用户名: 密码: 验证码:
暗黑鳃金龟幼虫肠道微生物分子多态性及纤维素降解菌多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从生态学和进化角度来说,肠道微生物对宿主昆虫有着非常重要的作用。然而,肠道微生物种类和群落组成是否会随着宿主昆虫栖息地环境的变化而变化,目前鲜有报道,是值得深入研究的问题。本文研究了不同地理种群暗黑鳃金龟幼虫后肠肠道细菌群落组成和多样性,以及环境因子对肠道细菌群落组成和多样性的影响。同时,采用好氧培养技术,从暗黑鳃金龟幼虫后肠内分离了具有纤维素酶产生能力的菌株,并从中克隆了纤维素酶基因,研究了肠道细菌对蛴螬的生理功能方面的作用。
     1.构建了10个不同地理种群暗黑鳃金龟幼虫肠道细菌的16S rRNA基因克隆文库,并通过变性梯度凝胶电泳(Denaturing Gradient Gel Electrophoresis, DGGE)分析归类克隆子,挑取不同DGGE斑型(band type)对应的克隆子测序。结果表明幼虫肠道细菌可归为205个操作分类单元(Operational Taxonomic Units, OTUs),分别属于厚壁菌门(Firmicutes),变形菌门(Proteobacteria),拟杆菌门(Bacteroidetes),放线菌门(Actinobacteria)和梭杆菌门(Fusobacteria).
     比较不同地理种群暗黑鳃金龟幼虫肠道细菌群落及组成,可以发现以下几个特征:(1)厚壁菌门和变形菌门细菌为肠道细菌优势细菌类群。厚壁菌门中的梭菌纲细菌广泛存在于所有10个地理种群蛴螬肠道内,且为肠道细菌绝对优势菌群。β-变形菌纲,γ-变形菌纲和ε-变形菌纲的细菌也广泛存在于10个地理种群样本蛴螬肠道内,只不过与梭菌纲细菌相比,所占比例较小。拟杆菌门,放线菌门和梭杆菌门细菌的分布则非常不均匀,在有些种群的蛴螬肠道内有分布,有些种群肠道内则没有。(2)有6种OTUs代表的细菌遗传型为所有地理种群的蛴螬所共有,在10个种群蛴螬肠道细菌克隆文库内都有发现。其余的细菌遗传型在地理种群样本肠道内则呈不均匀分布:很多细菌遗传型只存在特定的地理种群蛴螬肠道内,在其他种群的蛴螬肠道内没有分布。(3)不同种群蛴螬肠道细菌群落多样性存在很大差异:天津种群肠道细菌种类数最少,为38.8,而福建种群肠道细菌丰富度最高,细菌种类数为86.5。∫-LIBSHUFF分析发现绝大部分种群肠道细菌克隆文库组成之间存显著性差异。(4)相关分析(Spearman nonparametric correlation test)和冗余分析(Redundancy discriminate analysis, RDA)结果显示,不同地理种群蛴螬肠道细菌群落组成和多样性方面的差异,与宿主昆虫栖息地环境条件密切相关。宿主昆虫栖息的土壤理化条件(如土壤pH,土壤有机质含量和土壤全氮量),以及栖息地的气候条件(年平均温度,一月份最低温和年降雨量)等环境因子,都可以显著影响蛴螬肠道细菌多样性和群落组成。
     2.从暗黑鳃金龟幼虫后肠内分离到207株纤维素降解菌。通过核糖体DNA扩增片段限制性内切酶分析(Amplifed Ribosomal DNA Restriction Analysis, ARDRA)分型后,结合代表菌株16S rDNA测序比对结果和生理生化试验结果,所有这些纤维素降解菌可以归为21种不同的细菌,分布在4个不同的门:变形菌门,放线菌门,厚壁菌门和拟杆菌门,其中,变形菌门细菌为纤维素降解菌中最优势的细菌类群。假单胞菌属Pseudomonas,纤维菌属Cellulosimicrobium,苍白杆菌属Ochrobactrum,根瘤菌属Rhizobium和微杆菌属Microbacterium为最主要的属。而属于芽孢杆菌属Bacillus,发酵成对杆菌属Dyadobacter, Siphonobacter属,副球菌属Paracoccus, Kaistia属,德沃斯氏菌属Devosia, Labrys属,剑菌属Ensifer,贪食菌属Variovorax, Shinella属,柠檬酸杆菌属Citrobacter和寡养食单胞菌属Stenotrophomonas的细菌也被分离得到,只不过所占比例较小。此外,在本研究中,有一些种类的细菌,如Siphonobacter aquaeclarae,芬氏纤维微菌Cellulosimicrobium funkei, Paracoccus sulfuroxidans,弗氏柠檬酸杆菌Citrobacter freundii和硝化还原假单胞菌Pseudomonas nitroreducens都是首次被报道具有纤维素降解活性。
     3.本研究使用兼并引物同源克隆并结合染色体步移的方法,从1株暗黑鳃金龟肠道内的纤维素降解菌Rhizobium radiobacter基因组内成功获得2个纤维素酶编码基因。其中1个基因为GH3家族的纤维素酶基因(暂命名celⅢ), Blast结果显示,celⅢ与来自Grosmannia clavigera kw1407的beta-glucosidase的相似性为60%。另1个基因属于GH8家族的纤维素酶基因(暂命名celⅧ),而BlastX结果显示,celⅧ编码的蛋白与来自Agrobacterium sp. ATCC31749的endoglucanase (ZP_08530463)的相似性为87%。我们的研究结果显示暗黑鳃金龟肠道内丰富多样的微生物是一个资源宝库,可以从中分离发现许多新的纤维素(半纤维素)降解菌,克隆新的纤维素(半纤维素)酶基因,并最终应用于生物能源生产。
Gut microbiota has diverse ecological and evolutionary effects on their hosts. However, the ways in which it responds to environmental heterogeneity remain poorly understood. In this study, we surveyed intestinal microbiota of Holotrichia parallela larvae that from different geographic regions, and examined how environmental factors account for the variation of gut community composition between natural population. Furthermoer, by applying aerobic cultivation conditions we isolated and identified cellulose-degrading bacteria from the gut of H. parallela and cloned genes fragments encoding cellulose, to evaluate the nutritional contributions of gut microbiota to scarabs.
