用户名: 密码: 验证码:
矿井复杂结构的瓦斯爆炸动力学特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤矿开采是我国的支柱产业,瓦斯爆炸是威胁煤矿安全生产的主要因素。我国的大多数矿井属于高瓦斯矿井,且由于受地质条件限制及生产需要,矿井设计和布置结构复杂,所以,瓦斯爆炸的形成和发展过程中会受到众多复杂结构和复杂条件等因素的影响,同时爆炸所表现出的特征也呈现复杂性和特殊性,为煤矿瓦斯爆炸防治增加了难度。因此,探索煤矿各种复杂结构及复杂条件下瓦斯爆炸的特征及成因,成为有效防治煤矿瓦斯爆炸的关键。针对这一实际问题,综合运用燃烧爆炸学、化学反应动力学、流体力学、工程力学等多学科知识,进行了620次管道模拟实验,分别拍摄了关于爆炸火焰传播的高速摄影50个、高速纹影80个,同时运用多种方法对煤矿中存在的几种复杂结构及其复杂条件下的瓦斯爆炸作用机制进行了对比分析研究,得出了以下创新性的成果。
     (1)研究网格状障碍物对瓦斯爆炸的影响
     通过对几种网格状障碍物对比研究发现,火焰通过圆孔障碍物时,相对方孔障碍物,形成较小的火焰速度和爆炸压力,这是爆炸扩张和流体流动总是试图保持最小体积即球形决定了圆孔易于火焰扩张通过的结果;当网格障碍物的小孔尺寸小于火焰的临界熄爆直径,甚至小于临界安全间隙时,火焰经过障碍物会发生熄灭,但过瓦斯感应期后,在小孔另一侧会发生复燃。同时,由于气流从小孔喷出及复燃延迟相对较慢,而爆炸过程相对较快,导致气流穿过障碍物后会发生一连串的小爆炸,而且网孔越细,小爆炸愈多。由于气流通过网格障碍物产生喷射冲击作用,同时在障碍物本身的梳理扰动作用下,致使产生强烈湍流,火焰速度剧增,压力骤升。
     从高速摄影和高速纹影图像看,火焰通过障碍物或过障碍物虽熄灭但重燃后,由于障碍物形状不同,火焰形状严重分化,火焰前锋或因浮力作用上扬、或因气流浓度增大而下垂,同时很快分化形成tulip结构。
     (2)模拟研究矿井风门、密闭墙等对瓦斯爆炸的影响
     通过模拟实验结果看,当爆炸突破薄膜时,火焰速度和压力暂时下降,能量有所损失,但会因预压、预热作用产生更大的激波和高热,极大地提高爆炸压力和火焰速度。薄膜破裂会因火焰传播引起“异地二次爆炸”,还会反冲逆袭引起“原地二次爆炸”。此外,通过综合几种障碍物来看,薄膜障碍物对爆炸的激励作用最大、最强,进一步说明了加固相关设施的必要性和重要性。
     (3)瓦斯爆炸对矿井硐室的影响
     通过运用不同内径的管道模拟瓦斯爆炸对矿井硐室的影响,发现无论在硐室模拟管道开口或闭口但易被突破的的情况下,内部瓦斯爆炸会产生远大于主干管道的压力和压力上升速度,并产生强力回冲现象,造成二次破坏或形成二次爆炸点火源。另外,模拟硐室门窗出现小缝隙或孔洞的情况下,火焰经过时会出现熄灭、复燃现象,同时回冲过程中再次出现熄灭、复燃现象,这种反复激励作用,会导致更大的爆炸力。所以硐室及其门窗等要从强度、材料、密封性等诸方面周密设计制作,隔断热量和火焰传入硐室内部。
     (4)通过实验和流体力学理论模拟研究巷道各种瓦斯填充情况下,拐弯结构对瓦斯爆炸的影响
     随着拐弯内折角度增大,主干管道段压力明显有增大的趋势,而经过拐弯后的火焰速度和压力衰减呈加剧趋势,当内折角度增大到一定程度,可发生局部熄灭或完全熄灭,造成火焰速度和压力衰减更加加剧。此外,拐弯阻力造成的能量损失以及开口处的稀疏波影响也是导致火焰速度和压力衰减的重要原因。
     一般在直管道中,开口状况下60%以上的瓦斯填充率产生的爆炸压力和火焰速度与管道全充满瓦斯时产生的压力和火焰速度基本一样。但在拐弯管道中,激波反射形成回冲激波,大大抑制火焰速度,并使管道内压强叠加增大,同时,回冲激波使直管道前段的空气回冲与前行的瓦斯混合稀释,使瓦斯燃烧受到更大影响,火焰速度进一步下降,由此造成压力相对有所下降。
     当拐弯前火焰速度为超声速时,经过拐弯后,凹壁侧的火焰速度小于凸壁侧的火焰速度,而凹壁侧的压力大于凸壁侧的压力;在拐弯前,管道上侧压力大于下侧压力。当拐弯前火焰速度为亚声速,火焰速度和压力变化规律与超声速情况下的结论正相反。
     本研究成果将进一步丰富瓦斯爆炸理论,为煤矿巷道结构及设施的布置提供有益的启示和借鉴,对煤矿复杂结构及复杂条件下的瓦斯爆炸防治发挥指导作用。
     根据本研究成果发表相关论文9篇,其中SCI2篇,EI源刊3篇,国际会议论文3篇,中文核心期刊1篇。
Coal mining is the pillar industry of our country, and gas explosion is the mainfactor which threatens coal-mine safety production. Most of coal mines in our countrywere considered to be high methane mines. Limited by the special geologic condition andthe demand for production,coal mines usually were designed and distributedcomplicatedly,therefore,the formation and development process of gas explosion may beinfluenced by complicated structures and conditions. Besides gas explosion itself showsthe characteristics of complicacy and particularity, which make it more difficult toprevent gas explosion. Thus,research on the characteristics and causes of gas explosionunder complicated structures and conditions is the key to the prevention and control ofgas explosion.
     According to the real problem,the multidisciplinary knowledge, such as combustionand explosion, chemical reaction kinetics, fluid mechanics, engineering mechanics wereused comprehensively,620simulation experiments in tube were carried out,50high-speed photographies and80high-speed schlierens were taken, and a variety ofmethods were adopted to comparatively study gas explosion mechanism in severalcomplicated structures and conditions underground coal mine. Thus, the followinginnovative results were obtained.
