用户名: 密码: 验证码:
超小超顺磁性氧化铁(USPIO)标记SD大鼠脂肪来源干细胞(ADSCs)体外和体内实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:利用超小超顺磁性氧化铁颗粒(USPIO)标记SD大鼠脂肪来源干细胞(ADSCs),探讨标记的有效性及安全性,并从体外和体内水平探究MR对标记细胞进行成像示踪的可行性。
     方法:使用含USPIO (40μg/ml)和多聚赖氨酸(PLL,1.5μg/ml)的培养基与ADSCs共孵育培养24h,标记后行普鲁士蓝染色和透射电镜观察铁颗粒在细胞内的分布,行台盼蓝染色和MTS实验测定标记对细胞活力和增殖能力的影响,应用ELISA法比较标记细胞和对照组培养液中血管内皮生长因子(VEGF)含量。体外条件下,通过T2map和T2*map序列研究不同数量标记细胞与MR信号参数(T2、T2*、R2和R2*)之间相关性。活体条件下,开胸结扎冠脉前降支(LAD)建立SD大鼠急性心梗模型,通过尾静脉和心肌局部注射分别移植标记细胞,利用MR进行标记细胞的活体示踪成像。取病理行普鲁士蓝染色观察USPIO颗粒在各脏器分布情况。
     结果:体外普鲁士蓝染色显示USPIO标记ADSCs的阳性率为99%,透射电镜提示USPIO颗粒主要位于胞质内溶酶体中。台盼蓝染色实验显示活细胞数大于95%,MTS实验提示USPIO浓度为10、20、40、80和160μg/ml时不影响ADSCs增殖。ELISA法显示标记细胞和对照组培养液中VEGF含量与细胞数量呈正相关,组间无显著差异。体外MR成像可敏感显示USPIO标记细胞,通T2map序列及T2*map序列可以进行T2和T2*定量测量,R2和R2*值与标记细胞数量之间呈线性相关。呼吸机辅助通气条件下通过开胸结扎冠脉前降支(LAD)可成功建立SD大鼠急性心梗模型。尾静脉途径移植标记细胞可在肝脏首先观察到信号强度减低,心肌信号强度无显著改变;通过心肌直接注射标记细胞可在MR观察到注射区域信号强度明显降低。普鲁士蓝染色提示两种标记途径可在梗死心肌附近发现局灶性分布的USPIO颗粒,但大部分颗粒分布于脾脏中。
     结论:
     1、使用USPIO (40μg/ml)和PLL(1.5μg/ml)可以安全、有效地标记ADSCs;
     2、USPIO标记对ADSCs分泌VEGF没有影响;
     3、体外条件下MR可敏感显示USPIO标记细胞,R2及R2*与细胞数量呈线性相关。
     4、MR活体示踪USPIO标记ADSCs的敏感性与移植途径相关。
Objective:To investigate the efficacy and safety of ultrasmall superparamagnetic iron oxide (USPIO) labeling adipose derived stem cells (ADSCs) of SD rats, and the feasibility of tracing labeled cells with MR imaging was studied both in vitro and in vivo.
     Methods and Materials:ADSCs were incubated with culture medium containing40μg/ml USPIO and1.5ug/ml poly-1-lysine (PLL) for24h. The distribution of iron particles in cells was studied by Prussian blue staining and transmission electron microscopy(TEM). Besides, trypan-Blue stain and MTS were used to determine the cell viability and proliferation. ELISA assay was used to compare the vascular endothelial growth factor (VEGF) levels in culture medium between labeled cells and control group. In vitro, T2map and the T2*map sequence were selected to study the correlation between the number of labeled cells and MR signals (T2, T2*, R2and R2*). In vivo, SD rat model of acute myocardial infarction was established by ligating the anterior descending coronary artery(LAD). The labeled ADSCs were transplanted through both the tail vein and myocardial direct injection, then MR was performed to trace the cells. Postmortal study was carried out to observe the distribution of USPIO particles in the various organs with Prussian blue stain.
