脉冲工艺方法,提出通过占空因数调节来实现热输入调节,进行焊缝熔宽控制研究,在此基础上以干伸长和熔宽为控制目标,以送丝速度、双脉冲占空因数为调节量的MIMO实时解耦控制,并在铝合金脉冲MIG焊快速原型平台的基础上,进行了不同传感方案下,不同控制器下的控制效果研究,获得了在熔宽、干伸长在视觉传感下,利用模糊PID控制器进行解耦控制,得到了焊接过程稳定,且熔宽均匀,外形美观,成形良好的焊缝。克服了铝合金脉冲MIG焊参数间强耦合关系,较好的解决了热积累问题。
In recent years, with the wide application of aluminum alloy in automobiles, trains and other means of vehicle, requirements of automation,intelligence and welding quality stability in aluminum alloy welding structures are higher and higher. In this paper, according to the key problems such as obvious heat accumulation phenomenon at constant parameters in pulsed MIG welding of aluminum alloy and unstable welding process when parameters do not match, further study on aluminum alloy welding control was done through sensing and analysis of muti-infornmation, process modeling and simulation and real-time decoupling control in welding process.
     Due to many uncertain factors in pulsed MIG welding process of aluminum alloy, real-time detection and control is an important method to ensure the stability of welding process and welding quality. On the basis of vision sensing realized through combination of LabVIEW and COM technology, a rapid prototyping control platform was built with xPC target real-time environment.
     In pulsed MIG welding of aluminum alloy, an extraction algorithm for wire extension was proposed by method of vision sensing and welding pool edge extraction was also studied using ant colony algorithm and genetic algorithm aiming at the deficiency of traditional differential operator. Analysis on stability of aluminum alloy pulsed MIG weldig process was made, and the correlation between probability density, approximate entropy value of arc voltage and the stability of welding process was obtained. In order to overcome the characterization deficiency of existing signals for welding process, sound signal in welding process was acquired, and the characteristic of arc sound signal was analyzed under different metal transfer mode to identify the mode of metal transfer, and then the relationship between welding arc sound and subsidence of aluminum alloy MIG welding bead was also studied using wavelet analysis method. Furthermore, muti-information fusion was preliminarily studied, and the correlation between characteristics after fusion of welding current, voltage and stability of welding process was established by method of U-I two-dimensional phase space, two-dimensional approximate entropy and algorithm of multi-information fusion.
     In this paper, analysis on MIMO control model was made on the basis of existing process identification for pulsed MIG welding of aluminum alloy and a decoupling control scheme using pool width and wire extension as control object while using wire feed speed and duty cycle as controlled variable was selected. Simulation using classical theory of decoupling control and neural network object inverse model theory was carried out. Aiming at the characteristics of arc system and on the basis of considering the droplet transfer, dynamic arc model of wire melting was built, and the actual welding process was well reflected by simulation of the model. The reasons for the instability of arc system was also revealed. Further, wire extension control simulation was made on the built model and provided a reference for arc stability control.
     On the basis of sensing and simulation, firstly, wire extension was independently controlled by adjusting wire feed speed to make arc system stable on the rapid prototyping platform. Then with double-pulse technology, heat input was changed for pool width control by regulating double-pulse duty factor. On this basis, MIMO real-time decoupling control was carried out using wire extension and pool width as control object while using wire feed speed and double-pulse duty factor as controlled variable. The control effect under different sensing methods and different controllers was also studied based on the rapid prototyping control platform. Adopting vision sensing for pool width and wire extension, decoupling control with fuzzy PID controller was carried out and obtained a stable welding process and a perfect weld, whose pool width was uniform and formation was beautiful. Therefore, the heat accumulation problem was resolved well by overcoming the strong coupling among parameters when controlling in pulsed MIG welding process.