     (1)Influence of grid-shape obstacles on gas explosion in coal mine
     The flame shows a lower speed, expand more easily and induced a smaller pressurewhen it passes through a round hole obstacle compared to a square hole one.If the size ofthe obstacle hole was less than the critical misfire diameter, or even less than the criticalsafety gap, the flame would extinguish and reignite again beyond the obstacle afterinduction periods of gas explosion. And because of the lag between airstream erupts fromthe obstacle and induction periods of gas explosion, a series of small explosions emergedafter airstream passing through the obstacle, and the smaller the grids were, the moreexplosions would be. As the result of jets and impacts of airstream while it goes thoughthe holes of the obstacle, together with the combing perturbation effect of the obstacle,intense turbulence will be generated.Therefore, flame speed will increase rapidly, andpressure will also rise sharply.
     According to high-speed photographs and high speed schlieren photographs, theflame was badly deformed and flame front moved upward due to the buoyancy effect ordownward owning to the increased concentrations when the flame get through the obstacles of different shapes, and evolved into tulip structure soon.
     (2) Effect of damper or airtight wall on gas explosion
     Aluminum film was shaped to simulate the damper or airtight wall, the resultsshows that when the flame breaks through the film, the flame speed and pressuredescends temporarily with considerable energy loss,but explosion will be more powerfuland destructive because of preloading and preheating effect, which promoted a higherexplosion pressure and flame speed. The rupture of the film may lead to “allopatrysecondary explosions” as a result of flame propagation, and also” autochthonoussecondary explosions” caused by recoil and counterattack effects of the flame. Inaddition, the most incentive role of obstacles was to enhance explosion effect bycomparing with the situation with different kinds of obstacles, which proved thenecessity and importance of reinforced related structures.
     (3) Influence of gas explosion on mine chamber
     Different diameter of tubes was used to simulatively study gas explosion in thechamber. The results shows that,whether the tubes were open or closed, gas explosion inchamber would produce a considerably higher pressure and rate of pressure rise than thatin the trunk tube,and a strong backwash was occurred, which may cause a secondarydamage or the ignition source of secondary explosion. The flame would extinguish andreignite when flame arrived the simulated cracks or holes in the chamber,and it wouldextinguish and reignite again when the flame rushed back The repeated incentive resultedin more powerful explosions. Therefore,great importance must be attached to intensity,material, sealing and some other aspects to insulate from heat and flame when designingthe chamber.
