用户名: 密码: 验证码:
IGBT点焊逆变电源设计与仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电阻焊机门类繁多,具有其独特的工艺特征,并在诸如汽车、家电、电子、航天航空等诸多工业领域发挥着重要的作用。其中,次级整流焊机具有效率高,工作频率相对较高,次级电流稳定,加热相对集中等特征。但这类焊机存在着诸如器件价格昂贵,元件使用条件严格,安全隐患多,易向电网中引入高次谐波等缺点。另外,逆变电源的工作过程复杂,电路参数对性能的影响很大,工作过程不易把握,依靠传统的设计方法会造成设计任务繁重、精度低,周期长等不良后果。因而,应使用更为实效的设计方法以减轻设计者的劳动强度,提高设计精度。
    计算机仿真是通过对被研究的对象建立数学模型来进行仿真研究的。仿真时首先建立应用系统的仿真模型,然后即可利用计算机去求解,故而其具有快捷、方便、经济、安全等特点,这些优点是实物试验等研究方法所不具有的。目前,计算机仿真技术已广泛应用于电力电子系统的设计中,并带来了较好的实际效果。将这项技术应用于点焊逆变电源不仅具有很大的优越性,而且无疑会改进点焊电源的设计方法。
    一般来讲,点焊电源的次级回路对其性能有着不容忽视的影响。该点焊逆变电源的次级等效电路结构主要由交变电源、大功率二极管、回路电阻以及回路电感组成,且各参数对次级电流的有效值影响都很大。分析表明,次级电流的有效值与次级输出电压、二极管的导通压降、占空比与回路电阻有关;而次级电流对占空比变化的灵敏程度与次级输出电压呈正比,与回路电阻成反比。
    电源逆变电路形式的选择是点焊逆变电源设计的重要内容。广泛应用于弧焊逆变器的移相软开关式全桥电路,因对电路中某些器件的参数要求苛刻及其脉冲控制芯片UC3875不支持点焊电源的工作频率,故而不适于在点焊逆变逆变中采用。
    
    低频硬开关模式下,开关管的发热量不会太大,故常被采用。在逆变电路中接入缓冲电路,可减小开关管的开关应力,改善工作过程。采用管并RCD缓冲电路的硬开关逆变方式可以满足点焊逆变器的工作要求。分析表明,不同的缓冲电容值会导致不同的关断状态;开通过程中,流过开关管的电流值较大,有一较高的尖峰。为减小缓冲电路的延迟,RCD回路应选择快速软恢复二极管、无感电容和无感电阻。若两路IGBT的驱动信号脉宽不等宽会引起直流偏压,严重时会导致变压器发生磁饱和,在原级回路中串联一个无极性电容,可将引起不平衡的直流偏压滤掉。
    构成逆变电路的各种元器件的模型是逆变电路模型的基础,而某些点焊逆变电源中用到的元器件在Matlab的软件包没有或不理想。本文以点焊过程中焊接区体动态电阻为现实依据建立随时间变化的非线性电阻模型,模拟了金属铝点焊过程中的电阻变化;从DG310-35的磁特性出发, 与非线性电感的机理出发,以电感类元件的电磁性原理为理论依据,建立非线性电感的模型,并揭示了该类元件在正常工作与饱和工作时的不同电流状态。常用的IGBT等效模型有静态等效模型和动态等效模型。后者考虑器件中寄生电容的影响,能够模拟IGBT的交流和瞬态特性。若只考虑IGBT对外部所表现出来的电特性所建立的模型为IGBT的宏模型。栅源极的电压由栅极驱动信号、栅极电阻和栅源、栅漏寄生电容决定,而栅源极电压,源极电流与源漏极间压降满足传输特性的约束,根据这种关系建立的宏模型不仅能满足IGBT的静态特性,也能表达动态工作时的特征。
    变压器是逆变点焊功率传输的枢纽。本文根据通用的变压器设计方法,结合中频大功率变压器的工作特点,设计了一台逆变点焊变压器。阐述了变压器的工作原理,并以此为理论依据,忽略次要因素建立了点焊变压器的工作模型。并测试了在与点焊逆变器相似的条件下电流波形,并对结果进行了原理性探讨。
    用已有的元件模型建立点焊逆变器的仿真模型。为了得到较为完整的点焊过程,应设计适合的门极驱动波形。仿真结果显示,次级电流在上升到有效
    