引文
[1]王其隆.弧焊过程质量传感与控制[M].北京:机械工业出版社,2000.12
    [2]潘际銮.现代弧焊控制[M].北京:机械工业出版社,2000.6
    [3]林尚扬,陈善本,李成桐.焊接机器人及其应用[M].北京:机械工业出版社,2000.8
    [4] Masumoto I,Araya T,Iochi A.Development and application of sensors and sensor systems for arc welding[J].Journal of Japan Welding Society,1983,52(4):27-35
    [5] Jean P B.Robot vision helps ensure weld quality[J].Manufacturing Engineering,1997, 119(2):201-210
    [6]石永华,钟继光,刘桑等.视觉传感及图像处理技术在焊接中的应用[J].电焊机, 1999,29(9):1- 4
    [7]王建军,林涛,陈善本等.铝合金交流钨极氩弧焊熔池图像传感方法[J].上海交通大学学报,2002,36(5):21-26
    [8]王建军,林涛,陈善本等.基于视觉技术的铝合金TIG焊接过程自适应控制[J].焊接学报,2003,24(4):17-24
    [9]陈强,孙振国.计算机视觉传感技术在焊接中的应用[J].焊接学报,2001,22(2):83-90
    [10]杨运强,张晓琪,李俊岳,李桓.焊接电弧熔滴过渡特征光谱窗口的选择[J].焊接学报, 2003, 24(5):45-49
    [11] Ohshima K, Yamamoto M,Tanii T,etc. Digital control of torch position and weld pool in MIG welding using image processing device[J]. IEEE Transactions on Industry Applications, 1992, 28(3):607-612
    [12]娄亚军.基于熔池图像传感的脉冲GTAW动态过程智能控制[D].哈尔滨:哈尔滨工业大学,1998
    [13] Kim C H, Na S J. A study of an arc sensor model for gas metal arc welding with rotating arc[J].Journal of Engineering Manufacture,2001, 215(9):1281-1293
    [14]陈善本,曹建明,徐晨明,吴林.脉冲熔化极气体保护焊熔池的视觉传感与实时控制[J].焊接学报,2002, 23(4):10-14
    [15]王建军,林涛,陈善本等.铝合金TIG焊熔池图像的获取与处理[J].机械工程学报, 2003, 39(5):125-129
    [16]李鹏久.焊接过程弧光传感的应用基础研究[D].哈尔滨:哈尔滨工业大学,1997.
    [17]石玗,樊丁,吴巍等.视觉传感铝合金MIG焊熔池图像检测及处理研究[J].材料科学与工艺,2004,12 Sup:68-70
    [18]石玗,张得峰,樊丁,等.用于铝合金MIG焊的机器人熔池视觉传感系统[J].电焊机2006,36(3):27-28
    [19]石玗,吴巍,樊丁.铝合金MIG焊正面熔池图像视觉传感与处理[J].中国机械工程.2005,16(2):176-179
    [20]李迪,宋永伦,叶峰等.基于电弧传感的GMAW过程焊缝缺陷识别方法[J].焊接学报,2000,21(1):30-33
    [21]俞建荣,吴波,蒋力培.弧焊短路过渡过程的随机性与稳定性[J].石油化工高等学校学报,2004,17(4):54-60
    [22]区智明等.CO2焊接电弧信号分析与稳定性的评价[C].第三届计算机在焊接中的应用技术交流论文集,2001.11:239-243
    [23]蔡艳,赵颖,吴毅雄.CO2短路过渡气体保护焊质量控制的研究[J].电焊机,2000,(11):17-20
    [24]张小囡,李俊岳,黄石生.评定CO2电弧电源动特性的统计分析[J].焊接学报,2001,22(3):12-16
    [25]朱六妹,肖孝南,王伟.CO2焊熔滴过渡特征的分析与研究[J].电焊机,2000,30(1):18-21
    [26] Absi Alfaro S.C, Carvalho G .C. Stand off’s indirect estimation in GMAW[J]. Journal of materials processing technology, 2004, 3-7
    [27] Johnson J.A., Carlson N.M., Smartt H.B. Process control of GMAW: Sensing of metal transfer model[J]. Welding Journal, 1991, 70(4):91-99
    [28] Quinn T.P., Madian R.B., Mornis M.A. Contact tube wear detection in gas metal arc welding[J]. Welding Journal, 1995, 74(4):115-121
    [29] Ma Yuezhou, Ma Wenbin, Qu Min. Characteristics analyzing and parametric modeling of the arc sound in CO2 GMAW for on-line quality monitoring[J]. China Welding, 2006(02):6-13
    [30] FAN D, SHI Yu,USHIO M. Investigation of CO2 Welding Arc Sound[J]. Transactions of JWRI, 2001, Vol. 30,No. 1,pp:29-33