     (4)Explosion propagation law of various filling-ratio gases at the bend of tube
     Explosion propagation law of various filling-ratio gases at the bend of tube wasstudied by the experiment and the theory of hydromechanics.The results shows that, withthe increase of the turned angle of the tube, there is an evident uptrend of the pressure inthe trunk tube and a severely attenuation trend of the flame speed and pressure after thecorner of the tube. When the angel turns to certain extent, the flame is partially or totallyextinguished,and further leads to a even steeper attenuation of the flame speed andpressure. Moreover rarefaction wave and the resistance of the tube corner which causedloss in energy could partly account for the attenuation as well.
     Generally, explosion pressure and flame speed of more than60%filling-ratio gas isbasically the same as those of100%filling-ratio gas in the straight tube. However, in a bend tube, backwash shock wave generated by reflection greatly reduces methane flamepropagating speed and produces pressures superposition as well. At the same time,backwash shock wave would push back the air in front of the straight tube to dilute themoving methane, which has significant impact on gas combustion, making the flamespeed even lower,and pressure drop relatively.
     If flame speed before the tube corner increases to the supersonic state, flame speedafter the corner in concave wall side is less than that in convex wall side, while pressurein concave wall side is larger than that in convex wall side. If flame before the tubecorner is a subsonic flow, conclusions were completely opposite.
     The research findings would further enrich gas explosion theory, offer beneficialenlightenment and reference to the layout of the structure of roadway and some facilitiesunderground coal mine, and play a guiding role for gas explosion prevention under manycomplex structures and conditions.
     In addition,9papers were published based on the results of the study, including2SCI and3EI papers,3international conference papers and1article published in nationalcore periodical.
引文
[1] http://www.doc88.com/p-901962648884.html.
    [2]苗磊刚,常万众.煤矿事故频发的原因分析及安全对策[J].中国新技术新产品,2011,21:123.
    [3]李润求,施式亮,念其锋,蒋敏.近10年我国煤矿瓦斯灾害事故规律研究[J].中国安全科学学报,2011,21(9):143-151.
    [4] Chapman W R,Wheeler R V.The Propagation of Flame in Mixtures of Methane andAir[J]..Part IV:The Effect of Restrietions in the Path of the Flame.J.Chem.soc.,1926:2139-2147.
    [5] Hjertager Bj rn H, Fuhre, K, Parker, S J and Bakke, J R.. Flame Acceleration ofPropane-Air In a Large-Scale obstructed tube [J].Progress in Astronautics andAeronautics,1984,94:504-522.
    [6] Kjaldman L, Huhtanen R. Simulation of flame acceleration in unconfined vapor cloudexplosion[J]. Technical research center of Finland (VTT),nuclear engineering laboratory.1985,60:1-53.
    [7]周凯元,李宗芬.丙烷-空气爆燃波的火焰面在直管道中的加速运动[J].爆炸与冲击,2000,20(2):137-142.
    [8]毕明树,王淑兰,丁信伟,喻健良.平板形障碍物对气云爆燃威力加强作用[J].石油化工设备,2001,30(4):13-15.
    [9] Ibrahim S S, Masri A R. The effects of obstructions on overpressure resulting frompremixed flame deflagration[J].Journal of Loss Prevention in the Process Industries,2001,14:213-221.
    [10]谢波,范宝春,王克全,夏自柱.挡板障碍物加速火焰传播及其超压变化的实验研究[J]煤炭学报,2002,(6):627-631.
    [11]余立新,孙文超,吴承康.障碍物结构对管道中预混火焰加速的影响[J].燃烧科学与技术,2002,(6):483-486.
    [12]叶经方,姜孝海,董刚,等.楔形障碍物诱导火焰失稳的实验研究[J].弹道学报,2005,17(3):13-18.
    [13] Moen I O. The influence of turbulence on flame propagation in obstacle environment
    [A].First International Specialist Meeting on Fuel-Air Explosions [C].Montreal,1982:101-135.
    [14] Hjertager B H. Computer modelling of turbulent gas explosions in complex2D and3Dgeometries [J]. Journal of Hazardous Materials,1993,34:173-197.
    [15] Hjertager B H. Computer simulation of turbulent reactive gas dynamics [J]. Journal ofModelling Identification and Control,1985,5:211-236.