     1. Bacterial16S rRNA gene clone libraries were constructed and clones were subsequently screened by Denaturing Gradient Gel Electrophoresis (DGGE) and sequenced. The result showed that the bacterial16S rRNA gene sequences grouped into205OTUs, and identified as Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria and Fusobacteria sequences.
     After comparing microbial community richness and composition among these host populations, several feature of the gut microbiota can be found:(1). One prominent feature of the gut microbiota of H. parallela larvae was the high prevalence of Firmicutes and Proteobacteria sequences. Sequences affiliated with Firmicutes (mainly Clostridia) were detectable in all of the natural populations, and they were the most prominent group in the hindgut microbiota of the ten populations. Sequences related to Beta-, Gamma-and Deltaproteobacteria were also present in all natural populations, although at relatively low proportions. However, bacteria belonging to other phyla (Bacteroidetes, Actinobacteria, and Fusobacteria) were unevenly distributed across the host populations. Bacteria belonging some phyla were only detected in several population but absent from other natural populations.(2). Six OTUs were shared between the ten natural populations, and the remaining OTUs were unevenly spread across the host populations, with many appearing in only1host population among the ten sampled.(3). Species richness also varied across the host locations. The bacterial community from the TJ population (38.8) possessed the least species richness, while the FJ (86.5) population had the highest species richness. The∫-LIBSHUFF analysis also showed that most of the ten clone libraries were significantly different from each other.(4) Spearman nonparametric correlation test and redundancy discriminate analysis(RDA) showed that the bacterial diversity (Chaol estimator) and community structure variation that we observed can be explained by soil pH, organic carbon and total nitrogen, and the climate factors (e.g., mean annual temperature, January low temperature, mean annual precipitation) of the locations where the populations were sampled.
     2. Applying aerobic cultivation conditions,207strains of aerobic and facultatively anaerobic cellulolytic bacteria ifrom the gut of H. parallela larvae. These bacterial isolates were assigned to21genotypes by amplified ribosomal DNA restriction analysis (ARDRA). A partial16S rDNA sequence analysis and standard biochemical and physiological tests were used for the assignment of the21representative isolates. Our results show that the cellulolytic bacterial community is dominated by the Proteobacteria (70.05%), followed by the Actinobacteria (24.15%), the Firmicutes (4.35%), and the Bacteroidetes (1.45%). Pseudomonas, Ochrobactrum, Rhizobium, Cellulosimicrobium, and Microbacterium were the predominant groups, but members of Bacillus, Dyadobacter, Siphonobacter, Paracoccus, Kaistia, Devosia, Labrys, Ensifer, Variovorax, Shinella, Citrobacter, and Stenotrophomonas were also found. Furthermore, some cellulolytic bacteria, such as Siphonobacter aquaeclarae, Cellulosimicrobium funkei, Paracoccus sulfuroxidans, Citrobacter freundii, and Pseudomonas nitroreducens are reported to be cellulolytic for the first time in this study.
     3. Using the homologous cloning strategy with degenerate primers and chromosome walking techniques, two genes fragments encoding cellulase were cloned from one bacterial strain Rhizobium radiobacter isolated from the gut of H. parallela larvae. One gene is glycosyl hydrolase family (GH)3family, and temporarily called celⅢ. Sequence analysis showed that the celⅢ encoded products shared sixty percent similarity to the beta-glucosidase from Grosmannia clavigera kw1407. The other gene is glycosyl hydrolase family (GH)8family, and temporarily called celⅧ. Sequence analysis showed that the celⅢencoded products shared sixty percent similarity to the endoglucanase from Agrobacterium sp. ATCC31749. The presented results suggests scarab larvae have potential to assist the bio-fuel industry by providing new sources of (hemi)cellulolytic bacteria and bacterial (hemi)cellulolytic enzymes.