    [31] J.H.chen, D.FAN, Z.Q.HE. A Study of the Mechanism for Globular metal Transfer from Covered Electrodes[J]. welding research supplement,1989,68(4):145-150
    [32] Inoue K, Takahashi Y, Zhang J. Measurement of arc sound with burn-through in MAW welding[J]. Welding International, 1993, 7(10): 770-775
    [33] Kaskinen P, Mueller G. . Acoustic arc length control [C]. In: Advances in welding science and technology. Proceedings of an International Conference on Trends in Welding Research, Gatlinburg, Tenn. : ASM, 1986, 763-765
    [34] Arata Yoshiaki. Effect of welding method and welding condition on welding arc sound[J]. Transcations of JWRI, 1979, 8(1): 1-5
    [35] Arata Yoshiaki. Evaluation by hearing acuity and characteristics of arc sound[J]. Transcations of JWRI, 1979, 8(2): 33-38
    [36] Arata Yoshiaki. Effect of current waveform on TIG welding arc sound[J]. Transcations of JWRI, 1980, 9(2): 25-29
    [37] Arata Yoshiaki. Vibration analysis of base metal during welding[J]. Transcations of JWRI, 1981, 10(1): 39-45
    [38] E.H. Cayo, S.C. Absi Alfaro.Weld transference modes identification through sound pressure level in GMAW process[J].Journal of Achievements in Materials and Manufacturing Engineering,2008,29(1):57-62
    [39] Schiebeck E, Mueller G. Audible range acoustic diagnosis of the MAG welding arc[J]. Welding International, 1991, 5(7): 572-576
    [40] Saini D, Floyd S. An investigation of gas metal arc welding sound signature for on-line quality control[J]. Welding Journal, 1998, 77(4): 172-179
    [41] Ladislav Grad, Janez Grum, Ivan Polajnar. Feasibility study of acoustic for on-line monitory in short circuit gas metal arc welding[J]. International Journal of Machine Toll & Manufacture. 2004, 44: 551-561
    [42] Cudina M. , Prezelj J. Evaluation of the sound signal based on the welding current in the gas-metal arc metal welding process[J]. Proceedings of the institution of mechanical engineers, 2003, 217(5): 483-494
    [43]樊丁,马跃洲,裴浩东等.焊接电弧声与飞溅的相关性研究[J],甘肃工业大学学报,1997,23(3):1-5
    [44]马跃洲,王春柏,陈剑虹.CO2焊接过程动态信号的特征分析[J].焊接学报,2001,(02):67-70
    [45]马跃洲,金虎,梁卫东等.短路过渡的GMAW电弧声信号特征及产生机理[J].甘肃工业大学学报,2003,(01):11-14
    [46]马跃洲,陈剑虹,梁卫东.GMAW电弧声的参数化模型及应用[J].机械工程学报,2005,(11):109-114
    [47]王其隆,张九海,张龙.自适应Synergic脉冲MIG(MAG)焊微机控制研究[J].焊接,1990,9:1-5
    [48] Yoo C. D. , Sunwoo H-K, Koh K-I, Investigation on arc light intensity in gas metal arc welding[J]. Proceedings of the institution of mechanical engineers, 1997, vol. 211, No. 5, 355-363
    [49]李俊岳,柳刚,韩国明.利用电弧光谱研究熔化极气体保护焊的熔滴过渡[C].第九届全国焊接会议论文.553-557
    [50]杨运强,张晓琪,李俊岳.焊接电弧熔滴过渡特征光谱窗口地选择[J].焊接学报.2003,vol.24,No.1,14-18
    [51]韩国明,李俊岳,吴钊.焊接电弧紫外光谱的分布特征[J].焊接学报.1999,vol.20,No.4,213-218.