    [16] Park D J, Green A R, Lee Y S, et al. Experimental studies on interactions between a freelypropagating flame and single obstacles in a rectangular confinement [J]. Combustion andFlame,2007,150:27-39.
    [17] Kindracki J, Kobiera A, Rarata G, et al. Influence of ignition position and obstacles onexplosion development in methane–air mixture in closed vessels [J]. Journal of LossPrevention in the Process Industries,2007,20:551-561.
    [18] Park D J, Lee Y S, Green A R. Experiments on the effects of multiple obstacles in ventedexplosion chambers[J]. Journal of Hazardous Materials,2008,153:340-350.
    [19] Park D J, Lee Y S, Green A R. Prediction for vented explosions in chambers with multipleobstacles [J]. Journal of Hazardous Materials,2008,155:183-192.
    [20] Silvestrini M, Genova B, Parisi G. Flame acceleration and DDT run-up distance for smoothand obstacles filled tubes [J]. Journal of Loss Prevention in the Process Industries,2008,21:555-562.
    [21]林柏泉,吕恒宏,张仁贵等.瓦斯爆炸过程中火焰传播规律及其加速机理的研究[J].煤炭学,1999,24(1):56-58.
    [22]林柏泉,周世宁,张仁贵.障碍物对瓦斯爆炸过程中火焰和爆炸波的影响[J].中国矿业大学学报,1999,28(2):104-107.
    [23] Bjerketvedt Dag, Bakke Jan Roar, Wingerden Kees van. Gas explosion handbook [J]. Journalof Hazardous Materials,1997,52:1-150.
    [24] Abdel Gayed R D, Bradley D. The influence of tubulence upon the rate of turbulentburning [A]. Proceedings of the First Specialist Meeting on FuelAir Explosions [C].Montreal, Canada,1981.
    [25] Veser A, Bruiting W,Dorofeev S,in:4th International Symposium on Hazards,Preventionand Mitigation of Industrial Explosions, France,2002.
    [26] Phylaktou H, Andrews G E. The Acceleration of Flame Propagation in a Tube by anObstacle. Combustion and Flame [J].1991,85(3):363-379.
    [27] Craig T. Johansen, Gaby Ciccarelli. Visualization of the unburned gas flow field ahead ofan accelerating flame in an obstructed square channel.Combustion and Flame [J].2009,156:405–416.
    [28]周凯元.气体爆燃火焰在狭缝中的淬熄[J].火灾科学,1999,8(1):22-33.
    [29] C.K,萨文科等.井下空气冲击波[M].北京:冶金工业出版社,1979.
    [30] Heinrich H J. Ablauf von Gas-und Staubexplosionen—Gemeinsamkeiten undUnterschiede[J].VDI-Berichte [VDI-Verlag GmbH, Düsseldorf].1989,701:93-112.
    [31] Edwards D H, Thomas G O. The diffraction of detonation waves in channels with900bends[J]. Combustionis,1983,3(1):65-76.
    [32] Thomas G O, Williams R L. Detonation interaction with wedges and bends [J].ShockWaves,2002,11:481-492.
    [33]王汉良,周凯元,夏昌敬.气体爆轰波在弯曲管道中传播特性的实验研究[J].火灾科学,2001,10(4):209-212.
    [34]景国勋,史果,贾智伟.瓦斯爆炸冲击波在管道拐弯处传播规律的实验研究.中国科技论文在线,http://www.paper.edu.cn,2008,5.
    [35]景国勋,贾智伟,杨书召.巷道截面积突变处瓦斯爆炸冲击波传播规律理论研究[J].科技导报,2008,26(11):62-64.
    [36]赵曦,孙校书,刘诚.弯管角度对爆轰波传播特性的影响[J].海军航空工程学院学报,2009,24(5):591-593,600.
    [37]杨志,周凯元,谢立军,刘庚冉.Z型管道中气体火焰传播规律的实验研究[J].火灾科学,2006,15(3):111-115.
    [38] Frolov S M, Aksenov V S, Shamshin I O. Shock wave and detonation propagation throughU-bend tubes [J]. Proceedings of the Combustion Institute,2007,31:2421-2428.
    [39] Frolov S M, Aksenov V S, Shamshin I O. Reactive shock and detonation propagation inU-bend tubes [J]. Journal of Loss Prevention in the Process Industries,2007,20:501-508.
