用户名: 密码: 验证码:
新疆甜瓜组培体系的优化及抗病转基因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年来在新疆甜瓜的生产中,真菌病害已成为影响新疆甜瓜产量和品质的重要因素。作者试图通过植物基因工程方法,利用根癌农杆菌将抗真菌蛋白的几丁质酶基因和β-1,3-葡聚糖酶基因导入新疆甜瓜中,以提高其抗真菌病害的能力。
    选用新疆优良甜瓜品种:红蜜脆、皇后、黄醉仙、8601,用未成熟子叶切块作为外植体,经过组织培养获得再生植株。以MS为基本培养基,取3日龄子叶块外植体,选用MS+6-BA0-2.5mg/L诱导丛生芽,最高诱导率可达89%。其中杂交种的芽诱导率高于本地种。由于基因型的差异,不同品种甜瓜诱导不定芽的最适激素浓度不同,而且在整个生长过程中,6-BA的浓度逐渐降低。在生根培养时,用1/2MS+0.5mg/L IBA或 NAA诱导生根率较高。
    在建立甜瓜高效再生体系的基础上,用根癌农杆菌介导法将几丁质酶基因和β-1,3-葡聚糖酶基因导入新疆甜瓜中,经卡那霉素的抗性筛选,获得转化的再生植株。用PCR反应、点杂交及SDS-PAGE等手段,进一步研究了再生植株的基因整合与表达情况。经PCR扩增反应和琼脂糖电泳检测,在转化植株中扩增出了特异片段,证明外源基因已整合到甜瓜基因组中。点杂交检测转化植株有阳性反应。SDS-PAGE分析表明,转化植株比对照在35.5KD处有一条明显的蛋白质谱带,其分子量与几丁质酶基因表达产物分子量相符。可初步确定该基因在转化植株内得到正常表达。
Fungal disease has been a serious threat to production and trait of Xinjiang muskmelon in recent years. We attempt to transfer Xinjiang muskmelon via Agrobacterium tumefaciens carrying chitinase and β -1,3-glucanase in order to enhance the abilities of anti-fungal.
    In order to establish the transgenic plant system, the cotyledons of muskmelon as explants, regenerated plantlets were used in culture. Shoots regeneration were induced on basic medium MS medium supplemented with 0-2.5mg/L 6-BA.The highest frequency shoot regeneration observed is 89%. The induction frequency of shoot of melon varieties is depended on different concentration of hormones in the medium. To achieve the high rate of rooting, the concentration of hormone 6-BA was gradually decreased during the whole growth period. The 1/2 MS medium with 0.5mg/L IBA and NAA was used for this propose.
    On the basis of regeneration protocol of Xinjiang muskmelon, two genes were transfected into muskmelon plant and selected of kanamycin in the medium. After kanamycin resistant plants were obtained, transgenic plants were determined by PCR and confirmed by Southern dot blotting. The expression of chitinase was observed by using SDS-PAGE analysis.
引文
1. Mauch F.Mauch-Mani B,Boller T.Antifungal hydrolases in pea tissue Ⅱ.Inhibition of fungal growth by combinations of chitinase and β-1,3-glucanase. Plant Physiol, 1988.88:936-942
    2. Broglie K,Chet I,Holliday M et al. Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani.Science,1991.254:1194-1197
    3. Logemann J,Jach G, Tommerup H.Expression of a barley ribosome-inactivating protein leads to increasedfungal protection in transgenic tobacco plant. Bio/Techonlogy, 1992.10:305
    4. Leah R. Tommerup H.Svendsen Ib et al.Biochemical and molecular haracterization of three barley seed proteins with antifungal properties.J Biol Chem,1991.266:1564-1570
    5. .Neuhaus J-M,Ahl-Goy P.Hinz U et al.High-level expression of a tobacco chitinase gene in Nicotiana sylvestris. Susceptibility of transgenic plants to Cerospora nicotianae infection. Plant Mol Biol,1991.16:141-151
    6. Woloshuk C P,Meulenhoff J S, Sela-Buurlage M et al.Pathogen-induced proteins with inhibitory activity toward Phytophthora infestaus.Plant Cell,1991.3:619-628