    [52] Peijiu LI, Qilong Wang , Arc light sensing of dropiet transfer in pulsed GMAW process and mechanism[J]. China Welding, 1 996, vol. 5, No. 1, 28-36
    [53]陈善本,陈波,马宏波,林涛.多传感器信息融合技术在焊接中的应用及展望[J].电焊机.2009,39(1):58-63
    [54]刘静,陈小惠.信息融合在焊缝跟踪模糊控制器中的应用[J],电焊机,2005(10):23-26
    [55]常云龙,薛家祥,黄石生.机器人点焊多信息融合及控制[J],焊接学报,2000(2):85-89
    [56] Cullen J D,Athi N,Al-Jader M,et al.Multisensor fusion forum line monitoring of the quality of spot welding in automotive industry[J].Measurement:Journal of the International Measurement Confederation,2008,41(4):412-423.
    [57]胡席远,王春明,吴松坪等.基于多传感器融合的激光焊接熔透状态的识别[J],中国激光,2007,34(4):538-542.
    [58] Allum C J. Metal transfer in arc welding as a varicose instability: Pt.1: varicose instabilities in a current-carrying liquid with surface charge[J]. Journal of Physics D: Applied Physics, 1985, 18(3): 1431-1446
    [59] Rhee S, Kannatary-Ashib E J. Analysis of arc pressure effect on metal transfer in gas metal arc welding[J]. J. Phys. D: Appl.Phys., 1991, 24(8): 5068-5075
    [60] Kim Y S, Eagar T W. Analysis of Metal Transfer in Gas Metal Arc Welding[J]. Welding J., 1993, 72(6):269-278
    [61] Lancaster J F. The physics of welding [M]. New York:Pergamon,1986
    [62] D.Weiss T.W. Eagar L.A. Jones, P. Mendez. Dynamic behavior of gas metal arc welding[C]. In 9th Conf. on Iron and Steel Technology, 1997.
    [63] Joo T M. Analysis of molten tip shape by energy method in GMA process [D]. MS Thesis,Korea Advanced Institute of Science and Technology,1994
    [64] M Ushio,J Szekely,C W Chang. A Mathematical Modeling of Flow Field and Heat Transfer in High-current Arc Discharge[J].Ironmaking and steelmaking. 1981,6(1):279- 286.
    [65]何建萍,吴毅雄,焦馥杰.GMAW短路过渡液桥形状动态模型[J].焊接学报,2008,29(7):5-8
    [66]李春天,罗怡,杜长华,等.基于净干伸长的CO2焊接过程动态模型与参数控制[J].中国机械工程,2009,20(11):1261-1264
    [67]高忠林,胡绳荪,殷凤良等.GMAW系统电流与弧长的滑模变结构控制仿真[J].焊接学报,2007,28(6):53-56
    [68] Pietrzak K A, Packer S. Vision-based weld pool width control [J]. Journal of Engineering for Industry, 1994, 116(5):86-97
    [69]陈善本,陈文杰,林涛.脉冲GTAW熔池动态过程的辨识模型[J].焊接学报,2001,21(3):24-28
    [70]娄亚军,陈善本,吴林.脉冲GTAW焊神经元自学习PSD控制[J].材料科学与工艺,1998,6(3):17-20
    [71]李士凯,陈茂爱,武传松.脉冲GMAW熔滴过渡动态过程的解析模型[J].焊接学报, 2004, 24(4):26-30
    [72] Ushio M. Automation Technology of Arc Welding. Technical Commission on welding Process[J]. Japan Welding Society, 1996, 13(3):24-30
    [73]王雅生,张庆,蔡洪能等.可摆脱操作技能依赖性CO2焊规范参数模糊控制系统[J].机械工程学报, 2001, 12(7):26-30