    [40]林柏泉,叶青,翟成,菅从光.瓦斯爆炸在分岔管道中的传播规律及分析[J].煤炭学报,2008,2:136-139.
    [41] Knystautas R, Guirao C, Lee J H, and Sulmistras A. Measurement of cell size inhydrocarbon-air mixtures and predictions of critical tube diameter, critical initiationenergy, and detonability limits [J]. In Prog. Astronaut. Aeronaut.,1984,94:23-27.
    [42]余立新,孙文超,吴承康.氢/空气火焰在半开口有障碍管道中的传播特性[J].燃烧科学与技术,2002,8(1):27-30.
    [43]余立新,孙文超,吴承康.障碍物扰动对预混火焰发展的影响[J].中国科学E辑,2003,33(5):420-428.
    [44]陈先锋,孙金华,陆守香,褚冠全,姚礼殷,刘义.稀疏波对预混火焰影响规律的试验研究[J].自然科学进展,2007,5:692-696.
    [45] Xianfeng Chen, Yin Zhang, Ying Zhang.Effect of CH4-Air Ratios on Gas ExplosionFlame Microstructure and Propagation Behaviors[J]. Energies,2012,5:4132-4146.
    [46] Johansen Craig T, Ciccarelli Gaby. Visualization of the unburned gas flow field ahead ofan accelerating flame in an obstructed square channel[J].Combustion andFlame,2009,156:405-416.
    [47]王汉良,周凯元,杨志,谢立军.气体爆轰波在管道中绕射和反射的实验研究[J].火灾科学,2005,14(3):177-181.
    [48]张勇,黄佐华,王倩,王金华,蒋德明,苗海燕.天然气-氢气-空气混合气火焰传播特性研究[J].内燃机学报,2006,24(6):481-488.
    [49] Ciccarelli G, Dorofeev S.Flame acceleration and transition to detonation in ducts[J].Progress in Energy and Combustion Science,2008,34:499-550.
    [50]王岳,雷宇,张孝谦, Konig J, Eigenbrod C.浮力对皱折锋面预混V形火焰的影响[J].燃烧科学与技术,2002,8(6):493-497.
    [51]杨艺,何学秋,刘建章,王从银.瓦斯爆燃火焰内部流场分形特性研究[J].爆炸与冲击.2004,24(1):30-36.
    [52]冯天植,刘成民,赵润祥等.纹影技术述评[J].弹道学报,1994,2:89-96.
    [53]陈莹.工业防火与防爆[M].北京:中国劳动出版社,1993.
    [54]张雷,郭子如,丁以斌.障碍物立体结构对火焰传播速度和超压的影响[J].火工品,2007,4:35-37.
    [55]王志青,谭迎新.障碍物形状对瓦斯爆炸影响的研究[J].煤炭工程,2010,9:76-78.
    [56] Thibault P,.Liu YK, Chan C,.Lee JH, Knystautas R, Guirao C, HjertagerB and FuhreK.Transmission of an ExplosionThrough an Orifice [J].Proceedings of the CombustionInstitute,,1982,19:599-606.
    [57] Chao Jenny C.The Propagation Mechanism of High Speed Turbulent Deflagrations [D].Montreal,Quebec,Canada: McGill University,2002.
    [58]陈先锋,孙金华,姚礼殷,刘洋.Tulip火焰形成过程中的细微结构特性[J].燃烧科学与技术,2008,14(4):350-354.
    [59] Markstein G H. A shock-tube study of flame front-pressure wave interactions [J]. Proc.Comb. Inst,6th,1956:387-398.
    [60] Salamandra G D, Bazhenova T V and Naboko I M.Formation of detonation wave duringcombustion of gas in combustion tube [J]. Proc. Comb. Inst.,7th,1958:851-855.
    [61] Bjerketvedt D, Mjaavatten A. Simulation of gas dynamic flow with a Matlab version ofthe random choice method [J]. Proc. of the Nordic Matlab Conference,2001.
    [62] Dunn-Rankin D and Sawyer RF. Tulip flames: changes in shape of premixed flamespropagating in closed tubes [J]. Experiments in fluids,1998,24:130-140.
    [63] Dunn-Rankin D, Barr P K and Sawyer R F. Numerical and Experimental study of “tulip”flame formation in a closed vessel, Proc. Comb. Inst.,21th,1986:1291-1301.