    7. Meeley R B,Jobal GS,Briggs SP. A biochemical phenotypes for a resistance gene of maize.Plant Cell,1992.4:71
    8. De Wit PJGM.Molecular characterization of gene-for-gene system in plant fungus interaction and the application of avirulence genes in control of plant pathogenu.Ann Rev Phytopathol,1992.30:391-418
    9. van Kan JAL, van den Ackerveken GF J M,de Wit P M.Cloning and characterization of Cdna of avirulence gene avr9 of the fungal pathogen Cladosporium fulvum,causal agent of tomato leaf mold,Mol Plant-Microb Inter,1991.4:52-59
    10. Dixon RA,Day PM,Lamb CJ.Phytoalexins:Enzymology and molecular biology.Adv Enzymol,1993.55:1
    11. Vanetter HD,Matthews P S.Phytoalexin detoxification.Importance for pathogenicity and practical implications.Ann Rev Phytopathol,1989.27:143-164
    12. Hain R,Bieseleer B,Kindl H.Ecppression of astilbene synthase gene in Nicotiana tabacum results in synthesis of the phytoalexin resveratrol.Pl Mol Biol,1990,15:325
    13. Baker S M,White EE.A chalcome synthasel stilbene DNA probe foe conifers.Theor Appl Genet,1996.92:827-831
    14. Hahn MG,BucheH P,Cervone F.Roles of cell wall constituents in plant-pathogen interactions.In Kosuge T,Nester EY(eds),Plant-Microbe Interactions:Molccular and Genetic Perspectives,1989,3:131
    15. Toubart P,Desiderio A,Salvi G et al.Cloning and characterization of the gene encoding the endopolyglacturonase inhibiting protein of Phaseolus vulgaris L.Plant,1992.2:367-373
    16. Bayer S M.New plant caffeoyl-coA-3-O-methyl transferase gene.Derwent Biotechnology Abstract.1993.12(4):9302188
    17. Mauch F.Mauch-ManiB,Boller T.Antifungal hydrolases in pea tissue II.Inhibition of fungal growth by combinations of chitinase and β-1,3-glucanase.Plant Physiol,1988.88:936-942
    18. Norelli-JL, Bolar-JP, Harman-GE, Transgenic apple plants expressing chitinases from Trichoderma have increased resistance to scab (Venturia inaequalis). Acta-Horticulturae. 2000, (Vol.2), 617-618
    19. Punja-ZK; Raharjo-SHT, Response of transgenic cucumber and carrot plants expressing different chitinase enzymes to inoculation with fungal pathogens. Plant-Disease. 1996, 80: 9, 999-1005;
    20. Jongedijk-E, Tigelaar-H, Roekel-SC-van,et al.Synergistic activity of chitinases and beta-1,3-glucanases enhances fungal resistance in transgenic tomato plants. Eucarpia Genetic Manipulation in Plant Breeding section meeting, 1995, 85: 173-180
    21. Schlumbaum A,Nauch F,VogleliU,et al.Plant chitinases are potent inhibitors of fungal growth.Nature,1986.324:365-367
    22. Kaufmann S,et al.EMBOJ.1987,6:3209-3212
    23. Collinge D B,Kragh K M,Mikkelsen J D,et al.Plant J.1993,3(1):31-40
    24. MinicZ,BrownS,DeKouchkovshyY,Schultze,et l.Biochem.J.1998,1:332:329-335
    25. Shapica R et al.Control of plant diseases by chitinase expression from cloned DNA in Escherichia coli.Phytopathology,1989,79:1246-1249