    [74]赵冬斌,陈强,陈善本等.填丝脉冲GTAW焊缝成形的单变量智能控制[J].清华大学学报,2001,41(11):10-13
    [75]苗玉刚,刘黎明,王继锋等.镁合金薄板TIG焊自适应弧长控制[J].焊接学报,2003,23(6):12-16
    [76]王玉,高大路,张光.人工智能新技术在焊接中的应用及发展趋势[J].机械科学与技术,2002,21(3):494-498
    [77] Kaneko Y,Yamane S,Ohshima K. Neuro-fuzzy control of weld pool in pulsed MIG welding[J]. Yosetsu Gakkai Ronbunshu, 1994, 12(3):374-378
    [78] Lim T G, Cho H S. Estimation of weld pool sizes in GMA welding process using neural networks[J]. Proceedings of the Institution of Mechanical Engineers, 1993, 2(7):15-26
    [79]陈善本,娄亚军,赵冬斌等.脉冲GTAW熔池动态过程模糊神经网络建模与控制[J].自动化学报,2002, 28(1):74-82
    [80]张勇,陈善本,邱涛等.焊接柔性加工单元中熔池的实时控制[J].焊接学报,2002, 23(4):1-5
    [81] Chen S B, Wu L, Wang Q L, Liu Y C. Self-learning fuzzy neural networks and computer vision for control of pulsed GTAW[J]. Welding Journal, 1997, 18(9): 201-209
    [82] Gao X D,Huang Sh Sh, Yu Y L. Fuzzy neural networks for control of penetration depth during GTAW[J]. China Welding, 2000,17(2):1-8
    [83] Gao J, Wu C. Extracting weld penetration information in tungsten-inert gas welding[J]. Proceedings of the Institution of Mechanical Engineers, 2002, 12(7): 207-214
    [84] Gao X D, Huang Sh Sh. Artificial neural network and fuzzy logic controller for GTAW modeling and control[J]. Chinese Journal of Mechanical Engineering, 2002, 18(6): 53-56
    [85]高向东,黄石生,吴乃优等. GTAW神经网络-模糊控制技术的研究[J],2000,21(1): 5-8
    [86] Chen S B, Lou Y J, Wu L, Zhao D B. Intelligent methodology for sensing, modeling and control of pulsed GTAW [J] .Welding Journal. 2000, 79(6): 151-163
    [87] Hen S S, Zhao D B,Wu L, Lou Y J. Intelligent methodology for sensing, modeling and control of pulsed GTAW [J]. Welding Journal, 2000, 79(6): 164-174
    [88] Chen S B,Zhang Y,Qiu T, Lin T. Robotic welding systems with vision-sensing and self-learning neuron control of arc welding dynamic process[J]. Journal of Intelligent and Robotic Systems: Theory and Applications, 2003, 36(2): 191-208
    [89]高进强,武传松,刘新峰.TIG焊背面熔宽的神经网络模糊控制[J].焊接学报,2001,20(5): 5-8
    [90] H., Hanselmann, Automotive Control: From Concept to Experiment to Product[C]. Proceeding of the IEEE International Symposium on Computer-Aided Control SystemDesign, Dearborn,1996,129–134
    [91] D. Burns, and T. Sugar. Rapid Embedded Programming for Robotic Systems[C]. submitted to Proceedings of the 2002 ASME Design Engineering Technical Conferences and Computers in Engineering Conference, 2002.
