用户名: 密码: 验证码:
丹参素联合丹皮酚对糖尿病大鼠基底动脉的保护作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景及目的:
     糖尿病大血管并发症指心、脑及外周血管病变,包括冠心病、脑卒中和间歇性跛行与下肢坏疽,是糖尿病致死、致残的主要原因,约占糖尿病病人死亡原因的60-70%[1]。尤其是糖尿病可引起脑动脉血管功能障碍以致动脉粥样硬化,从而造成大脑长期相对供血不足,导致缺血缺氧,甚至脑萎缩。其缺血性脑卒中发生率更是非糖尿病人群的2-4倍。目前,临床上对于糖尿病大血管病变的治疗仍以西药为主,但西药虽然疗效较好确常伴发较明显的毒副作用。中药因其低毒、多靶点等特点,对于糖尿病大血管病变的治疗有望带来新的突破。糖尿病血管病变中医病理机制在于痰浊瘀血阻滞于经脉和络脉系统,这些有形之邪在脉道蓄积留滞的过程中不断沉积,导致脉壁增厚,管腔狭窄;同时,沉积物对脉壁不断刺激,对脉壁组织产生侵蚀、灼伤等病理作用,最终导致脉壁结构损伤[2]。因此,活血化瘀在中医糖尿病血管病变治疗中具有重要意义。
     双丹方出自《施今墨对药》,由丹参、牡丹皮两味中药组成。具有活血化瘀、通络止痛的功效。其制剂双丹口服液分别收载于2005、2010年版《中国药典》(一部),为中药标准制剂。
     丹皮酚(Pae)为牡丹皮中主要的活性成分之一[3-6]。同时在丹参中提取的水溶性化合物丹参素(DSS)在丹参药效方面发挥重要作用[7-9]。据相关文献报道,丹皮酚和丹参素分别对动脉血管具有舒张作用[10,11],同时具有血管内皮保护的功效[12,13]。近些年发现丹参素联合丹皮酚具有良好的抗缺血再灌注损伤以及抗氧化的功效[14]。我们近期观察到丹参素联合丹皮酚可提高丹皮酚在心脏和脑组织中的分布[15],同时能够增强在心肌缺血再灌注损伤过程中的药物功效[16]。是否丹皮酚联合应用丹参素同样可以起到明显的血管保护作用目前尚未见研究报道。本课题拟将分别来自丹参的丹参素和来自牡丹皮的丹皮酚,二者配伍组成成分组方,并与各单一成分及双丹口服液进行了药效学比较研究。
     糖尿病状态下血管内皮细胞发生损伤,甚至发生凋亡,从而发生内皮依赖性动脉舒张功能的障碍[17,18]。与此同时,动脉平滑肌在糖尿病状态下可表现为高反应性,导致动脉血管的张力增加[19,20]。其中很重要的一个原因为糖尿病抑制平滑肌细胞钾通道的活性,从而导致大量Ca~(2+)内流促使平滑肌处于高张力状态[21,22]。据此本课题提出丹参素联合丹皮酚有可能具有抗糖尿病血管功能衰竭的作用,且药物效果要优于单独给药;同时探讨丹皮酚配伍丹参素对糖尿病大鼠基底动脉损伤保护作用及其机理。
     研究方法:
     本实验分别借助实验性糖尿病动物模型和高浓度葡萄糖环境下动脉血管内皮/平滑肌细胞来评价丹参素联合丹皮酚的血管保护作用。采用离体血管环灌流、PI-Hoechst细胞凋亡染色、MTT法、蛋白免疫印迹(Western blot)等实验方法,观察:①丹参素联合丹皮酚对糖尿病大鼠动脉血管功能的作用;②丹参素联合丹皮酚抗糖尿病血管内皮细胞损伤的作用及相关机制;③丹参素联合丹皮酚对糖尿病血管平滑肌细胞损伤的作用及相关机制。
     研究结果:
     1、丹参素联合丹皮酚可使大鼠基底动脉血管产生非内皮依赖性舒张作用:伴随着丹皮酚+丹参素浓度剂量的增加,对内皮完整与去内皮动脉环的舒张作用均呈明显加强,且呈浓度依赖性。内皮完整与去内皮动脉环对丹皮酚+丹参素的反应无显著性差异。说明丹皮酚+丹参素所诱导的基底动脉舒张作用为非内皮依赖舒张作用。
     2、长期给予丹参素联合丹皮酚对糖尿病大鼠基底动脉内皮依赖性舒张功能的影响:长期给予丹参素联合丹皮酚可增加乙酰胆碱(ACh)诱导的糖尿病大鼠基底动脉血管环舒张作用。糖尿病组ACh诱导的血管环舒张作用明显减小,与对照组存在显著性差异(p <0.01)。各药物干预组不同程度地加大ACh诱导的血管环舒张反应。丹皮酚+丹参素组动脉血管环舒张作用较各单一成分给药组明显增强(p <0.05),与双丹口服液组无显著性差异。
     3、长期给予丹参素联合丹皮酚处理后对去氧肾上腺素(PE)致糖尿病大鼠基底动脉环收缩作用的影响:长期给予丹参素联合丹皮酚处理后可降低因去氧肾上腺素(PE)诱导的糖尿病大鼠基底动脉血管(内皮完整/去内皮)收缩作用。糖尿病组动脉环收缩反应明显强于对照组(p <0.01)。糖尿病大鼠给予丹皮酚+丹参素以及各单一成分灌胃8周处理。PE诱导各药物处理组血管环收缩反应均弱于糖尿病组动脉血管环。其中以丹参素联合丹皮酚共同处理组大鼠动脉环(内皮完整/去内皮)收缩程度最弱(p <0.01)。同时,各实验组内皮完整和去内皮大鼠动脉血管环对PE诱导的收缩增加幅度分别存在显著性差异。其中,丹皮酚+丹参素处理组血管环内皮完整与去内皮状态下收缩幅度差异最为明显(p <0.01),幅度差异大于丹皮酚和丹参素单独给药组(p <0.05)。与双丹口服液组无显著性差异。
     4、长期给予丹参素联合丹皮酚对糖尿病大鼠基底动脉SOD活性和TBARS水平的影响:各药物治疗组(丹皮酚,丹参素,丹皮酚+丹参素)动脉组织样本SOD活性均明显升高(p <0.05),丹参素联合丹皮酚组SOD活性最高(p <0.01)。而TBARS水平在给予药物治疗组均较糖尿病组有所降低(p <0.05),以丹参素联合丹皮酚组最为显著(p <0.01)。
     5、丹参素联合丹皮酚急性干预后对CaCl_2致基底动脉环收缩作用的影响:丹皮酚+丹参素预孵正常与糖尿病大鼠去内皮血管环后,随即CaCl_2诱导浓度依赖性血管环收缩反应。通过血管环灌流实验发现,经过丹皮酚+丹参素孵育后正常与糖尿病大鼠去内皮血管环均表现出显著的相对性张力减低反应。以糖尿病大鼠血管环表现最为明显(p <0.01)。提示丹皮酚+丹参素在一定程度上抑制平滑肌细胞内Ca~(2+)内流,从而降低了血管对CaCl_2诱导的收缩反应。
     6、钾通道阻断剂对丹参素联合丹皮酚舒张血管作用的影响:TEA(非特异性钾通道阻断剂)预处理可部分阻断丹皮酚+丹参素诱导的血管平滑肌舒张反应(p <0.01νs Pae+DSS组;p <0.05νs DM+Pae+DSS组)。提示丹皮酚+丹参素在一定程度上抑制平滑肌细胞内Ca~(2+)内流是通过活化血管平滑肌K+通道来实现的。
     7、丹参素联合丹皮酚对高浓度葡萄糖诱导的血管内皮细胞凋亡的影响:丹参素联合丹皮酚可有效抑制高浓度葡萄糖诱导的血管内皮细胞凋亡(p <0.01),且观察到p-p38蛋白表达减少(p <0.01)。