    
    值并稳定后,在有效值周围上下波动,关断后次级电感自然放电;原级电流波形与次级波形相符合。测试IGBT的电压与电流可以看出,电路工作正常并与理论分析的结果相符。
    设置不等宽的驱动脉冲可得到电路不平衡工作时的特性,仿真波形显示,隔直电容通过降低大电流方向上的的有效电压来消除主回路中的直流分量。
There are various resistance welding machines. They have unique technical characteristics and play an important role in many industrial fields such as automobile, family appliance, electron, spaceflight and navigation etc. Among them sub-grade rectifying welding machine has advantageous traits such as high proficiency, relatively high working frequency, stable current output and concentrative calefaction etc. However, this kind of welding machine has many shortcomings such as high price, strict applying conditions of components, excessive hidden safety dangers and tendency to introduce high-grade harmonious waves into power network etc. In addition, the working process of inverting power is complicated; performance will be greatly influenced by circuit parameters, the working process is difficult to grasp, the traditional designing method will cause bad consequences such as onerous designing task, low precision and long period etc. Therefore, methods with actual effects should be used to mitigate designers’ working intension and improve designing precision.
    Computer simulation is a kind of simulation research on the base of math model construction of researched objects. When simulating, the simulation model of applied system should be firstly set up, and then be solved by employing computer. Therefore, it has some merits such as shortcut, convenience, safety etc, which other researching methods such as practicality experiment don’t own. At present, computer simulation technique has been widely applied in the system design of power electron and has brought forth good practical effects. To apply this technique to spot welding inverting power not only has great advantages, but also can certainly improve the designing methods of spot welding power.
    Generally speaking, sub-grade circuit of spot welding inverter has great affect on its performance, which cannot be neglected. The sub-grade equivalent circuit structure of the inverting spot welding power mainly consists of alternatively changing power; high-power diode, loop resistance and loop inductance, and various parameters have great influence over virtual value of sub-grade current. The analysis shows that the virtual value of sub-grade current has something to do with sub-grade output voltage, diode’s positive conducting voltage reduction,
    
    
    occupying ratio and loop resistance; whereas the sensitive degree of sub-grade current to occupying ratio alteration is in direct ratio with sub-grade output voltage and inverse ratio with loop resistance.
    The selection of inverting circuit forms is the important content of inverting spot welding power design. Phase-shifting soft-switching full-bridge circuit is widely used by arc welding inverter is not suitable for spot welding inverter because it has strict requirements for some component parameters and its pulse generating chip UC3875 doesn’t support the working frequency of spot welding power.
    In a low-frequency hard-switching mode, switch tubes are always used for its calefaction is not so high. Cushion circuit is introduced in inverting circuit to decrease the switching stress of switch tube and improve working process. The hard-switching inverting mode, which employs RCD cushion bypasses, can meet the working requirements of spot welding inverter. The analysis shows that different cushion capacitance will lead to different shut-down states; in the turn-on process, there is a comparatively large current along the switch tube which results in a high pinnacle. In order to decrease delay of cushion circuit, speedy soft resuming diode, non-inductance capacitance and non-inductance resistance should be chosen to build RCD bypass. The non-equivalent of driving signal width of two IGBT circuits will cause DC bias and, even more seriously, the magnetism saturation of transformer. By serial connecting non-polar capacitance to the primary circuit, lopsided DC bias will be filtrated.
    The model of various components in the inverting circuit is the basis to construct inverting circuit model. However, some components
引文
李建国. 我国焊接技术与设备的现状及90年代的发展方向. 电焊机. 1992, (1):2~8
    彭伟民,王小兰. IGBT逆变焊机. 新技术新工艺. 1996年 第5期: 12~13
    王清, 张相军, 林尚扬, 吴林. 不断发展与完善之中的电阻焊焊接电源 焊接. 2000(3)
    王清. 无次级整流直流电阻焊技术研究. 哈尔滨工业大学工学博士学位论文. 2001:1~15
    盛祖权, 张立. IGBT模块驱动及保护技术. 电焊机,Vol 30, 2000(11):6~13
    贾贵玺, 徐欣东. IGBT缓冲电路的设计. 电气传动 1998年 第3期:54~55
    黄庆春. 混合储能型有源电力滤波器的仿真研究. 哈尔滨工业大学工学硕士学位论文.1997:1~8
    黄石生, 陆沛, 李阳, 罗卫红, 王秀媛. 逆变焊机的应用与发展现状、趋向、问题及对策. 电焊机. 2000,8(30):11~12
    李建国, 郭晓敏, 刘竹. 我国逆变焊机发展浅析. 电焊机. 1998, (1):1~5
    李爱文, 张承慧. 现代逆变技术及其应用. 北京:科学出版社, 2000
    张青云. 电力电子器件的应用及发展. 现代电子技术 总第120期:37~38
    卢薇, 李之中, 马新国. 逆变焊机的研究与探讨. 山西机械 第2期(总第111期)2001年6月:54~58
    李宪政, 张友权, 姚萼放, 戴刚. 逆变焊机的现状及可靠性. 焊接技术. 1995, (1): 38~40
    