    [92] F.C., Teng. Real-time control using Matlab/Simulink[C]. Systems, Man, and Cybernetics, 2000 IEEE International Conference on, Volume: 4, 8-11 Oct. 2000, 2697-2702
    [93] P.S., Shiakolas, and D., Piyabongkarn. On the development of a real-time digital control system using xPC-Target and a magnetic levitation device [C]. Decision and Control, 2001. Proceedings of the 40th IEEE Conference on, Volume:2, 4-7 Dec. 2001, 1348-1353
    [94]陈锡辉,张银鸿,陈锡辉等编著.LabVIEW 8.20程序设计从入门到精通[M].北京:清华大学出版社,2007.7
    [95] Dale Rogerson著,杨秀章译.COM技术内幕--微软组件对象模型[M].北京:清华大学出版社,1999.3
    [96]王军,苏剑波,席裕庚.基于COM的多传感器机器人系统的软件设计[J].数据采集与处理, 2001,15(03):389-392
    [97]梁伟,石玗,张晓雯.熔池的形态学图像处理[J].微计算机信息,2006,22(8-1):216-218
    [98] Ouadfel S, Batouche M.Ant colony systeem with local search for Markov random field image segmentation[J].Proceedings of the 2003 International Conference on Image Processing,2003, (1): 133-136
    [99]王小平,曹立明.遗传算法一理论、应用与软件实现[M].西安:西安交通大学出版社,2002
    [100]阳波.基于最大类间方差遗传算法的图像分割方法[J].湖南师范大学学报:自然科学版,2003,26 (1) :32-36
    [101] Charles R T, Randall A L, Herschel B S, et al. Is there evidence of determinism in droplet detachment within the gas metal arc welding process[C].6TH International Conference on Trends in Welding Research. Columbus, Ohio ,USA. 2002, :380-385
    [102]曹彪,吕小青,黄石生等.短路过渡电弧焊电流信号的近似熵分析[J].物理学报.2006,55(4):1698-1704
    [103]蔡艳,杨海澜,吴毅雄等.短路过渡弧焊过程稳定性在线评价模型设计[J].上海交通大学学报,2005,39(7):1038-1041
    [104] Pincus S M. Approximate Entropy (ApEn) as a complexity measure[J]. Chao s,1995,5(1):110-117
    [105] Pincus S M. Approximate entropy as a meansure of system complexity[C]. Proceedings of the National Academy of Sciences of the United States of America, Vol. 88, No. 6 (Mar. 15, 1991), pp. 2297-2301
    [106]王启光,张增平.近似熵检测气候突变的研究[J].物理学报,2008,57(3):1976-1983
    [107]胥永刚,李凌均,何正嘉.近似熵及其在机械设备故障诊断中的应用[J].信号与控制,2002,31 (6) : 547- 551
    [108] Pincus S M. Approximate Ent ropy (Ap En) as a complexity measure[J] . Chao s , 1995 , 5 (1) : 110 - 117
    [109] Pincus S M. Approximate ent ropy as a meansure of system complexity [J] . Proceedings of t he National Academy of Sciences of t he United States of America , 1999 , 88 (6) : 2297 - 2301
    [110]温军玲,和卫星,陈晓平.监测麻醉深度的脑电信号的近似熵特征研究[J].计算机测量与控制,2003,11 (9);663 - 664
    [111]李志勇,丁京滨,李桓等.基于电弧光谱的钢熔化极惰性气体保护焊质量判识[J].机械工程学报,2009,45(4):197-202
    [112] Warinsiriruk E , Poopa T B. Investigation of metal transfer of ER70S-6 filler metal in MA G-M welding by acoustic signal detection [ EB/ OL ] . [ 2008. 8. 24 ] . http :/ / emerald. mtec. or. th/ th/ seminar/ Msativ/ pdf/D02
    [113]瞿敏,马跃洲.基于支持向量机的CO2焊接保护气流量识别研究[J].电焊机,2007,37(4):68-70
    [114]马跃洲,瞿敏,陈剑虹.基于电弧声信号的CO2焊接状态模式识别[J] .兰州理工大学学报, 2006,32 (4):30-33.