     Results:After incubating the cells with USPIO and PLL for24h, the percentage of labeled ADSCs reached up to99%. Iron particles inside the cells were confirmed by TEM, which mainly in lysosomes. Trypan-Blue stain showed the number of living cells was greater than95%. MTS experiments suggest that USPIO (10,20,40,80,160μg/ml) exert no significant influence on the proliferation of ADSCs. ELISA assay revealed VEGF levels in culture medium were positively correlated with the number of cells. No significant difference was found between labeled cells and the control group. MR imaging was sensitive detecting USPIO labeled cells in vitro, T2and T2*value could be quantitatively measured by T2map and T2*map sequences. In addition, linear correlations between cell numbers and R2or R2*values were discovered. Under mechanical ventilation, the SD rats model of acute myocardial infarction was successfully established by ligating anterior descending coronary artery (LAD). The signal of liver decreased after intravenous injection of labeled cells. The signal intensity in myocardium had no significant change through intravenous injection; while it decreased significantly when labeled cells were injected directly into myocardium. Prussian blue staining diplayed only a few USPIO particles in the infracted myocardium, the major part however, distributed in spleen.
     Conclusion:
     1. Using USPIO(40μg/ml) and PLL(1.5μg/ml) could safely and effectively label ADSCs
     2. USPIO labeling had no significant effect on VEGF secreted by ADSCs
     3. MRI could sensitively detect USPIO labeled cells in vitro, with a positive linear correlation between R2and R2*values and cell numbers.
     4. The sensitivity of detection of USPIO-labeld ADSCs in vivo by MRI was influenced by transplanted pathway.
引文
1. Zuk PA, M Zhu, H Mizuno, et al. Multilineage cells fbm human adipose tissue:implications for cell-based thempies. Tissue Eng,2001,7:211-226.
    2. Zuk PA, Zhu M, Hedrik MH, et al. Human adipose tissue is a source of multipotent ceils. Mol Biol Cell,2002,13(12):4279-4295.
    3. Romanov YA, Darevskava AN, Merzlikina NV, et al. Mesenchymal Stem Cells from Human Bone Marrow and Adipose Tissue:Isolation, Characyerization, and Differentiation Potentialities. Bull Exp Biol Med,2005,140(1):138-143.
    4. 余方圆,卢世璧,袁玫,等.脂肪干细胞向软骨方向诱导的初步研究.中国矫形外科杂志,2004,12(10):762-764.
    5. Human bone marrow-derived adult stem cells for post-myocardial infarction cardiac repair: current status and future directions. Singapore Med J,2009; 50(10):935-942.
    6. Aassmus B, Rolf A, Erbs S, et al. Clinical outcome 2 years after intracornoary administration of bone marrow-derived progenitor cells in acute myocardial infarction. Circ Heart Fail,2010; 3(1): 89-96.
    7. 王霄英.分子影像学进展及其应用.北京大学学报(医学版).2007,39(5):555-556.
    8. Lau JF, Anderson SA, Eric A, et al. Imaging approaches for the study of cell-based cardiac therapies. Nature Reviews Cardiology,2010,7:97-105.
    9. Arbab AS, et al.Comparison of transfer agents in forming complexes with ferumoxides, cell labeling efficiency, and cellular viability. Mol Imaging,2004,3:24-32.
    10. Walczak P, Kedziorek DA, Gilad AA, et al. Instant MR labeling of stem cells using magnetoelectroporation. Magn Reson Med,2005,54(4):769-774.
    11. Zai-Yi Liu, Ying Wang, Chang-Hong liang, et al. In Vitro Labeling of Mesenchymal Stem Cells with Superparamagnetic Iron Oxide by Means of Microbubble-enhanced US Exposure:Initial Experience.Radiology,2009,253:153-159.