     8、丹参素联合丹皮酚对高糖环境下血管平滑肌细胞BK_(Ca)-β1蛋白表达的影响:丹参素联合丹皮酚可有效增强高浓度葡萄糖环境下血管平滑肌细胞BK_(Ca)-β1的蛋白表达(p <0.05)。
     研究结论:
     1、国际上首次发现了丹参素联合丹皮酚具有抗糖尿病动脉血管内皮功能障碍作用,能显著抑制血管内皮细胞因高糖所致的凋亡,且此保护作用与丹参素联合丹皮酚抑制p38MAPK信号转导通路相关。
     2、国际上首先经实验初步证实丹参素联合丹皮酚具有抗糖尿病动脉血管平滑肌功能障碍作用,且此保护作用可通过对血管平滑肌上BK_(Ca)功能的保护来实现。
Background:
     Diabetes mellitus (DM) causes multiple dysfunctions such as vascular dysfunction.Diabetic vascular complications refers to heart, brain and peripheral vascular disease,including coronary heart disease, stroke and intermittent claudication and lower limbgangrene, is a major cause of diabetic death and disability, accounting for60-70%ofcauses of death in diabetic patients. Diabetic patients with ischemic stroke incidence aretwo to four times that of the normal population. Modern medicine effective therapy fordiabetic vascular but has obvious side effects. Chinese medicine because of its lowtoxicity characteristics and multiple targets, in the treatment of diabetes vascular lesions isexpected to bring new breakthrough. Diabetes vascular lesions of traditional Chinesemedical science pathological mechanism is phlegm turbid and blood stasis block in themeridians and collaterals.In traditional Chinese medicine for activating blood circulationin treating diabetes vascular lesions is of great significance.
     Shuang-Dan prescription combines the use of Cortex Moutan (root bark of Paeoniasuffruticosa Andrew) and Radix Salviae miltiorrhizae (root and rhizome of Salviamiltiorrhiza Bunge), which are famous herbs widely used in traditional Chinese medicine.In clinical practice, the Shuang-Dan prescription is often used for treating cerebrovascularand cardiovascular diseases.
     Paeonol (Pae,20-hydroxy-40-methoxyacetophenone) is a major phenolic componentin Cortex Moutan, whereas danshensu (DSS,3-(3,4-dihydroxyphenyl) lactic acid) is awater-soluble active component isolated from Radix Salviae miltiorrhizae. Similar to othernatural compounds, several studies showed that Pae and DSS elicit relaxation of isolatedrat aorta and protection of endothelial cells, respectively. We previously reported that thecombined use of Pae and DSS has synergistic protective effects on focal cerebralischemia-reperfusion injury in rats. Moreover, Pae combined with other hydrophilicphenolics of Radix Salviae miltiorrhizae could attenuate oxidative stress, protect vascularfunctions, and synergistically protect against myocardial ischemia in rabbits. Recently, wefound that the co-administration of DSS increases the concentration of Pae in heart andbrain tissues and increases pharmacological activity in treating cerebrovascular andcardiovascular diseases. However, the mechanism of the interactions of representativeactive components in the protection of vascular function is not well understood.