    [115]王宏禹.现代谱估计[M].南京:东南大学出版社,1990.10
    [116] Cortes C, Vapnik V. Support Vector Networks[J]. Machine Learning, 1995, 20: 273-297
    [117] Raudys S. How goog are support vector machines. Neural Networks, 2000, 13: 17-19
    [118] Gavin C, cawley, Nicola L. C. , Talbot. Improved sparse least-squares support vector machines[J]. Neurocomputing, 2002, 48: 1025-1031
    [119] Carl Gold, Peter Sollich. Model selection for support vector machine classification[J]. Neurocomputing, 2003, 55: 221-249
    [120] Opper M, Urbanczik R. Support vector machines learning noisy polynomial rules[J]. PhysicaA, 2001, 302: 110-118
    [121]马跃洲,张鹏贤,梁卫东,等.小波包分解Welch平均法在焊接电弧声功率谱估计中的应用[J].甘肃工业大学学报,20001,27(2):5-8
    [122]李迪,曾安,叶峰等.短路GMAW焊在线质量监测的多变量统计过程控制方法[J].机械工程学报,2003,39(8):86-91
    [123]胥永刚,何正嘉.基于二维近似熵度量轴心轨迹复杂性的研究[J].西安交通大学学报,2003,37( 11): 1171-1174
    [124]胡寿松.自动控制原理[M].北京:科学出版社,2001
    [125]刘晨晖.多变量过程控制系统解耦理论[M].武汉:水利电力出版社,1984.11
    [126]柴天佑.多变量自适应解耦控制及应用[M].北京:科学出版社,2001
    [127]程鹏.多变量线性控制系统[M].北京:北京航空航天大学出版社,1990
    [128]李少远.工业过程辩识与控制[M].化学工业出版社,2005
    [129]卢志刚,吴士昌,于灵慧.非线性自适应逆控制及其应用[M].北京:国防工业出版社,2004
    [130] B.Widrow,E.Walach.自适应逆控制[M].西安:西安交通大学出版社,2000,5
    [131] Allum C J . Metal transfer in arc welding as a varicose instability: II.Development of model for arc welding[J]. Journal of Physics (D: Ap2 plied Physics), 1985, 18(7):1447– 1468
    [132]文元美,黄石生,薛家祥等.脉冲MIG焊不稳定过渡过程的观察与分析[J].焊接学报,2008,29(4):13-17
    [133] J.S. Thomsen.Advanced control methods for optimization of arc welding[D]. Aalborg University,2005.
    [134]杨运强,李俊岳,张晓囡等.脉冲MIG焊熔滴过渡控制的新进展[J].机械工程学报,2002,38(11):12-16
    [135] JH Choi, JY Lee, CD Yoo.Simulation of Dynamic Behavior in a GMAW System[J]. Welding Journal,2001,80(10):293-254.
    [136]栗卓新,张征,刘海云.GMAW焊接熔滴过渡模型的研究进展[J].中国机械工程,2007,18(12):1501-1504
    [137] R. Yender J. Tyler K.L. Moore, D.S. Naidu. Gas metal arc welding control: Part 1-modeling and analysis[J]. In Nonlinear Analysis, Methods and Applications, 1997,30: 3101-3111
    [138] P. Praveen, M.J. Kang, P.K.D.V. Yarlagadda. Arc voltage behavior in GMAW-P under different drop transfer modes[J]. journal of achievements in materials and manufactuing engineering, 2009, 32(2):196-202
    [139]李芳,陆志强,吴毅雄.GMAW-P频率特性复合弧长适应控制法[J].焊接学报.2009,10(30):53-56
    [140]樊丁,李建军,石玗,高源.九点控制器对铝合金MIG焊熔宽控制的仿真[J].焊接学报.2007,28(5):1-4
    [141]石玗,樊丁,李建军,陈剑虹.视觉传感铝合金脉冲MIG焊熔宽控制系统[J].焊接学报.2007,28(2):9-12
    [142]石玗,樊丁,黄岸,陈剑虹.铝合金脉冲MIG焊熔宽动态过程的视觉传感辨识[J].金属学报.2005,41(9):994-998
    [143]沙德尚,廖晓钟.双脉冲MIG/MAG焊全数字控制策略[J].北京理工大学学报,2009,29(7):605-608

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700