    12. Zurkiya, O., A.W. Chan and X. Hu, MagA is sufficient for producing magnetic nanoparticles in mammalian cells, making it an MRI reporter. Magn Reson Med,2008.59(6):1225-1231.
    13. Dai G.H. et al. Effect of superparamagnetie iron oxide labeling on neural stem cell survival and proliferation. Nan Fang Yi Ke Da Xue Xue Bao.2007,27:49-51,55.
    14. Fahlvik, A.k., Klaveness, J, Stark DD. Iron oxides as MR imaging contrast agents. J Magn Reson Imaging.1993,3:187-194.
    15. McNeill A, Birchall D, Hayflick SJ, et al. T2* and FSE MRI distinguishes four subtypes of neurodegeneration with brain iron accumulation. Neurology,2008,70(18):1614-1619.
    16. Yanagawa Y, Tsushima, Y, Tokumaru A, et al. A Quantitative Analysis of Head Injury Using T2*-Weighted Gradient-Echo Imaging [J]. J Trauma,2000,49(2):272-277.
    17. McCarville MB, Hillenbrand CM, Loeffler RB, et al. Comparison of whole liver and small region-of-interest measurements of MRI liver R2* in children with iron overload [J]. Pediatr Radiol,2010,5. [Epub ahead of print]
    18. Wang ZJ, Fischer R, Chu Z, et al. Assessment of cardiac iron by MRI susceptometry and R2* in patients with thalassemia. Magn Reson Imaging,2010,28(3):363-371.
    19. Rad AM, Arbab AS, Iskander AS, et al. Quantification of superparamagnetic iron oxide (SPIO)-labeled cells using MRI. J Magn Reson Imaging 2007;26:366-74.
    20. Zhang MW, Huan Y, Xu J, et al. In vitro MR imaging of superparamagnetic iron oxide labeled mesenchymal stem cells. ZhongGuo Yixue Yingxiana Jishu.2006,22(8):1129-1134.
    21. Hill JM, Dick AJ, Raman VK, et al. Serial cardiac magnetic resonance Imaging of injected mesenchymal stem cells. Circulation.2003,108(8):1009-1014.
    22. Wollert KC, Drexler H. Cell therapy for the treatment of coronary heart disease:a critical appraisal. Nat Rev Cardiol.2010,7(4):204-215..
    23. Murry CE, Soopaa MH, Reinecke H,et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocyte in myocardial infarcts. Nature,2004; 428:664-668.
    24. Thoelen M, Vandenabeele F, Rummens JL, et al. Trastructure of tranplanted mesenchymal stem cells after acute myocardial infraction. Heart,2004; 90:1046.
    25. Werner S, Grose R. Regulation ofwound healing by growth factors and cytokines. Physiol Rev, 2003,83:835-870.
    26. TakahashiM, Sheng LT, Suzuki R,et al. Cytokines produced from bone marrow cells can contribute to functional improvement of the infracted heart by protecting cardiomoycytes against ischemic injury and inducing therapeutic angiogenesis. Circulation,2005:258-265.
    27. Lee J, Lee KY. Injectable microsphere/hydrogel combination systems for localized protein delivery. Macromol Biosci.2009,9(7):671-676.
    28.陈婷婷,李立兵,王刚,等.不同呼吸管理模式下大鼠急性心梗模型远期存活率的比较及影响因素分析.中国体外循环杂志.2008,6(1):34-64.
    29.刘国辉,刘志跃.实验性心肌梗死动物模型复制方法研究进展.实验动物科学与管理,2005,12(4):36-39.
    30. Singal PK, Kapur N, Dhillon KS, et al. Role of free radicals in catecholamine-induced cardiomyopathy. Can J Physiol Pharmacol,1982,60(10):1390-1397.
    31. Kim EJ, Li RK, Weisel RD, et al. Angiogenesis by endothelial cell tranplantation. J Thorac Cardiovasc Surg,2001,122(5):963-971.