引文
1.贝绍国,刘玉升,崔俊霞.日本龟蜡蚧肠道细菌分离及鉴定研究.山东农业大学学报(自然科学版),2005,36:209-2121.
    2.东秀珠,蔡妙英.常见细菌系统鉴定手册.北京:科学出版社,2001
    3.董俊丽.深海细菌Martelella mediterranea纤维素酶基因的克隆、表达与酶学分析.[硕士学位论文].武汉:华中农业大学图书馆,2010.
    4.傅强,张志涛,胡萃.高温处理后褐飞虱体内共生酵母菌和氨基酸需求的变化.昆虫学报,2001,44(4):534-540.
    5.杭苏琴.甘露寡糖对断奶仔猪肠道微生物的影响.[博士学位论文].南京:南京南京农业大学图书馆,2007.
    6.何华,刘玉升.窗胸萤肠道细菌分离及鉴定研究.华东昆虫学报,2007,16:172-176.
    7.胡毅,谭北平,麦康森,艾庆辉,郑石轩,程开敏.饲料中益生菌对凡纳滨对虾生长、肠道菌及部分免疫指标的影响.中国水产科学,2008,15:244-251.
    8.黄胜威.暗黑鳃金龟肠道共生菌分子多态性研究.[硕士学位论文].武汉:华中农业大学图书馆,2009.
    9.黄雪峰.应用DGGE技术分析白色念珠菌定植对小鼠肠道微生物区系的影响.[硕士学位论文].重庆:西南大学图书馆,2006.
    10.何正波,殷幼平,曹月青,董亚敏,张伟.桑粒肩天牛幼虫肠道菌群的研究.微生物学报,2001,41:741-744.
    11.李付鹏,伍宝朵,马朝芝,傅廷栋.基于PCR的染色体步移技术研究进展.中国生物工程杂志,2010,30:87-94.
    12.刘玉升,叶保华,高庆刚,郑继法.中华真地鳖若虫肠道细菌的研究.中国微生态学杂志,2007,19:158-161.
    13.孙建中,陈春润.昆虫与生物质能源利用:一个新的交叉学科前沿.昆虫知识,2010,47:1033-1042.
    14.孟祥杰,刘玉升,崔俊,墨铁路,张亮.六斑异瓢虫成虫肠道细菌分离及鉴定研究.中国微生态学杂志,2008,20:120-125.
    15.孙雪奇,黄玉祥,董长江,刘智慧,郑常文,鸿莺.家蚕肠道好氧和部份兼厌氧微生物及蚕用微生态制剂的研究.四川蚕业,1996,24:13-15.
    16.孙玉英,张继泉,王淑军.芽孢杆菌Bacillus sp.S-1壳聚糖酶基因的克隆与序列分析.中国生物工程杂志,2009,29:72-77.
    17.汤历,廉婕,陆小军,戴玉容,谭晓珊,郑常格.德国小蠊肠道细菌抗真菌的初步研究.昆虫天敌,2005,27:140-144.
    18.王丹丹.中华按蚊肠道细菌分子多态性研究.[硕士学位论文].武汉:华中农业大学图书馆,2008.
    19.杨贵军,吴涛.沟眶象成虫肠道好氧及兼性厌氧菌群的研究.宁夏大学学报(自然科学版),2008,29:166-169.
    20.杨红.木食性散白蚁肠道共生细菌的区系结构和多样性.[博士学位论文].武汉:华中师范大学图书馆,2004.
    21.杨红,彭建新.低等白蚁肠道共生微生物的多样性及其功能.微生物学报,2006,46:496-499.
    22.易发平.家蚕肠道好氧微生物菌群分析及微生态环境调控研究.[硕士学位论文].重庆:西 南农业大学,2001.
    23.张丽.黄粉虫肠道细菌及饲料成分选择的研究.[硕士学位论文].泰安:山东农业大学图书馆,2007.
    24.张伟,吴立民.暗黑和铜绿金龟子的无公害防治技术.江苏农业科学,2003,6:67-68.
    25.周峻沛.云斑天牛胃肠道内共生细菌来源的纤维素酶和半纤维素酶的初步研究.[博士学位论文].北京:中国农业科学研究院图书馆,2010.
    26,卓凤萍.贡嘎蝠蛾幼虫肠道细菌多样性分析.[硕士学位论文].重庆:重庆大学图书馆,2005.
    27. AkSoy S. Tsetse-A haven for microorganisms. Parasitol Today,2000,16:114-118.
    28. Andert J, Marten A, Brandl R, Brune A. Inter-and intraspecific comparison of the bacterial assemblages in the hindgut of humivorous scarab beetle larvae(Pachnoda spp.). FEMS Microbiol Ecol,2010,74:439-449.
    29. Babendreier D, Joller D, Romeis J, Bigler F, Widmer F. Bacterial community structures in honeybee intestines and their response to two insecticidal proteins. FEMS Microbiol Ecol,2007, 59:600-610.
    30. Barendse W, Armitage SM. The single strand conformational analysis of cattle and human single nucleotide polymorphisms may be biased towards specific sequence motifs that minimize local secondary structure of single strand DNA. Anim Biotechnol,2001,12:21-28.