    [64]赵衡阳.气体与粉尘爆炸原理[M].北京:北京理工大学出版社,1996.
    [65] Jarosinsky J,Strehlow R.A, Azarbarzin.A.The mechanism of lean limit extinguishment ofan upward propagating flame in a standard flammability tube [C].. In19th symposium oncombustion,the combustion institute,1982:1549-1557.
    [66] Patnaik G,Kailasanath k. Numerieal simu1ation of the extinguishment of doward propagatingflames [C]..In24th symposium on combustion,the combustion institute,1992:189-195.
    [67]陈先锋.丙烷-空气顶混火焰微观结构及加速传播过程中的动力学研究[D].合肥:中国科学技术大学,2007.
    [68]白好杰,唐大放.一种新型矿井用风门系统的研制[J].风机技术.2011,5:31-34.
    [69]程卫民,王刚,张睿等.煤与瓦斯突出形成冲击波的灾变损害[J].科技导报,2008,26(24):61-65.
    [70]贺亮,刘明园.风门的合理设置及改进[J].煤炭技术.2009,28(9):9-11.
    [71]胡跃伟,张光辉,夏永中.矿用自动风门的设计与应用[J].中州煤炭.2012(9):21-22.
    [72]李建新,张志林.风门合理设置的几点看法[J].煤矿开采.2002,7(4):68.
    [73]苗法田.矿井风门冲击变形特征及结构优化[J].矿业安全与环保.2013.
    [74]邵昊,蒋曙光,吴征艳等.推拉式自动风门系统在南沼河铁矿中的应用[J].采矿与安全工程学报,2008,25(4):449-452,457.
    [75]孙建华,赵景礼,魏春荣等.一种用于矿井中的多孔泄压阻隔爆自动风门[J].中国矿业.2011,20(3):105-108.
    [76]万学刚,麻志强,袁贵民等.煤与瓦斯突出矿井反向防突风门设计[J].中国科技纵横,2012(5):142.
    [77]王江.袁庄矿采用均压技术防治采空区自然发火[J].中小企业管理与科技,2011,6:259.
    [78]蔡艺华,王飞.煤矿井下采空区密闭墙相关问题的探讨[J].煤炭技术,2004,3:63-65.
    [79]陈晓江.火灾回风巷建防火密闭墙的启示[J].山东煤炭科技,2012,4:207-209.
    [80]杜志刚.煤矿快速防爆泄压密闭墙(器)[J].煤矿安全,2009:94-96.
    [81]李继水.煤矿井下防火密闭墙的构筑技术[J]..山东煤炭科技,2006,2:23+25.
    [82]刘培民,杜斌.采空区密闭墙构建新技术探讨与实践[J].山东煤炭科技,2011(6):15.
    [83]滕博等.煤矿防爆密闭墙技术标准探讨[J].煤炭科学技术,2007,2:97-100.
    [84]谢伟.工作面联络巷密闭墙漏风对采空区自燃影响及预防[J].煤矿安全,2011,12:122-123,126.
    [85] Lee J S H.Gas explosions,中科院力学所资料,1985.
    [86] Moen I O, Lee J H S,Hjertager B H., et al. Pressure development due to turbulent flamepropagation in large-scale methane-air explosions [J]. Combustion and Flame,1982,47:31-52.
    [87].Pappas J A.Venting of large-scale volumes [J]., Proc. from the Control and Prevention ofGas Explosions, Oyez/IBC, December,1983.
    [88] http://www.jiaodong.net.2004-12-0320:13:18新华网.
    [89]赵光福.井下硐室变形破坏特点及设计施工方案优化[J].河北煤炭,2011,1:17-18.
    [90]张军颖,尤飞,刘亚林.乌兰煤矿永久避难硐室的设计与构建[J].采矿技术,2012,6:15-16+40.
    [91]张海军,康聪芳.龙背湾面板堆石坝坝料开采硐室爆破技术应用[J].人民黄河,2012(11):113-114,117.
    [92]张福伟.永久避难硐室在千秋煤矿建设中的应用[J].河南科技,2012,14:85.
    [93]张大明.君颖煤矿避难硐室研究与设计[J].辽宁工程技术大学学报(自然科学版),2012,5:707.
    [94]徐严军,汪占领,张国军.松软破碎大断面硐室综合加固技术研究与应用[J].煤炭工程,2012,12:35-37.
    [95]肖时景,王育德.煤矿井下避难硐室的研究[J].中国-东盟博览,2011,7:72.