    32.陆英,陈运贤,钟雪云,等.电凝灼烧冠状动脉制作大鼠心肌梗死动物模型.中山大学学报(医学科学版),2004,25(1):52-54.
    33. Bastiaan Driehuys, John Nouls, Alexandra Badea et al. Small Animal Imaging with Magnetic Resonance Microscopy. ILAR J.2008,49(1):35-53.
    34.杨正汉,冯逢,王霄英.磁共振成像技术指南.北京:人民军医出版社.2007:546-575.
    35. Stuber, M., et al., Positive contrast visualization of iron oxide-labeled stem cells using inversion-recovery with ON-resonant water suppression (IRON). Magn Reson Med,2007.58(5): 1072-1077.
    36. Mani, V., et al., Gradient echo acquisition for superparamagnetic particles with positive contrast (GRASP):sequence characterization in membrane and glass superparamagnetic iron oxide phantoms at 1.5T and 3T. Magn Reson Med,2006.55(1):126-35.
    37. Dahnke, H., et al., Susceptibility gradient mapping (SGM):a new postprocessing method for positive contrast generation applied to superparamagnetic iron oxide particle (SPIO)-labeled cells. Magn Reson Med,2008.60(3):595-603.
    38. Heyn, C., et al., Detection threshold of single SPIO-labeled cells with FIESTA. Magn Reson Med,2005.53(2):312-20.
    39. Weber A, Pedrosa I, Kawamoto A, et al. Magnetic resonance mapping of tranplanted endothelial progenitor cells for therapeutic neovascularization in ischemic heart disease. Eur J Cardiothorac Surg,2004,26(1):137-143.
    40. Fabao Gao, Sourav Kar, Jiangyang Zhang, et al. MRI of intravenously injected bone marrow cells homing to the site of injured arteries. NMR Biomed.2007,20:673-681.
    41. Kraitchman DL, Tatsumi M, Wesley DG, et al. Dynamic Imaging of Allogeneic Mesenchymal Stem Cells Trafficking to Myocardial Infarction. Circulation,2005,112(10):1451-1461.
    42. Rong Zhou, Paul D Acton, Victor A Ferrari. Imaging Stem Cells Implanted in Infarcted Myocardium. J Am Coll Cardiol.2006,48(10):2094-2106.
    1. Shapiro E M, Skrtic S, Koretsky A P. Sizing it up:cellular MRI using micron-sized iron oxide particles. Magn Reson Med,2005,53(2):329-338.
    2. Sumner J P, Shapiro E M, Maric D, et al. In vivo labeling of adult neural progenitors for MRI with micron sized particles of iron oxide:quantification of labeled cell phenotype. Neuroimage,2009,44(3):671-678.
    3. Brekke C, Morgan S C, Lowe A S, et al. The in vitro effects of a bimodal contrast agent on cellular functions and relaxometry. NMR Biomed,2007,20(2):77-89.
    4. Modo M, Beech J S, Meade T J, et al. A chronic 1 year assessment of MRI contrast agent-labelled neural stem cell transplants in stroke. Neuroimage,2009,47 Suppl 2:T133-T142.
    5. Marsh J N, Partlow K C, Abendschein D R, et al. Molecular imaging with targeted perfluorocarbon nanoparticles:quantification of the concentration dependence of contrast enhancement for binding to sparse cellular epitopes. Ultrasound Med Biol,2007,33(6):950-958.
    6. Kirchin M A, Runge V M. Contrast agents for magnetic resonance imaging:safety update. Top Magn Reson Imaging,2003,14(5):426-435.
    7. Sun R, Dittrich J, Le-Huu M, et al. Physical and biological characterization of superpara-magnetic iron oxide-and ultrasmall superparamagnetic iron oxide-labeled cells:a comparison. Invest Radiol,2005,40(8):504-513.