    31. Bayon C. Volatile fatty acids and methane production in relation to anaerobic carbohydrate fermentation in Oryctes nasicornis larvae (Coleoptera:Scarabaeidae). J Insect Physiol,1980,26: 819-828.
    32. Beard CB, Cordon-Rosales C, Durvasula RV. Bacterial symbionts of the triatominae and their potential use in control of chagas disease transmission. Annu Rev Entomol,2002,47:123-141
    33. Behar A, Yuval B, Jurkevitch E. Gut bacterial communities in the Mediterranean fruit fly (Ceratitis capitata) and their impact on host longevity. J Insect Physiol,2008,54:1377-1383.
    34. Bell C, McIntyre N, Cox S, Tissue D, Zak J. Soil Microbial Responses to Temporal Variations of Moisture and Temperature in a Chihuahuan Desert Grassland. Microbial Ecol,2008,56:153-167.
    35. Benedict C, Okeke BC, Lu J. Characterization of a defined cellulolytic and xylanolytic bacterial consortium for bioprocessing of cellulose and hemicelluloses. Appl Biochem Biotechnol,2011, 163:869-881.
    36. Berge O, Lodhi A, Brandelet G, Santaella C, Roncato M A, Christen R, Heulin T, Achouak W. Rhizobium alamii sp. Nov., an exopolysaccharide-producing species isolated from legume and non-legume rhizospheres. Int J Syst Evol Microbiol,2009,59:367-372.
    37. Broderick NA, Raffa KF, Handelsman J. Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc Natl Acad Sci USA,2006,103:15196-15199.
    38. Broderick NA, Robinson CJ, McMahon MD, Holt J, Handelsman J, Raffa KF. Contributions of gut bacteria to Bacillus thuringiensis-induced mortality vary across a range of Lepidoptera. BMC Biol,2009,7:DOI:10.1186/1741-7007-1187-1111.
    39. Brodey CL, Rainey PB, Tester M, Johnstone K. Bacterial blotch disease of the cultivated mushroom is caused by an ion channel forming lipodepsipeptide toxin. Mol Plant-Microbe Interact,1991,4:407-411.
    40. Cazemier AE, Hackstein JHP, Op den Camp HJM., Rosen J, Vander Drift C. Bacteria in the intestinal tract of different species of arthropods. Microbial Ecol,1997a,33:189-197.
    41. Cazemier AE, Op den Camp HJM, Hackstein JHP, Vogels GD. Fibre digestion in arthropods. Comp Biochem Physiol, PartA,1997b,118:101-109.
    42. Cazemier AE,Verdoes JC, Reubsaet FAG, Hackstein JH, Van der Drift C, Op den Camp HJM., Promicromonospora pachnodae sp. nov., a member of the (hemi) cellulolytic hindgut flora of larvae of the scarab beetle Pachnoda marginata. Antonie van Leeuwenhoek,2003,83:135-148.
    43. Cazemier AE, Verdoes JC, Van Ooyen AJJ, Op den Camp HJM. Molecular and biochemical characterization of two xylanase-encoding genes from Cellulomonas pachnodae. Appl Envir Microbiol,1999,65:4099-4107.
    44. Chapman A D. Numbers of living species in Australia and the World (2nd edition). [Canberra, ACT]:Department of the Environment, Water, Heritage and the Arts,2009.
    45. Chelius M K, Triplett E W. Dyadobacter fermentans gen. Nov., sp. Nov., a novel gram-negative bacterium isolated from surface-sterilized zea mays stems. Int J Syst Evol Microbiol,2000, 50:751-758.
    46. Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW. Eztaxon:A web-based tool for the identification of prokaryotes based on 16s ribosomal ma gene sequences. Int J Syst Evol Microbiol,2007,57:2259-2261.
    47. Clark JS, Campbell JH, Grizzle H, Acosta-Martinez V, Zak JC. Soil microbial community response to drought and precipitation variability in the Chihuahuan Desert. Microbial Ecol,2009:57: 248-260.
    48. Clermont D, Diard S, Bouchier C, Vivier C, Bimet F, Motreff L, Welker M, Kallow W, Bizet C. Microbacterium binotii sp. Nov., isolated from human blood. Int. J Syst Evol Microbiol,2009, 59:1016-1022.
    49. deGraaff M A, Classen A T, Castro H F, Schadt CW. Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates. New Phytol,188: 1055-1064.
    50. Delalibera I, Handelsman JJ, Kenneth FR. Contrasts in Cellulolytic Activities of Gut Microorganisms Between the Wood Borer, Saperda vestita (Coleoptera:Cerambycidae), and the Bark Beetles, Ips pini and Dendroctonus frontalis (Coleoptera:Curculionidae). Environ Entomol, 2005,34:541-547.
    51. Delatte H, Gimonneau C,Triboire A, Fontenille D. Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, vector of chikungunya and dengue in the Indian Ocean. J Med Entomol,2009,46:33-41.