     Vascular dysfunctions are one of the major causes of morbidity and mortality inpatients with DM. Previous studies reported that forearm blood flow responsive toacetylcholineis reduced in type2diabetes, suggesting endothelial dysfunction. Moreover,vascular smooth muscle (VSMC) exhibits hyper-reactivity, hypertrophy, and apoptosis indiabetes. One of the pathogenesis of diabetic vascular dysfunction is oxygen derived freeradicals, which are significantly elevated under DM. Diabetic vascular dysfunction is alsorelated to increased Ca~(2+)influx and inhibited vascular K+channels. Previous studiesshowed that the inhibition of vascular K+channels increases Ca~(2+)influx, which leads todepolarization and vasoconstriction. Therefore, the aim of this study is to investigate theeffects of Pae+DSS on diabetes-induced dysfunction of cerebral arteries compared withthe individual effects of Pae or DSS.
     Methods:
     We assessed the role of the endothelium and smooth muscle in the responses to Pae+DSS, on cerebral artery (basal artery, Willis’ circle, and middle cerebral artery) fromdiabetic rats and on cultured endothelial/smooth muscle cells damaged by high glucose.Pae+DSS-induced effect was evaluated in vitro and in vivo. Experimental analyses wereperformed by using wire myograph, colorimetric method,PI-Hoechst dyeing,MTT andWestern blot, et al.
     Results:
     1. Pae+DSS Induced Relaxation in Rat Cerebral Artery
     Pae+DSS induced a strong relaxation on arterial rings obtained from rats in adose-dependent manner. The effect of Pae+DSS in endothelium-intact and endothelium-denuded rat arterial rings was investigated to identify the role of VSMC on Pae+DSSinduced vasorelaxation. The vascular relaxation induced by Pae+DSS was not abolishedin the endothelium removed rings of rats.
     2. Effect of Chronic Pae+DSS Administration on ACh Relaxation Response
     When the PE-induced contraction reached a plateau, ACh (109M to105M) wasadded cumulatively. The capability of the concentration-dependent relaxation induced byACh, which had a maximum response of105M, was significantly weaker in arterialsegments obtained from diabetic rats than those from normal rats. After chronicadministration of Pae+DSS, Pae, and DSS, the capability of ACh-induced relaxation inthe arterial segments of diabetic rats was enhanced significantly. In addition, the degree ofACh-induced relaxation in the DM+Pae+DSS group was stronger than that of Pae andDSS treated diabetic rats. No marked changes were observed concerning the degree ofACh-induced relaxation between the DM+Pae+DSS group and SDOS group.
     3. Effect of Chronic Pae+DSS Administration on Phenylephrine (PE) ContractionResponse
     We also found that treatment with Pae+DSS significantly reduced the maximumcontraction of rings from diabetic rats. Meanwhile, the enhancement rates of contractileresponses to PE in all groups were significantly different in E+and E rings. Particularly, the enhancement rate of contractile responses in Pae+DSS treated diabetic rats was lowerthan that Pae and DSS treated diabetic rats. No marked changes were observed concerningthe degree of contractile responses to PE between the DM+Pae+DSS group and SDOSgroup.
     4. Effects of Pae+DSS on SOD Activities and TBARS Content in the CerebralArtery from Diabetic Rats
     The enhanced generation of reactive oxygen species is induced by oxidative stress.The superoxide dismutase (SOD) activities and thiobarbituric acid reactive substances(TBARS) concentrations in the arterial tissues of all groups at the end of the study. Alltreated groups (Pae, DSS, and Pae+DSS) exhibited increased SOD activities anddecreased TBARS concentrations. Moreover, the Pae+DSS group exhibited morereduction in oxidative stress compared to Pae and DSS groups.
     5. Influence of Pae+DSS on Calcium
     In Ca~(2+)free solutions, pretreatment of Pae+DSS attenuated the CaCl_2inducedcontractions of denuded cerebral arteries from normal and diabetic rats.
     6. Influence of Pae+DSS on Potassium Channel
     We examined the transient vasoconstrictor PE response in the presence of thenon-selective K+channels blocker, tetraethylammonium (TEA). In the presence of TEA,the vasorelaxation effect of Pae+DSS was partially inhibited when Pae+DSS was addedafter the PE contraction reached a plateau.
     7. Pae+DSS inhibited vascular endothelial cell apoptosis in high glucose.
     Cell apoptosis were attenuated in the Pae+DSS–pretreated cells.And, Pae+DSSprotects cells by the p-38signaling pathway.
     8. Pae+DSS can effectively enhance the protein expression of BK_(Ca)-β1in vascularsmooth muscle cells exposed to high glucose.
     Conclusions:
     1. Pae+DSS can attenuate endothelial dysfunction associated with diabetes andprotect high glucose-induced damage of endothelial cells.The p38MAPK pathway issuppressed for the protective effect of Pae+DSS.
     2. Pae+DSS can attenuate vascular smooth muscle dysfunction associated withdiabetes.The BK_(Ca)is required for the protective effect of Pae+DSS.
引文
[1]高泓,谢春光,赵旭.糖尿病大血管病变的中医病机分析[J].珍国医国药,2009,20(6):1314-1315.