    S.J.Chen,S.Y.Yin,L.Feng and L.Y.Li.Computerized simulation and experimental research on soft-switching arc welding inverter poweer source. Acta melallurgica sinica.Vol.13 No.1 February 2000:128~132
    吴祥淼, 黄石生, 方平, 王振民, 邓永翔. 逆变式电阻焊机的研究进展. 电焊机. Vol 30,2000(12):7~8, 19
    M. Pixiey. Inverter technology in welding power sources. Welding Review International. 1994, 13(1): 227~232
    A. M. Gole. Guidelines for Modeling Power Electronics in Electric Engineering Applications. IEEE Transaction on Power Delivery. 1997, 12(1): 23~27
    张葛祥, 李娜. Matlab仿真技术与应用. 清华大学出版社. 2003年6月
    潘际銮. 我国机械工程的发展与未来展望. 机械工程学报. 1993, (5): 3~11
    Robert W. Michelet. A Multi-Simulator Environment for Power Supply Simulation. IEEE APEC. 1991:278~284
    Ray Hudson, et al. Modeling and Simulation of a Digital Controlled Rectifier for Power Conditioning. IEEE APEC 1991: 423~429
    Huseyin Akcay, Syed M. Islam and Brett Ninness. Subspace-Based Identification of Power Transformer Models from Frequency Response Data. IEEE TRANSACTIONS ON IN INSTRUMENTATION AND MEASURMENT. 1999, 3(48): 700~704
    Disheng Pei et al. A Computer Model of Magnetic Saturation and Hysteresis for user SPICE2. IEEE TRANSACTION ON POWER ELECTRONICS. 1986, (2): 101~110
    Trinh H, Aldeen M. On the stability of linear systems with delayed perturbation. IEEE TRANS. AUTOMAT. CONTR. 1994, 9(39): 948~951
    Lee Y S, et al. Use of SPICE in design of power electronic circuits and systems. IPEMC’97. Hangzhou, China: 717~721
    
    王仁平. Protel99SE在电力电子技术仿真中的应用. 自动化技术与应用. 2002年第21卷第三期: 32~34
    郑洪涛, 蒋静坪. ICAP电力电子仿真软件及其在电气传动中的应用. 电力电子技术. 第35卷第5期, 2001年10月: 39~41
    董志杰, 李群湛. ORCAD Pspice A/D V9在电力电子仿真中的应用. 自动化技术与应用. 2003年第22卷第3期: 51~56
    User Manual of Simplis. Power Design Tools.
    杨宁, 刘景琳. 基于Matlab和VC++的电路仿真软件设计. 广东职业技术师范学院学报. 2002年第4期: 31~36
    马茜、罗培、黄辉先. 基于Matlab和VB的电力电子器件仿真设计. 机床与液压. 2003.No.2: 207~209
    邓国扬、盛义发. 基于Matlab/Simulink的电力电子系统的建模与仿真. 南华大学学报 (理工版). 第17卷第1期: 1~6
    潘湘高. 基于MATLAB的电力电子电路建模仿真方法的研究. 计算机仿真. 第20卷第5期: 113~114
    虎恩典、杜全忠. MATLAB仿真技术在电力电子技术实践教学中的应用. 大学物理实验. 第15卷第1期: 41~45
    奈文松. 新型大功率软开关弧焊逆变器的研究. 华南理工大学博士论文. 2000.6
    Jia-Tzer Hsu er al. Behavioral modeling of the IGBT using the harmerstein configuration. IEEE Transactions on Power electronics. 1996, 11(11): 89~96
    Chang Su Mitter, Insulated Gate Bipolar Transistor (IGBT) Modeling Using IG-SPICE. IEEE IA. 1993, 30(1):121~130
    Allen R. Hefner et al. A Dynamic Electro-thermal Model for the IGBT. IEEE, IA. 1994, 30(2): 534~539
    Zhao Haiyan, Shi Yaowu, Lu Anli. Analysis the three-dimensional magnetic fields of welding transformer by using of the finite element
    
    
    method. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering. 2001, 2(37): 74~78
    Wang Q. Zhang X, Wu L. Modeling and simulating of unloading welding transformer. China Welidng (English Edition). 2001, 1(10): 75~80
    赵宏伟、冯梅. 逆变阻焊机的仿真分析及设计. 山西机械. 第2期 (总第111期): 10~12
    华学明、石伯圣、张继伟. IGBT逆变点焊电源主回路的计算机仿真. 上海工程技术大学学报. 第15卷第1期: 17~20
    Unitrode Linear IC Company. Product Data Book. 1997
    Texas Instruments. TMS320F/C24X DSP Controllers Reference Guide/CPU and Instruction Set. June 1999
    Texas Instruments. TMS320F/C24X DSP Controllers Reference Guide/Peripheral Library and Specific Devices. June 1999
    富士混合IC 驱动器EXB850/EXB851/EXB840/EXB841 使用说明
    赵熹华. 压力焊. 机械工业出版社. 1988年3月
    李宝清. 铝合金电阻点焊过程的数值模拟及能量分析研究. 天津大学工学博士学位论文. 2002.1: 44~52
    廖家平, 刘劲楠. NPT型IGBT静态模型分析及仿真. 电工技术杂志. 2001年第11期: 4~7
    杨晶琦. 电力电子器件原理与设计. 国防工业出版社. 2000年6月
    Mistubishi IGBT date book. 1996: 63~66
    王全宝 主编. 电子变压器手册. 沈阳:辽宁科学技术出版社,1998
    周志敏, 周纪海. 开关电源实用技术设计与应用. 2003年8月

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700