    8. Helmberger T, Semelka R C. New contrast agents for imaging the liver. Magn Reson Imaging Clin N Am,2001,9(4):745-766.
    9. Grobner T, Prischl F C. Gadolinium and nephrogenic systemic fibrosis. Kidney Int,2007,72(3):260-264.
    10. Hammoud D A, Hoffman J M, Pomper M G. Molecular neuroimaging:from conventional to emerging techniques. Radiology,2007,245(1):21-42.
    11. Zhang S J, Wu J C. Comparison of imaging techniques for tracking cardiac stem cell therapy. J Nucl Med,2007,48(12):1916-1919.
    12. Modo M. Understanding stem cell-mediated brain repair through neuroimaging. Curr Stem Cell Res Ther,2006,1(1):55-63.
    13. Weber R, Wegener S, Ramos-Cabrer P, et al. MRI detection of macrophage activity after experimental stroke in rats:new indicators for late appearance of vascular degradation? Magn Reson Med,2005,54(1):59-66.
    14. Miyoshi S, Flexman J A, Cross D J, et al. Transfection of neuroprogenitor cells with iron nanoparticles for magnetic resonance imaging tracking:cell viability, differentiation, and intracellular localization. Mol Imaging Biol,2005,7(4):286-295.
    15. Neri M, Maderna C, Cavazzin C, et al. Efficient in vitro labeling of human neural precursor cells with superparamagnetic iron oxide particles:relevance for in vivo cell tracking. Stem Cells,2008,26(2):505-516.
    16. Frank J A, Miller B R, Arbab A S, et al. Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology,2003,228(2):480-487.
    17. Arbab A S, Yocum G T, Kalish H, et al. Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood,2004,104(4):1217-1223.
    18. Montet-Abou K, Montet X, Weissleder R, et al. Cell internalization of magnetic nanoparticles using transfection agents. Mol Imaging,2007,6(l):1-9.
    19. Walczak P, Kedziorek D A, Gilad A A, et al. Instant MR labeling of stem cells using magnetoelectroporation. Magn Reson Med,2005,54(4):769-774.
    20. Guzman R, Uchida N, Bliss T M, et al. Long-term monitoring of transplanted human neural stem cells in developmental and pathological contexts with MRI. Proc Natl Acad Sci U S A,2007,104(24):10211-10216.
    21. Walczak P, Kedziorek D A, Gilad A A, et al. Applicability and limitations of MR tracking of neural stem cells with asymmetric cell division and rapid turnover:the case of the shiverer dysmyelinated mouse brain. Magn Reson Med,2007,58(2):261-269.
    22. Chen I Y, Greve J M, Gheysens O, et al. Comparison of optical bioluminescence reporter gene and superparamagnetic iron oxide MR contrast agent as cell markers for noninvasive imaging of cardiac cell transplantation. Mol Imaging Biol,2009,11(3):178-187.
    23. Genove G, Demarco U, Xu H, et al. A new transgene reporter for in vivo magnetic resonance imaging. Nat Med,2005,11(4):450-454.
    24. Zurkiya O, Chan A W, Hu X. MagA is sufficient for producing magnetic nanoparticles in mammalian cells, making it an MRI reporter. Magn Reson Med,2008,59(6):1225-1231.
    25. Politi L S. MR-based imaging of neural stem cells. Neuroradiology,2007,49(6):523-534.
    26. Daldrup-Link H E, Rudelius M, Piontek G, et al. Migration of iron oxide-labeled human hematopoietic progenitor cells in a mouse model:in vivo monitoring with 1.5-T MR imaging equipment. Radiology,2005,234(1):197-205.
    27. Heyn C, Bowen C V, Rutt B K, et al. Detection threshold of single SPIO-labeled cells with FIESTA. Magn Reson Med,2005,53(2):312-320.
    28. Stuber M, Gilson W D, Schar M, et al. Positive contrast visualization of iron oxide-labeled stem cells using inversion-recovery with ON-resonant water suppression (IRON). Magn Reson Med,2007,58(5):1072-1077.