    52. Dillon RJ, Webster G, Weightman AJ, Charnley AK. Diversity of gut microbiota increases with aging and starvation in the desert locust. Antonie van Leeuwenhoek,2010,97:69-77.
    53. Dong Y, Manfredini F, Dimopoulos G. Implication of the Mosquito Midgut Microbiota in the Defense against Malaria Parasites. PLoS Pathog,2009,5:el000423. doi:10.1371/ journal.ppat.1000423.
    54. Dowd PF. Insect fungal symbionts:A promising source of detoxifying enzymes. J Indust Microbiol Biotechnol,1992,9:149-161.
    55. Egert M, Wagner B, Lemke T, Brune A, Friedrich MW. Microbial community structure in midgut and hindgut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera:Scarabaeidae). Appl Environ Microbiol,2003,69:6659-6668.
    56. Egert M, Stingl U, Bruun DL, Wagner B, Brune A, Friedrich MW. Structure and topology of microbial communities in the major gut compartments of Melolontha melolontha larvae (Coleoptera:Scarabaeidae). Appl Environ Microbiol,2005,71:4556-4566.
    57. Emami K, Topakas E, Nagy T, Henshaw J, Jackson KA, Nelson KE, Mongodin EF, Murray JW, Lewis RJ, Gilbert HJ. Regulation of the xylan-degrading apparatus of Cellvibrio japonicus by a novel two-component system. J Biol Chem,2009,284:1086-1096.
    58. Fisher M, Miller D, Brewster C, Husseneder C, Dickerman A. Diversity of gut bacteria of Reticulitermes flavipes as examined by 16S rRNA gene sequencing and amplified rDNA restriction analysis. Curr Microbiol,2007,55:254-259.
    59. Fujita K, Silver J. Single-strand conformational polymorphism. PCR Methods Appl,1994, 4:S137-S140.
    61. Gavriel S, Jurkevitch E, Gazit Y, Yuval B. Bacterially enriched diet improves sexual performance of sterile male Mediterranean fruit flies. J Appl Entomol,2011,135:564-573.
    62. Germida J J. Growth of indigenous Rhizobium leguminosarum and Rhizobium meliloti in soils amended with organic nutrients. Appl Environ Microbiol.1988,54:257-263.
    63. Gijzen HJ, van der Drift C, Barugahare M, op den Camp HJM. Effect of Host Diet and Hindgut Microbial Composition on Cellulolytic Activity in the Hindgut of the American Cockroach, Periplaneta americana. Appl Environ Microbiol,1994,60:1822-1826.
    64. Hackstein J H P, Stumm C K. Methane production in terrestrial arthropods. Proc Natl Acad Sci USA,1994,91:5541-5445.
    65. Han JI, Choi HK, Lee SW, Orwin PM, Kim J, LaRoe SL, Kim T, O'Neil J, Leadbetter JR, Lee SY, Hur CG, Spain JC, Ovchinnikova G, Goodwin L, Han C. Complete genome sequence of the metabolically versatile plant growth-promoting endophyte Variovorax paradoxus S110. J Bacteriol,2011,193:1183-1190.
    66. Hartmana WH, Richardsona CJ, Vilgalysb R, Brulandc GL. Environmental and anthropogenic controls over bacterial communities in wetland soils. Proc Natl Acad Sci USA,2008,105: 17842-17847.
    67. Harris HL, Braig HR. Sperm chromatin remodelling and Wolbachia-induced cytoplasmic incompatibility in Drosophila. Biochem Cell Biol,2003,81:229-240.
    68. Hillesland H, Read A, Subhadra B, Hurwitz I, McKelvey R, Ghosh K, Das P, Durvasula R. Identification of Aerobic Gut Bacteria from the Kala Azar Vector, Phlebotomus argentipes:A Platform for Potential Paratransgenic Manipulation of Sand Flies. AM J Trop Med Hyg,2008,79: 881-886.
    69. Holt JG, Krieg NR, Sheath PIIA. Bergey's Manual of Deteminative Bacteriology. (Nith Edition). Maryland:Williams & Witkins, Baltimore,1994.
    70. Hong J, Tamaki H, Yamamoto K, Kumagai H. Cloning of a gene encoding thermostable cellobiohydrolase from Thermoascus aurantiacus and its expression in yeast. Appl Microbiol Biotechnol,2003,63:42-50.
    71. Hong PY, Wheeler E, Cann IKO, Mackie RI. Phylogenetic analysis of the fecal microbial community in herbivorous land and marine iguanas of the Galapagos Islands using 16S rRNA-based pyrosequencing. ISME J,2011,5:1461-1470.
    72. Hosokawa T, Kikuchi,Y, Nikoh, N, Meng XY, Hironaka M, Fukatsu T. Phylogenetic Position and Peculiar Genetic Traits of a Midgut Bacterial Symbiont of the Stinkbug Parastrachia japonensis. Appl Environ Microbiol,2010,76:4130-4135.