    [2]郭蕾,李振中,丁学屏,尹翠梅,南征.糖尿病血管病变的中医病机理论诠释[J].中华中医药杂志,2009,24(7):885-888.
    [3] Wu D, Ao G, Cao Q, Chen D, Cui J. In vitro and in vivo evaluation ofibuprofen-paeonol conjugate [J]. J Control Release,2008,152Suppl1:e98-100.
    [4] Li H, Wang S W, Zhang B L, Xie Y H, Yang Q, Cao W, Wang J B. Simultaneousquantitative determination of9active components in traditional Chinese medicinalpreparation ShuangDan oral liquid by RP-HPLC coupled with photodiode arraydetection [J]. J Pharm Biomed Anal,2011,56(4):820-824.
    [5] Lau C H, Chan C M, Chan Y W, Lau K M, Lau T W, Lam F C, Law W T, Che C T,Leung P C, Fung K P, Ho Y Y, Lau C B. Pharmacological investigations of theanti-diabetic effect of Cortex Moutan and its active component paeonol [J].Phytomedicine,2007,14(11):778-784.
    [6] Mi X J, Chen S W, Wang W J, Wang R, Zhang Y J, Li W J, Li Y L. Anxiolytic-likeeffect of paeonol in mice [J]. Pharmacol Biochem Behav,2005,81(3):683-687.
    [7] Hu P, Luo G A, Zhao Z, Jiang Z H. Quality assessment of radix salviaemiltiorrhizae [J]. Chem Pharm Bull (Tokyo),2005,53(5):481-486.
    [8] Lam F F, Yeung J H, Chan K M, Or P M. Relaxant effects of danshen aqueousextract and its constituent danshensu on rat coronary artery are mediated byinhibition of calcium channels [J]. Vascul Pharmacol,2007,46(4):271-277.
    [9] Chan K, Chui S H, Wong D Y, Ha W Y, Chan C L, Wong R N. Protective effects ofDanshensu from the aqueous extract of Salvia miltiorrhiza (Danshen) againsthomocysteine-induced endothelial dysfunction [J]. Life Sci,2004,75(26):3157-3171.
    [10] Zhang N, Zou H, Jin L, Wang J, Zhong M F, Huang P, Gu B Q, Mao S L, Zhang C,Chen H. Biphasic effects of sodium danshensu on vessel function in isolated rataorta [J]. Acta Pharmacol Sin,2010,31(4):421-428.
    [11] Li Y J, Bao J X, Xu J W, Murad F, Bian K. Vascular dilation by paeonol--amechanism study [J]. Vascul Pharmacol,2010,53(3-4):169-176.
    [12] Yang G D, Zhang H, Lin R, Wang W R, Shi X L, Liu Y, Ji Q L. Down-regulation ofCD40gene expression and inhibition of apoptosis with Danshensu in endothelialcells [J]. Basic Clin Pharmacol Toxicol,2009,104(2):87-92.
    [13] Min C Y, Liu H Q, Zhan F, Qiu W Z.[Effect of paeonol on protecting endothelialcells of diabetic rats][J]. Zhong Yao Cai,2009,32(4):564-567.
    [14] Yang Q, Wang S, Xie Y, Wang J, Li H, Zhou X, Liu W. Effect of salvianolic Acid Band paeonol on blood lipid metabolism and hemorrheology in myocardial ischemiarabbits induced by pituitruin [J]. Int J Mol Sci,2010,11(10):3696-3704.
    [15] Li H, Wang S, Zhang B, Xie Y, Wang J, Yang Q, Cao W, Hu J, Duan L. Influence ofco-administered danshensu on pharmacokinetic fate and tissue distribution ofpaeonol in rats [J]. Planta Med,2011,78(2):135-140.
    [16] Li H, Xie Y H, Yang Q, Wang S W, Zhang B L, Wang J B, Cao W, Bi L L, Sun J Y,Miao S, Hu J, Zhou X X, Qiu P C. Cardioprotective effect of paeonol anddanshensu combination on isoproterenol-induced myocardial injury in rats [J].PLoS One,2012,7(11): e48872.
    [17] Takenouchi Y, Kobayashi T, Taguchi K, Matsumoto T, Kamata K. Genderdifferences in endothelial function in aortas from type2diabetic model mice [J]. JPharmacol Sci,2009,111(1):91-99.
    [18] Natali A, Toschi E, Baldeweg S, Casolaro A, Baldi S, Sironi A M, Yudkin J S,Ferrannini E. Haematocrit, type2diabetes, and endothelium-dependentvasodilatation of resistance vessels [J]. Eur Heart J,2005,26(5):464-471.
    [19] Okon E B, Szado T, Laher I, McManus B, van Breemen C. Augmented contractileresponse of vascular smooth muscle in a diabetic mouse model [J]. J Vasc Res,2003,40(6):520-530.
    [20] Shi Y, Feletou M, Ku D D, Man R Y, Vanhoutte P M. The calcium ionophoreA23187induces endothelium-dependent contractions in femoral arteries from ratswith streptozotocin-induced diabetes [J]. Br J Pharmacol,2007,150(5):624-632.
    [21] Dunn K M, Nelson M T. Calcium and diabetic vascular dysfunction. Focus on"Elevated Ca(2+) sparklet activity during acute hyperglycemia and diabetes incerebral arterial smooth muscle cells"[J]. Am J Physiol Cell Physiol,2010,298(2):C203-205.