    29. Zurkiya O, Hu X. Off-resonance saturation as a means of generating contrast with superpara-magnetic nanoparticles. Magn Reson Med,2006,56(4):726-732.
    30. Seppenwoolde J H, Viergever M A, Bakker C J. Passive tracking exploiting local signal conservation:the white marker phenomenon. Magn Reson Med,2003,50(4):784-790.
    31. Mani V, Briley K C, Itskovich V V, et al. Gradient echo acquisition for superpara-magnetic particles with positive contrast (GRASP):sequence characterization in membrane and glass superparamagnetic iron oxide phantoms at 1.5T and 3T. Magn Reson Med,2006,55(1):126-135.
    32. Dahnke H, Liu W, Herzka D, et al. Susceptibility gradient mapping (SGM):a new postprocessing method for positive contrast generation applied to superparamagnetic iron oxide particle (SPIO)-labeled cells. Magn Reson Med,2008,60(3):595-603.
    33. Liu W, Dahnke H, Jordan E K, et al. In vivo MRI using positive-contrast techniques in detection of cells labeled with superparamagnetic iron oxide nanoparticles. NMR Biomed,2008,21(3): 242-250.
    34. Peters A M, Saverymuttu S H. The value of indium-labelled leucocytes in clinical practice. Blood Rev,1987,1(1):65-76.
    35. Roddie M E, Peters A M, Danpure H J, et al. Inflammation:imaging with Tc-99m HMPAO-labeled leukocytes. Radiology,1988,166(3):767-772.
    36. Adonai N, Nguyen K N, Walsh J, et al. Ex vivo cell labeling with 64Cu-pyruvaldehyde-bis (N4-methylthiosemicarbazone) for imaging cell trafficking in mice with positron-emission tomography. Proc Natl Acad Sci U S A,2002,99(5):3030-3035.
    37. Zhang Y, Ruel M, Beanlands R S, et al. Tracking stem cell therapy in the myocardium: applications of positron emission tomography. Curr Pharm Des,2008,14(36):3835-3853.
    38. Aicher A, Brenner W, Zuhayra M, et al. Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation,2003,107(16):2134-2139.
    39. Hou D, Youssef E A, Brinton T J, et al. Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery:implications for current clinical trials. Circulation,2005,112(9 Suppl):I150-I156.
    40. Kraitchman DL, Tatsumi M, Gilson W D, et al. Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation,2005,112(10):1451-1461.
    41. Jin Y, Kong H, Stodilka R Z, et al. Determining the minimum number of detectable cardiac-transplanted 111In-tropolone-labelled bone-marrow-derived mesenchymal stem cells by SPECT. Phys Med Biol,2005,50(19):4445-4455.
    42. Brenner W, Aicher A, Eckey T, et al.111 In-labeled CD34+hematopoietic progenitor cells in a rat myocardial infarction model. J Nucl Med,2004,45(3):512-518.
    43. Sutton E J, Henning T D, Pichler B J, et al. Cell tracking with optical imaging. Eur Radiol,2008,18(10):2021-2032.
    44. Jaiswal J K, Mattoussi H, Mauro J M, et al. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol,2003,21(1):47-51.
    45. Michalet X, Pinaud F F, Bentolila L A, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science,2005,307(5709):538-544.
    46. Slotkin J R, Chakrabarti L, Dai H N, et al. In vivo quantum dot labeling of mammalian stem and progenitor cells. Dev Dyn,2007,236(12):3393-3401.
    47. Kim D E, Schellingerhout D, Ishii K, et al. Imaging of stem cell recruitment to ischemic infarcts in a murine model. Stroke,2004,35(4):952-957.
    48. Gera A, Steinberg G K, Guzman R. In vivo neural stem cell imaging:current modalities and future directions. Regen Med,2010,5(1):73-86.
    49. Xie J, Chen K, Huang J, et al. PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials,2010,31(11):3016-3022.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700