    73. Hou Y, Wang T, Long H, Zhu H. Cloning, sequencing and expression analysis of the first cellulase gene encoding cellobiohydrolase 1 from a cold-adaptive Penicillium chysogenum FS010. Acta Biochim Biophys Sin,2007 39:101-107
    74. Huang SW, Zhang HY, Marshall S, Jackson TA. The scarab gut:A potential bioreactor for bio-fuel production. Insect Sci,17:175-183.
    75. Hyodo F, Tayasu I, Inoue T, Azuma T, Kudo T, Abe T. Differential role of symbiotic fungi in lignin degradation and food provision for fungus-growing termites (Macrotermitinae:Isoptera). Func Ecol,2003,17:186-193.
    76. Jian S, Zhang BR, Wei GF. Molecular Profiling of the Clostridium leptum Subgroup in Human Fecal Microflora by PCR-Denaturing Gradient Gel Electrophoresis and Clone Library Analysis. Appl Environ Microbiol,2006,72:5232-5238.
    77. Kikuchi Y, Hosokawa T, Fukatsu T. Insect-microbe mutualism without vertical transmission:a stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl Environ Microbiol,2007,73:4308-4316.
    78. Kikuchil Y, Hosokawa T, Nikoh N, Meng XY, Kamagata Y, Fukatsu T. Host-symbiont co-speciation and reductive genome evolution in gut symbiotic bacteria of acanthosomatid stinkbugs. BMC Biol.2009,7:2 doi:10.1186/1741-7007-7-2.
    79. Kim SJ, Lee CM, Han B R, Kim MY, Yeo YS, Yoon SH, Koo BS, Jun HK. Characterization of a gene encoding cellulase from uncultured soil bacteria. FEMS Microbiol Lett,2008,28:44-51.
    80. Kodama K, Kimura K, Komagata K. Two new species of Pseudomonas:P. Oryzihabitans isolated from rice paddy and clinical specimens and P. Luteola isolated from clinical specimens. Int J Syst Evol Microbiol,1985,35:467-474.
    81. Lang E, Lapidus A, Chertkov O, Brettin T, Detter JC, Han C, Copeland A, DelRio TG, Nolan M, Chen F. Complete genome sequence of Dyadobacter fermentans type strain (ns114). Stand Genomic Sci.2009,1:133-140.
    82. Lee S, Kim SR, Yoon HJ, Kim I, Lee KS, Je YH. cDNA cloning, expression, and enzymatic activity of a cellulase from themulberry longicorn beetle, Apriona germari. Comp Biochem Phys partB,2004,139:107-116.
    83. Lemke T, Stingl U, Egert M, Friedrich MW, Brune A. Physicochemical Conditions and Microbial Activities in the Highly Alkaline Gut of the Humus-Feeding Larva of Pachnoda ephippiata (Coleoptera:Scarabaeidae). Appl Environ Microbiol,2003,69:6650-6658.
    84. Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI. Worlds within worlds:evolution of the vertebrate gut microbiota. Nat Rev Microbiol,2008,6:776-788.
    85. Long YH, Xie L, Liu N, Yan X, Li MH, Fan MZ, Wang Q. Comparison of gut-associated and nest-associated microbial communities of a fungus-growing termite (Odontotermes yunnanensis). Insect Sci,2010,17:265-276.
    86. Mateos PF, Jimenez-Zurdo JI, Chen J, Squartini AS, Haack SK, Martinez-Molina E, Hubbell DH, Dazzo, FB. Cell-associated pectinolytic and cellulolytic enzymes in Rhizobium leguminosarum biovar trifolii. Appl Environ Microbiol,1992,58:1816-1822.
    87. Meyers M, Poffe R, Verachtert H. Properties of a cellulolytic Pseudomonas. Antonie van Leeuwenhoek 1984,50:301.
    88. Millward-Sadler SJ, Davidson K, Hazlewood GP, Black GW, Gilbert HJ, Clarke JH. Novel cellulose-binding domains, nodb homologues and conserved modular architecture in xylanases from the aerobic soil bacteria Pseudomonas fluorescens subsp. cellulosa and Cellvibrio mixtus. Biochem J.1995,312:39-48.
    89. Minkley N, Fujita A, Brune A, Kirchner WH. Nest specificity of the bacterial community in termite guts (Hodotermes mossambicus). Insectes Soc,2006,53:339-344.
    90. Murray AE, Hollibaugh JT, Orrego C. Phylogenetic compositions of bacterioplankton from two California estuaries compared by denaturing gradient gel electrophoresis of 16S rDNA fragments. Appl Environ Microbiol,1996,62:2676-2680.
    91. Muyzer G, deWaal EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol,1993,59:695-700.
    92. Nakatsu CH, Torsvik V,(?)vreas L. Soil Community Analysis Using DGGE of 16S rDNA Polymerase Chain Reaction Products. Soil Sci Soc Am J,2000,64:1382-1388.
    93. Nikoh N, Hosokawa T, Oshima K, Hattori M, Fukatsu T. Reductive Evolution of Bacterial Genome in Insect Gut Environment. Genome Biol Evol,2011,3:702-714.
    94. Noda H, Koizumi Y. Sterol biosynthesis by symbiotes:cytochrome P450 sterol C-22 desaturase genes from yeast like symbiotes of rice plant hoppers and anobiid beetles. Insect Biochem Mol Biol,2003,33:649-658.