    [22] Baranowska M, Kozlowska H, Korbut A, Malinowska B.[Potassium channels inblood vessels: their role in health and disease][J]. Postepy Hig Med Dosw (Online),2007,61:596-605.
    [23]杨倩,王四旺,谢艳华.双丹胶囊对大鼠脑缺血再灌注损伤保护作用研究[J].现代生物医学进展,2009,9(20):3861-3863.
    [24]胡安义,刘莉.双丹滴丸对原发性高血压患者血压及血清血管紧张肽Ⅱ表达的影响[J].医药导报,2010,29(4):495-497.
    [25]龙子江,张玲,王维胜,陈明,王靓,卞海.双丹注射液对急性心肌缺血模型大鼠血液流变性的影响[J].安徽中医学院学报,2008,27(4):33-35.
    [26]张玲,龙子江,王靓,王维胜,陈明,王雅娟,卞海.双丹注射液对急性心肌缺血模型大鼠心电图与血清酶的影响[J].中药药理与临床,2007,22(6):55-56.
    [27]丁乾德.中西医结合治疗冠心病心绞痛60例[J].河南中医,2010,30(11):13-14.
    [28]迟晓华,陈颖.双丹滴丸治疗冠心病心绞痛瘀血阻络型30例[J].长春中医药大学学报,2007,23(2):53-54.
    [29]于琼,吴铁,崔燎.双丹口服液对环磷酰胺大鼠皮质骨的影响[J].中药材,2008,3:034.
    [30]刘陶世,黄耀洲.丹参成分、制剂和质量控制研究概况[J].南京中医药大学学报,1998,14(4):255-256.
    [31] Fu J, Huang H, Liu J, Pi R, Chen J, Liu P. Tanshinone IIA protects cardiacmyocytes against oxidative stress-triggered damage and apoptosis [J]. Eur JPharmacol,2007,568(1-3):213-221.
    [32]钱卫民,邓春玉.丹参素对豚鼠心室肌细胞L-型钙通道的影响[J].岭南心血管病杂志,2002,8(4):276-278.
    [33]邓惠英.丹参及其有效成分的药理研究概况[J].现代医药卫生,2007,23(12):1812-1813.
    [34]崔桂云,沈霞.丹参神经保护作用机制的研究[J].徐州医学院学报,2002,22(6):492-494.
    [35]何治,潘志红,鲁文红.丹参酮IIA对血管性痴呆小鼠的神经保护作用机制初探[J].时珍国医国药2009,20(12):3022-3024.
    [36]邬浩杰.丹参的药理作用研究[J].浙江中医药大学学报,2008,32(5):694-695.
    [37]孟凡强,王文跃,孙学英,姜洪池,孙备,乔海泉.大鼠肝缺血再灌注对肝、肾、小肠的损伤及丹参的保护作用[J].中日友好医院学报,2010,(2):90-93.
    [38]王祝举,唐力英,赫炎.牡丹皮的化学成分和药理作用[J].国外医药:植物药分册,2006,21(4):155-159.
    [39]盛小刚,潘光明,郑朝阳,赖仁奎,吴瑜,邹旭.清热中药对ApoE基因缺陷小鼠动脉粥样硬化斑块的影响[J].中国中医急症,2011,20(002):257-258.
    [40]李娴,张丽,丁安伟.牡丹皮炭及其止血活性部位对大鼠血小板聚集性及血栓素B2和6-酮-前列腺素F1α的影响[J].中国实验方剂学杂志,2009,15(11):41-43.
    [41]郭齐,郝伟,王蕊,李连达,赵乐.牡丹皮有效成分重组复方对犬实验性急性心肌梗死的影响[J].郑州大学学报(医学版),2007,42(1):131-133.
    [42]王宪龄,李连珍,荆云,吴书铭.牡丹皮镇痛抗炎作用的实验研究[J].河南中医,2006,25(12):26-28.
    [43]傅若秋,孟德胜,胡大强,龙世林.牡丹皮水提取物及乙醇提取物的抗菌作用研究[J].中国药业,2010,(018):29-29.
    [44]万京华,李坤珍,鹏英.牡丹皮多糖对免疫抑制小鼠的免疫调节作用[J].中国中医药信息杂志,2006,13(7):25-26.
    [45]李坤珍,万京华.牡丹皮对小白鼠免疫功能的影响[J].数理医药学杂志,2002,15(1):76-77.
    [46]陈金英,李向阳.丹皮总甙防治大鼠急性肝损伤的实验研究[J].中国热带医学,2009,9(3):450-452.
    [47]梅俏,许建明.丹皮总苷对化学性肝损伤保护作用机制[J].中国药理学通报,1999,15(2):176-178.
    [48]胡薇,马赛,郭冬梅,季静,杨晓倩,崔癉.丹参素对D-半乳糖大鼠脑组织SOD活性和MDA的影响[J].中国热带医学,2008,8(8):1305-1306.
    [49]张婷,王超云,田京伟,傅风华,刘珂.丹参素对脑损伤的保护作用[J].中药材,2005,36(7):1041-1043.
    [50] Wu L, Qiao H, Li Y, Li L. Protective roles of puerarin and Danshensu on acuteischemic myocardial injury in rats [J]. Phytomedicine,2007,14(10):652-658.
    [51] Tani M, Neely J R. Role of intracellular Na+in Ca2+overload and depressedrecovery of ventricular function of reperfused ischemic rat hearts. Possibleinvolvement of H+-Na+and Na+-Ca2+exchange [J]. Circ Res,1989,65(4):1045-1056.