    [96]李芳玮等.煤矿井下避难硐室的选址及其关键技术[J].辽宁工程技术大学学报(自然科学版),2012,5:686-689.
    [97] Zengliang Zhang, Baiquan Lin,Gemei Li&Qing Ye. Explosion Pressure Characteristics ofCoal Gas[J]. Combustion Science and Technology,2013,185(3),514-531.
    [98] Cheng Z, Bai-Quan L, Qing Y, et al. Influence of geometry shape on gas explosionpropagation laws in bend roadways[J]. Procedia Earth and Planetary Science.2009,1:193-198.
    [99] Lei P, Jialei T, Wei Y, et al. Hazard Characteristics from Gas Explosion in UndergroundConstructions [J]. Procedia Engineering,2012,43:293-296.
    [100] Phylaktou H, Foley M, Andrews G E. Explosion enhancement through a90°curvedbend[J]. Journal of Loss Prevention in the Process Industries,1993,6(1):21-29.
    [101] Qi Z, Bin Q, Da-Chao L. Estimation of pressure distribution for shock wave through thebend of bend laneway[J]. Safety Science.2010,48(10):1263-1268.
    [102] Qing Y, Bai-Quan L, Zhen-Zhen J, et al. Propagation law and analysis of gas explosion inbend duct[J]. Procedia Earth and Planetary Science.2009,1:316-321.
    [103]王云艳,覃彬,张奇.爆炸空气冲击波在巷道转弯处的传播特性[J].安全与环境学报,2007,7(3):105-106.
    [104] Blanchard R, Arndt D, Gr tz R, et al. Explosions in closed tubes containing baffles and90degree bends[J]. Journal of Loss Prevention in the Process Industries,2010,23:253-259.
    [105] WANG Lai,LI Tingchu.Propagation of shock wave in rectangular bend turns and itsnumerical simulation[J]. Journal of Natural Disasters,2004,13(4):146-149.
    [106]陈彩云.瓦斯爆炸对局部通风网络风流影响的数值模拟研究[D].安徽理工大学,2010.
    [107]杨应迪.瓦斯爆炸对矿井通风网络的动力效应研究[D].安徽理工大学,2011.
    [108]顾金龙,翟成.爆炸性气体在连续拐弯管道中传播特性的实验研究[J].火灾科学,2011,20(1):16-20.
    [109] Kosinski P. Numerical analysis of shock wave interaction with a cloud of particles in achannel with bends[J]. International Journal of Heat and Fluid Flow,2007,28:1136-1143.
    [110]贾智伟,刘彦伟,景国勋.瓦斯爆炸冲击波在管道拐弯情况下的传播特性[J].煤炭学报,2011,36(1):97-100.
    [112] Robert Blanchard, Detlef Arndt, Rainer Gra¨tz, Marco Poli, Swen. Explosions in closedtubes containing baffles and90degree bends [J].Scheider.Journal of Loss Prevention in theProcess Industries,2010,23:253–259.
    [113] hylaktou H, Foley M, Andrews G E. Explosion enhancement through a90-degress curvedbend [J].Journal of Loss Prevention in the Process Industries,1993,6(1):21-29.
    [114] Zhou B, Sobiesiak A., Quan P. Flame behavior and flame-induced flow in a closedrectangular duct with a90degrees bend [J]. International Journal of Thermal Sciences,2006,45(5):457-474.
    [115] Sato K., Sakai Y, Chiga M. Flame propagation along900bend in an open duct [J]. InTwenty-sixth symposium on combustion. The Combustion Institute,1996:931–937.
    [116]李双会.论隔爆外壳中的爆炸压力及其影响因素[J].煤矿安全,2003,S1:101-103.
    [117]林建忠,阮晓东,陈邦国等.流体力学[M].北京:清华大学出版社,2005:9.
    [118]贾月梅,赵秋霞,赵广慧.流体力学[M].北京:国防工业出版社,2006.8.
    [119]王松岭.流体力学[M].北京:中国电力出版社,2004.11.
    [120]汤文辉.冲击波物理[M].北京:科学出版社,2011:3.
    [121]王新月,杨清真.热力学与气体动力学基础[M].西安:西北工业大学出版社,2004:8.
    [122] http://jpkc.nwpu.edu.cn/jp2005/17/dzjc/chapter/chapter6/chapter6_2.htm.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700