    95. Oliver KM, Moran NA and Hunter M S. Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proc Nat Acad Sci USA,102:12795-12800.
    96. Oppert C, Klingeman, WE, Willis JD, Oppert B, Jurat-Fuentes JL. Prospecting for cellulolytic activity in insect digestive fluids. Comp Biochem Physiol Part B,2010,155:145-154.
    97. Oravecz O, Elhottova D, Kristufek V, Sustr V, Frouz J, Triska J, Marialigeti K. Application of ARDRA and PLFA analysis in characterizing the bacterial communities of the food, gut and excrement of saprophagous larvae of Penthetria holosericea (Diptera:Bibionidae):a pilot study. Folia Microbiol (Praha),2004,49:83-93.
    98. Perotti MA, Lysyk TJ, Kalischuk-Tymensen LD, Yanke LJ, Selinger LB. Growth and Survival of Immature Haematobia irritans (Diptera:Muscidae) is Influenced by Bacteria Isolated from Cattle Manure and Conspecific Larvae. J Med Entomol,2001,38:180-187.
    99. Piel J. A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles. Proc Natl Acad Sci USA,2000,99:14002-14007.
    100. Pittman GW, Brumbley SM, Allsopp PG, O'Neill SL. "Endomicrobia" and other bacteria associated with the hindgut of Dermolepida albohirtum larvae. Appl Environ Microbiol,2008,74: 762-767.
    101. Prado SS, Almeida RPP. Role of symbiotic gut bacteria in the development of Acrosternum hilare and Murgantia histrionic. Entomolo Exp Appl,2009.132:21-29.
    102. Prosser WA, Douglas AE. The aposymbiotic aphid:an analysis of chlortetracycline-treated pea aphid Acvnthosiphon pisum. J Inset Physio 1,1991,37:713-719.
    103. Robledo M, Jimenez-Zurdo JI, Velazquez E, Trujillo ME, Zurdo-Pieiro JL, Ramirez-Bahena MH, Ramos B, Diaz-Minguez JM, Dazzo F, Martinez-Molina E. Rhizobium cellulase celc2 is essential for primary symbiotic infection of legume host roots. Proc Natl Acad Sci USA,2008,105: 7064-7069.
    104. Rogers TE, Peterson JB. Analysis of cellulolytic and hemicellulolytic enzyme activity within the Tipula abdominalis (Diptera; Tipulidae) larval gut and characterization of Crocebacterium ilecola gen. nov., sp. Nov,. isolated from the Tipula abdominalis larval hindut. Insect Sci,17:291-302.
    105. Romero J, Navarrete P.16S rDNA-Based Analysis of Dominant Bacterial Populations Associated with Early Life Stages of Coho Salmon (Oncorhynchus kisutch). Microbial Ecol,2006, 51:422-430.
    106. Santo Domingo JW, Kaufman MG, Klug MJ, Holben WE, Harris D, Tiedje JM. Influence of diet on thestructure and function of the bacterial hindgut community ofcrickets. Mol Ecol,1998, 7:761-767.
    107. Shanchez-Contreras M, Vlisidou I. The diversity of insect-bacteria interactions and its applications for disease control. Biotechnol Genet Eng Rev,2008,25:203-243.
    108. Shen S K, Dowd P F. I-naphthyl acetate esterase activity from cultures of the symbiont yeast of the cigarette beetle(Coleopera:Anobiidae). J Econ Entomol,1991,84:402-407.
    109. Sindhu SS, Dadarwal K R. Chitinolytic and cellulolytic Pseudomonas sp. Antagonistic to fungal pathogens enhances nodulation by Mesorhizobium sp. Cicer in chickpea. Microbiol Res,2001, 156:353-358.
    110. Soto LP, Frizzo LS, Bertozzi E, Avataneo E, Sequeira GJ, Rosmini MR. Molecular Microbial Analysis of Lactobacillus Strains Isolated from the Gut of Calves for Potential Probiotic Use. Vet Med Int,2010, doi:10.4061/2010/274987.
    111. Spiteller D, Dettner K, Boland W. Gut bacteria may be involved in interactions between plants, herbivores and their predatorsmicrobial biosynthesis of N-acylglutamine surfactants as elicitors of plant volatiles. Biol Chem,2000,381:755-762.
    112. Suchodolsli JS, Ruaux CG. Application of molecular fingerprinting for qualitative assessment of small-intestinal bacterial diversity in dogs. J Clin Microbiol,2004,42:4702-4708.
    113. Talia P, Sede SM, Campos E, Rorig M, Principi D, Tosto D, Hopp HE, Grasso D, Cataldi A. Biodiversity characterization of cellulolytic bacteria present on native chaco soil by comparison of ribosomal RNA genes. Res. Microbiol.2011, doi:10.1016/j.resmic.2011.12.001
    114. Teather RM, Wood PJ. Use of congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol,1982,43: 777-780.
    115. Tsuchida T, Koga R, Shibao H, Matsumoto T, Fukatsu T. Diversity and geographic distribution of secondary endosymbiotic bacteria in natural populations of the pea aphid, Acyrthosiphon pisum. Mol Ecol,2002,11:2123-2135.