    [52]陶丽,王生,赵杨,陈文星,王爱云,陆茵.丹参素对非小细胞肺癌A549细胞内氧化还原状态及相关核转录因子的影响[J].中国中药杂志,2012,37(9):1265-1268.
    [53]杨华,程金建.丹参素对胃癌MGC803细胞周期的影响及凋亡诱导作用[J].山东医药,2010,50(36):28-30.
    [54]方杰.丹参素对乳腺癌MCF细胞株的作用[J].中国老年学杂志,2003,23(3):168-169.
    [55]毕明慧,陈坚.丹参素诱导人肝癌细胞株SMMC7721凋亡的研究[J].胃肠病学,2011,16(4):222-225.
    [56] Zhang L J, Chen L, Lu Y, Wu J M, Xu B, Sun Z G, Zheng S Z, Wang A Y.Danshensu has anti-tumor activity in B16F10melanoma by inhibiting angiogenesisand tumor cell invasion [J]. Eur J Pharmacol,2010,643(2-3):195-201.
    [57]周鑫,韩德玉,尹镭,赵海珍.从微循环角度探讨丹参素抗急性重型肝损伤的机制[J].山西医药杂志,2006,35(6):507-508.
    [58]苗青旺,田伟,王新瑞.丹参素对肝硬变大鼠肝部分切除术后肝再生的影响[J].中国药物与临床,2009,9(6):502-503.
    [59] Xing J J, Chen X, Tu P F, Jiang Y, Zhao J Y. Effects of salvianolic acids onerythrocyte deformability in oleic acid induced acute lung injury in rabbits [J]. ClinHemorheol Microcirc,2006,34(4):507-517.
    [60] Wu L, Li X, Li Y, Wang L, Tang Y, Xue M. Proliferative inhibition of danxiongfangand its active ingredients on rat vascular smooth muscle cell and protective effecton the VSMC damage induced by hydrogen peroxide [J]. J Ethnopharmacol,2009,126(2):197-206.
    [61]王腾,唐其柱,江洪,李建军,杨波,黄从新,李庚山.丹皮酚对豚鼠心肌细胞动作电位及钙通道电流的影响[J].武汉大学学报(医学版),2001,22(4):331-331.
    [62]张广钦,禹志领.丹皮酚对抗大鼠心肌缺血再灌注心律失常作为[J].中国药科大学学报,1997,28(4):225-227.
    [63]冯巧巧,周勇,张岫美.丹皮酚对麻醉犬冠脉结扎致心肌梗死的保护作用[J].中国生化药物杂志,2008,29(5):320-323.
    [64] Hsieh C L, Cheng C Y, Tsai T H, Lin I H, Liu C H, Chiang S Y, Lin J G, Lao C J,Tang N Y. Paeonol reduced cerebral infarction involving the superoxide anion andmicroglia activation in ischemia-reperfusion injured rats [J]. J Ethnopharmacol,2006,106(2):208-215.
    [65]韩永涛,张硕,张岫美.丹皮酚减少大鼠局灶性脑缺血再灌注损伤后一氧化氮和内皮素的生成[J].中国药学杂志,2007,42(16):1218-1220.
    [66] Zhong S Z, Ge Q H, Qu R, Li Q, Ma S P. Paeonol attenuates neurotoxicity andameliorates cognitive impairment induced by d-galactose in ICR mice [J]. J NeurolSci,2009,277(1-2):58-64.
    [67]孙国平,沈玉先,张玲玲,王华,魏伟,徐叔云.丹皮酚的体内外抗肿瘤作用[J].安徽医科大学学报,2002,37(3):183-185.
    [68]史浩,揭志刚,向德雨,李正荣,刘逸.丹皮酚对人结肠癌LoVo细胞增殖及凋亡的作用[J].实用癌症杂志,2008,23(6):557-560.
    [69]陈岳涛,曹蔚,王四旺,叶青雅.丹皮酚抗肿瘤作用及其机制研究[J].现代生物医学进展,2012,12(21):4163-4165.
    [70]武海军,徐继辉,李月玲,刘和莉,杨玉梅.丹皮酚的抗炎作用研究[J].包头医学院学报,2008,24(3):238-239.
    [71] Chou T C. Anti-inflammatory and analgesic effects of paeonol in carrageenan-evoked thermal hyperalgesia [J]. Br J Pharmacol,2003,139(6):1146-1152.
    [72]刘爱敏,武海军,杨玉梅.丹皮酚的镇痛作用[J].包头医学院学报,2004,20(2):99-100.
    [73]吴晓慧,吴国荣,张卫明,顾龚平,沙莎,王习达.丹皮酚的磺化,产物鉴定及抑菌作用的比较[J].中药材,2003,26(11):778-780.
    [74]高健,相海鹰,许同桃,胡建平,吴群.丹皮酚及其席夫碱衍生物的抑菌性研究[J].化学试剂,2007,29(1):59-60.
    [75]张永梅,梁红,杨玉梅,徐继辉,徐军.丹皮酚对小鼠免疫功能的影响[J].包头医学院学报,2005,19(4):261-263.
    [76]应康,王玉珍.丹皮酚对小鼠淋巴细胞转化的影响[J].包头医学院学报,2001,17(2):92-93.
    [77] Wang Y Q, Dai M, Zhong J C, Yin D K. Paeonol inhibits oxidized low densitylipoprotein-induced monocyte adhesion to vascular endothelial cells by inhibitingthe mitogen activated protein kinase pathway [J]. Biol Pharm Bull,2012,35(5):767-772.