    26. Broglie Cachet I,Hilliday M,et al.Transgenic plant with enhanced resistance to the fungal pathogen Rhizoctonia solani.Science,1991,254:1194-1197
    27. Kaufmann S,et al,EMBOJ,1985,3:3108-3112
    28. Mauch F,et al.Plant Cell,1989,1:447-457
    29. YoshikawaM,TakeuchiY.Resistance to fungal disease in transgenic tobacco plants expressing the photo map xin elicitor releasing facto eglucanase form soybean. Natur wissen schaften, 1993, 80: 9,417-420”
    30. Aneles FB et al.Plant Physiol.1971,47:129
    31. Jooslen MHANet al.Identification of several pathogenesis related proteins in tomato leaves inculated with Cladosporium fulvum(syn.Fulvia fulva) asβ-1,3-glucanases and chitinase.Plant Physiol,1989,89:945-951
    32. MauchF et al.Antifungal hydrolases in pea tissue.Pl Physiol,1988,87:325-333
    33. Boller J,Gehria.planta,1983,157:22-31
    34. Zhu Q,Naher EA,Masoud S,ER AL.enhanced protein gainst fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco. Bio/Tech. 1994. 12:807-812
    35. Jach G,Gornhardt B,Mundy J,et al.Enhance quantitsistance against fungal disease by combinatorial ecpression different barley antifungal proteins in transgenic tobacco.Plant Journal.1995,8(1):97-109
    36. Niedz R P,Schiller Smith S, Dunbar K B, et al.Factors influencing shoot regeneration from cotyledonary explants of Cucumis melo. Plant Cell,Tissue and Organ Culture, 1989. 18(3): 313-319
    37. Choi PS,Soh WY, Kim YS.Genetic transformation and plant regeneration of watermelon using Agrobacterium tumefaciens.Plant Cell Rep, 1994,13:344-348
    38. DongJZ,Jia. SR.High efficiency plant regeneration from cotyledons of watermelon Plant Cell Reports,1991,9:559-562
    39. Qun Zhu,Christopher J.Lamb. Isolation and Characterization of a rice gene encoding a basic chitinase.Mol/Gen,1991,226:289-297
    40. EILEEA A.MAHER,Christoper J.LAMB,Stress responses in alfalfa(Medicago sativaL) XVII identification of multiple hydrolases and molecular characterization of an acidic glucanasem,Physiol.and Mol. Plant Path. 1993, 43,329-342
    41. Masoud-SA,Zhu-Qun,Lamb-C,Constitutive expression of an inducible beta-1,3-glucanase in alfalfa reduces disease severity caused by the omycet pathogen Phytophthora megasperma f.sp. nedicaginis,but doe snot educe disease severity of chitin-containing fungi. Transgenic-Research. 1996,5:5,313-323
    42. Yamamo-T,Iketani-H,Transgenic grapevine plants expressing a rice chitinase with enhanced resistance to fungal pathogens Plant-Cell-Reports, 2000. 19:7. 639-646
    43. Schuler-TH,Poppy-GM,Insect-resistanttransgenicTrends-in-Biotechnology.1998,16:4,168-175
    44. Jouania-L,Bonade-Bottino-M,Transgenic plants for insect resistance, Plant Science. 1998, 131 : 1,1-11
    45. Tabei-Y,Kitade-S,Nishizawa-Y,Transgenic cucumber plants harboring a rice chitinase gene exhibit enhanced resistance to gray mold(Botrytis cinerea), Plant-Cell-Reports, 1997,.17:3, 159-164