    116. Tun-Lin W, Burkot TR, Kay BH. Effects of temperature and larval diet on development rates and survival of the dengue vector Aedes aegypti in north Queensland, Australia. Med Vet Entomol, 2000,14:31-37.
    117. Vallaeys T, Topp E, Muyzer G. Evaluation of denaturing gradient gel electrophoresis in the detection of 16SrDNA sequence variation in rhizobia and methanotrophs. FEMS Microbiol Ecol, 1997,24:279-285
    118. VanDyk JS, Sakka M, Sakka K, Pletschke BI. The cellulolytic and hemi-cellulolytic system of Bacillus licheniformis svdl and the evidence for production of a large multi-enzyme complex. Enzyme Microb. Technol,2009,45:372-378.
    119. Vaneechoutte MR, Rossau R, DeVos P. Rapid identification of bacteria of the Comamonadaceae with amplified ribosomal DNA-restriction analysis (ARDRA). FEMS Microbiol Lett,1992,93:227-234.
    120. Vasanthakumar A, Delalibera I, handelsman J, kier DK, Schloss PD, Raffa KF. Characterization of Gut-Associated Bacteria in Larvae and Adults of the Southern Pine Beetle, Dendroctonus frontalis Zimmermann. Environ Entomol,2006,35:1710-1717.
    121. Wang WD, Song YB, Wang YJ, Gao YM, Jing RY, Cui ZJ. Biodiversity of mesophilic microbial community BYND-8 capability of lignocellulose degradation and its effect on biogas production. Huan Jing Ke Xue,2011,32:253-25.
    122. Warnecke F, Luginbuhl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, McHardy AC, Djordjevic G, Aboushadi N, Sorek R, Tringe SG, Podar M, Martin HG, Kunin V, Dalevi D, Madejska J, Kirton E, Platt D, Szeto E, et al. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature,2007,450:560-565.
    123. Wenzel M, Schonig I, Berchtold M, Kampfer P, Konig H. Aerobic and facultatively anaerobic cellulolytic bacteria from the gut of the termite Zootermopsis angusticollis. J Appl Microbiol, 2002,92:32-40.
    124. Wood DW, Setubal JC, Kaul R, Monks DE, Kitajima JP, Okura VK, Zhou Y, Chen L, Wood GE, Almeida NF Jr, Woo L, Chen Y, Paulsen IT, Eisen JA, Karp PD, Bovee D Sr, Chapman P, Clendenning J, Deatherage G, Gillet W, et al. The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science,2001,294:2317-2323.
    125. Wu D, Daugherty SC, Van Aken SE, Pai GH, Watkins KL, Khouri H, Tallon LJ, Zaborsky JM, Dunbar HE, Tran PL, Moran NA, Eisen JA. Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters. PLoS Biol 4:e188. doi:10.1371/journal.pbio.0040188
    126. Xiang H, Wei GF, Jia SH. Microbial communities in the larval midgut of laboratory and field populations of cotton bollworm (Helicoverpa armigera). Can J Microbiol,2006,52:1085-1092.
    127. Yamin MA. Flagellates of the orders Trichomonadida Kirby, Oxymonadida Grasse, Hypermastigida Grassi and Foa reported from lower termites (Isoptera families Mastotermitidae, Kalotermitidae, Hodotermitidae, Termopsidae, Rhinotermitidae, and Serritermitidae) and from the wood-feeding roach Cryptocercus (Dictyoptera:Cryptocercidae). Sociobiology,1979, 4:5-119.
    128. Young J M. Drippy gill:A bacterial disease of cultivated mushrooms caused by Pseudomonas agarici n. sp. NZ J Agric Res,1970,13:977-990.
    129. Zhang HY, Jackson TA. Characterising the bacterial community in the alimentary tract of grass grub (Costelytra zealandica) larvae. Proceedings of the XVth International Plant Protection Congress,2004, Beijing.
    130. Zhang HY, Jackson TA. Autochthonous bacterial flora indicated by PCR-DGGE of 16S rRNA gene fragments from the alimentary tract of Costelytra zealandica (Coleoptera:Scarabaeidae). J Appl Microbiol,2008,105:1277-1285.
    131. Zheng WW, Zhao YS, Zhang HY. Morphology and ultrastructure of the hindgut fermentation chamber of a melolonthine beetle Holotrichia parallela (Coleoptera:Scarabaeidae) during larval development. Micron,2012,43:638-642.
    132. Zhu L, Wu Q, Dai J, Zhang S, Wei F. Evidence of cellulose metabolism by the giant panda gut microbiome. Proc Natl Acad Sci USA,2011,108:17714-17719.
    133. Zouache K, Voronin D, Tran-Van V, Mavingui P. Composition of Bacterial Communities Associated with Natural and Laboratory Populations of Asobara tabida Infected with Wolbachia. Appl Environ Microbiol.2009,75:3755-3764.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700