    [78] Dai M, Zhi X, Peng D, Liu Q.[Inhibitory effect of paeonol on experimentalatherosclerosis in quails][J]. Zhongguo Zhong Yao Za Zhi,1999,24(8):488-490,512.
    [79] Suwaidi J A, Hamasaki S, Higano S T, Nishimura R A, Holmes D R, Jr., Lerman A.Long-term follow-up of patients with mild coronary artery disease and endothelialdysfunction [J]. Circulation,2000,101(9):948-954.
    [80] Brownlee M. The pathobiology of diabetic complications: a unifying mechanism [J].Diabetes,2005,54(6):1615-1625.
    [81] De Caterina R. Endothelial dysfunctions: common denominators in vascular disease[J]. Curr Opin Clin Nutr Metab Care,2000,3(6):453-467.
    [82] Stehouwer C D, Lambert J, Donker A J, van Hinsbergh V W. Endothelialdysfunction and pathogenesis of diabetic angiopathy [J]. Cardiovasc Res,1997,34(1):55-68.
    [83] Cubbon R M, Rajwani A, Wheatcroft S B. The impact of insulin resistance onendothelial function, progenitor cells and repair [J]. Diab Vasc Dis Res,2007,4(2):103-111.
    [84] Goldschmidt-Clermont P J, Creager M A, Losordo D W, Lam G K, Wassef M, DzauV J. Atherosclerosis2005: recent discoveries and novel hypotheses [J]. Circulation,2005,112(21):3348-3353.
    [85] Favaro E, Miceli I, Bussolati B, Schmitt-Ney M, Cavallo Perin P, Camussi G,Zanone M M. Hyperglycemia induces apoptosis of human pancreatic isletendothelial cells: effects of pravastatin on the Akt survival pathway [J]. Am J Pathol,2008,173(2):442-450.
    [86] Ho F M, Liu S H, Liau C S, Huang P J, Lin-Shiau S Y. High glucose-inducedapoptosis in human endothelial cells is mediated by sequential activations of c-JunNH(2)-terminal kinase and caspase-3[J]. Circulation,2000,101(22):2618-2624.
    [87] Ido Y, Carling D, Ruderman N. Hyperglycemia-induced apoptosis in humanumbilical vein endothelial cells: inhibition by the AMP-activated protein kinaseactivation [J]. Diabetes,2002,51(1):159-167.
    [88] Lorenzi M, Cagliero E. Pathobiology of endothelial and other vascular cells indiabetes mellitus. Call for data [J]. Diabetes,1991,40(6):653-659.
    [89] Cines D B, Pollak E S, Buck C A, Loscalzo J, Zimmerman G A, McEver R P, PoberJ S, Wick T M, Konkle B A, Schwartz B S, Barnathan E S, McCrae K R, Hug B A,Schmidt A M, Stern D M. Endothelial cells in physiology and in thepathophysiology of vascular disorders [J]. Blood,1998,91(10):3527-3561.
    [90] Goligorsky M S, Chen J, Brodsky S. Workshop: endothelial cell dysfunctionleading to diabetic nephropathy: focus on nitric oxide [J]. Hypertension,2001,37(2P2):744-748.
    [91] R. R. Holman C A C, C. Fox, and R. C. Turner. United Kingdom ProspectiveDiabetes Study (UKPDS).13: Relative efficacy of randomly allocated diet,sulphonylurea, insulin, or metformin in patients with newly diagnosed non-insulindependent diabetes followed for three years [J]. Bmj,1995,310(6972):83-88.
    [92] Yang Z, Mo X, Gong Q, Pan Q, Yang X, Cai W, Li C, Ma J X, He Y, Gao G. Criticaleffect of VEGF in the process of endothelial cell apoptosis induced by high glucose[J]. Apoptosis,2008,13(11):1331-1343.
    [93] Nakagami H, Morishita R, Yamamoto K, Yoshimura S I, Taniyama Y, Aoki M,Matsubara H, Kim S, Kaneda Y, Ogihara T. Phosphorylation of p38mitogen-activated protein kinase downstream of bax-caspase-3pathway leads to cell deathinduced by high D-glucose in human endothelial cells [J]. Diabetes,2001,50(6):1472-1481.
    [94] Ho F M, Lin W W, Chen B C, Chao C M, Yang C R, Lin L Y, Lai C C, Liu S H,Liau C S. High glucose-induced apoptosis in human vascular endothelial cells ismediated through NF-kappaB and c-Jun NH2-terminal kinase pathway andprevented by PI3K/Akt/eNOS pathway [J]. Cell Signal,2006,18(3):391-399.
    [95] Ledoux J, Werner M E, Brayden J E, Nelson M T. Calcium-activated potassiumchannels and the regulation of vascular tone [J]. Physiology (Bethesda),2006,21:69-78.
    [96] McManus O B. Calcium-activated potassium channels: regulation by calcium [J]. JBioenerg Biomembr,1991,23(4):537-560.
    [97] Horrigan F T, Cui J, Aldrich R W. Allosteric voltage gating of potassium channels I.Mslo ionic currents in the absence of Ca(2+)[J]. J Gen Physiol,1999,114(2):277-304.
    [98] Talukder G, Aldrich R W. Complex voltage-dependent behavior of singleunliganded calcium-sensitive potassium channels [J]. Biophys J,2000,78(2):761-772.