    46. Libantova-J,Bauer-M,Transgenic tobacco and potato plants expressing basic vacuolar beta-1,3-glucanasefrom Nicotiana plumbaginifolia. Biologia-Bratislava, 1998. 53:6, 739-748
    47. Hooykaas PJJ,Beijersbergen AGM .The virulence system of Agrobacterium tumfaciens.Annu Rev Phytopathol.1994,32:157-179
    48. Hooykaas PJJ.Schilperoort R A Agrobactrium and plant genetic engineering,Plant Mol. Biol.1992,19:15-38
    49. Dong JZ et al. Planta,1997,201(2):189-194
    50. Hooykaas PJJ.Beijersbergen AGM The virulence system of Agrobacterium tumefaciens.Annu Rev Phytopathol.1994,32:157-179
    51. Marianne B,Sela-Buuralge,et al Plant Physiol,1993,101:857-863
    52. 刘虹,顾红雅,陈章良等.水稻中一种抗真菌蛋白的分离与特性分析.高技术通讯,1994,2:22-26
    53. 胡忠,杨增明,王钧.天麻球茎抗真菌蛋白的检测及免疫荧光定位.植物学报,1993,35:593-599
    54. 江流,徐锦堂,孙勇如.编码天麻抗真菌蛋白cDNA的分子克隆.植物学报,1995。37:685-690
    55. 欧阳石文,冯兰香,赵开军.几丁质酶的三级结构和催化机制.生命化学,2001,21(2)131-133
    56. 单丽波,贾旭.几丁质酶及其在抗真菌病基因工程中的应用.生物工程进展,1998,18(3)35-39
    57. 陈三凤,刘德虎,李季伦.植物几丁质酶的结构基因及其表达.生物工程进展,1998.18(2):33-36
    58. 欧阳石文,冯兰香,赵开军.植物几丁质酶的研究进展.生物工程研究进展,2001, 21(4):30-34
    59. 蓝海燕,陈正华.葡聚糖酶及其在植物中的发育调节和防卫反应.生物技术通报,1998,4:10-15
    60. 李承森.植物科学进展(第四卷).高等教育出版社,施普林格出版社2001.173-181
    61. 王关林,方宏筠.植物基因工程原理与技术.北京:科学出版社,1998
    62. 李洪清,李美茹.影响农杆菌介导植物基因转化因素问题.植物生理学通讯,1999,35(2):145-150
    63. 余叔文主编.植物生理与分子生物学,科学出版社(第一版),1992
    64. 张世明,高等植物几丁质酶研究进展植物生理学通讯.1998,(1):8-13
    65. 舒群芳,孙勇如,抗真菌植物基因工程的策略和进展.植物学报.1997,(1):91-96
    66. 姚泉洪,黄晓敏,刘宗镇.植物抗真菌病害基因工程的研究进展.植物生理学通讯,1995,(4):303-307
    67. 陈坚,李冠,王锐萍.新疆甜瓜疫霉菌毒素对新疆甜瓜黄化苗中β-1,3-葡聚糖酶和几丁质酶活性的诱导.植物生理学通讯.1998(1):28-31
    68. 魏大钊,吴大康编著.西北的瓜.陕西科学技术出版社,1986
    69. J.萨姆布鲁克等著,金冬雁等译.分子克隆实验指南.1993年第二版,科学技术出版社
    70. 中科院上海植物生理研究所,上海市植物生理学会编.现代植物生理学实验指南,科学出版社.1999
    71. 任春梅.董延瑜.西瓜遗传转化的研究进展.中国西瓜甜瓜,2000,(2):31-34
    72. 蔡润.俞虹.甜瓜种苗克隆.上海交通大学学报,2000,(11):1586-1590
    73. 马国斌.王鸣.郑学勤.甜瓜组织培养再生体系的比较研究[J] .中国西瓜甜瓜,1999,(2):21
    74. 马国斌.王鸣.郑学勤.西瓜和甜瓜组织培养中外植体的极性现象[J].果树科学,1999,(3)15-16
    75. 赵月玲.夏海武.甜瓜的组织培养与快速繁殖[J].植物生理学通讯,1999,(5):377
    76. 孙勇如.李向辉.孙宝林.新疆甜瓜子叶原生质体的培养和植株再生.西北农业学报,1999,8(1)3-6
    77. 孙敬三,桂耀林(1995).植物细胞工程实验技术.北京:科学技术出版社
    78. 李卫,郭光沁,郑国錩.根癌农杆菌介导遗传转化研究的若干新进展.科学通报,2000,45(8):798-805
    79. 王春霞,简志英,刘愚.“京欣一号”西瓜子叶组织培养的研究.园艺学报,1996,23(4)401-403
    80. 邓向东,耿玉轩等,外植体和培养因子对哈密瓜不定芽诱导的影响.园艺学报,1996,23(1):57-61
    81. 朱新霞,乐锦华.厚皮甜瓜的离体培养植株再生.植物生理学通讯,2000,37(2):131
    82. 于为常等.哈密瓜内源激素IAA的测定.中国科学院遗传所研究工作年报,1990,40-41
    83. 杜良成,王钧.病程相关蛋白及其在植物抗病中的作用,植物生理学通讯.1990:1-6
    84. 薛宝娣,陈永萱,D.Gconsalves C.Gonsaves.转CP基因的番茄、南瓜和甜瓜植株的抗病性研究.农业生物技术学报,1995,3(2):58-62
    85. 李天然,张治中.番茄ACC合酶反义基因对河套密瓜的转化.植物学报,1994,(1):142-145
    86. 韩美丽,陆荣生,朱积余.影响农杆菌介导的柑桔基因转化因素的研究.云南植物研究,1999,21(4):491-496
    87. 李仁敬,孙严,许健等.通过根癌农杆菌介导法获得新疆甜瓜抗病优良新品系.西北农业学报,1999,8(1):3-6
    88. 王慧中,赵培洁,周晓云.转基因甜瓜植株的获得及其抗病性.植物保护学报,2000,27(2):126-130
    89. 彭秀玲(1997).基因工程实验技术(第二版).湖南科学技术出版社
    90. 何忠效,张树政(1999).电泳(第二版).科学出版社

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700