    [99] Barrett J N, Magleby K L, Pallotta B S. Properties of single calcium-activatedpotassium channels in cultured rat muscle [J]. J Physiol,1982,331:211-230.
    [100] Cox D H, Cui J, Aldrich R W. Allosteric gating of a large conductance Ca-activatedK+channel [J]. J Gen Physiol,1997,110(3):257-281.
    [101] Perez G J, Bonev A D, Patlak J B, Nelson M T. Functional coupling of ryanodinereceptors to KCa channels in smooth muscle cells from rat cerebral arteries [J]. JGen Physiol,1999,113(2):229-238.
    [102] Hill M A, Yang Y, Ella S R, Davis M J, Braun A P. Large conductance,Ca2+-activated K+channels (BKCa) and arteriolar myogenic signaling [J]. FEBSLett,2010,584(10):2033-2042.
    [103] Brenner R, Perez G J, Bonev A D, Eckman D M, Kosek J C, Wiler S W, Patterson AJ, Nelson M T, Aldrich R W. Vasoregulation by the beta1subunit of thecalcium-activated potassium channel [J]. Nature,2000,407(6806):870-876.
    [104] Lohn M, Lauterbach B, Haller H, Pongs O, Luft F C, Gollasch M. beta(1)-Subunitof BK channels regulates arterial wall[Ca(2+)] and diameter in mouse cerebralarteries [J]. J Appl Physiol,2001,91(3):1350-1354.
    [105] Pluger S, Faulhaber J, Furstenau M, Lohn M, Waldschutz R, Gollasch M, Haller H,Luft F C, Ehmke H, Pongs O. Mice with disrupted BK channel beta1subunit genefeature abnormal Ca(2+) spark/STOC coupling and elevated blood pressure [J].Circ Res,2000,87(11): E53-60.
    [106] Fernandez-Fernandez J M, Tomas M, Vazquez E, Orio P, Latorre R, Senti M,Marrugat J, Valverde M A. Gain-of-function mutation in the KCNMB1potassiumchannel subunit is associated with low prevalence of diastolic hypertension [J]. JClin Invest,2004,113(7):1032-1039.
    [107] Nelson M T, Bonev A D. The beta1subunit of the Ca2+-sensitive K+channelprotects against hypertension [J]. J Clin Invest,2004,113(7):955-957.
    [108] Patterson A J, Henrie-Olson J, Brenner R. Vasoregulation at the molecular level: arole for the beta1subunit of the calcium-activated potassium (BK) channel [J].Trends Cardiovasc Med,2002,12(2):78-82.
    [109] Liu Y, Terata K, Chai Q, Li H, Kleinman L H, Gutterman D D. Peroxynitriteinhibits Ca2+-activated K+channel activity in smooth muscle of human coronaryarterioles [J]. Circ Res,2002,91(11):1070-1076.
    [110] Lu T, He T, Katusic Z S, Lee H C. Molecular mechanisms mediating inhibition ofhuman large conductance Ca2+-activated K+channels by high glucose [J]. Circ Res,2006,99(6):607-616.
    [111] Amberg G C, Santana L F. Downregulation of the BK channel beta1subunit ingenetic hypertension [J]. Circ Res,2003,93(10):965-971.
    [112] Amberg G C, Bonev A D, Rossow C F, Nelson M T, Santana L F. Modulation of themolecular composition of large conductance, Ca(2+) activated K(+) channels invascular smooth muscle during hypertension [J]. J Clin Invest,2003,112(5):717-724.
    [113] Dong L, Zheng Y M, Van Riper D, Rathore R, Liu Q H, Singer H A, Wang Y X.Functional and molecular evidence for impairment of calcium-activated potassiumchannels in type-1diabetic cerebral artery smooth muscle cells [J]. J Cereb BloodFlow Metab,2008,28(2):377-386.
    [114] Navarro-Antolin J, Levitsky K L, Calderon E, Ordonez A, Lopez-Barneo J.Decreased expression of maxi-K+channel beta1-subunit and altered vasoregulationin hypoxia [J]. Circulation,2005,112(9):1309-1315.
    [115] Bonnet S, Dumas-de-La-Roque E, Begueret H, Marthan R, Fayon M, Dos Santos P,Savineau J P, Baulieu E E. Dehydroepiandrosterone (DHEA) prevents and reverseschronic hypoxic pulmonary hypertension [J]. Proc Natl Acad Sci U S A,2003,100(16):9488-9493.
    [116] Marijic J, Li Q, Song M, Nishimaru K, Stefani E, Toro L. Decreased expression ofvoltage-and Ca(2+)-activated K(+) channels in coronary smooth muscle duringaging [J]. Circ Res,2001,88(2):210-216.
    [117] Nishimaru K, Eghbali M, Lu R, Marijic J, Stefani E, Toro L. Functional andmolecular evidence of MaxiK channel beta1subunit decrease with coronary arteryageing in the rat [J]. J Physiol,2004,559(Pt3):849-862.
    [118] Nardi A, Olesen S P. BK channel modulators: a comprehensive overview [J]. CurrMed Chem,2008,15(11):1126-1146.
    [119] Werner M E, Meredith A L, Aldrich R W, Nelson M T. Hypercontractility andimpaired sildenafil relaxations in the BKCa channel deletion model of erectiledysfunction [J]. Am J Physiol Regul Integr Comp Physiol,2008,295(1): R181-188.
    [120] Gragasin F S, Michelakis E D, Hogan A, Moudgil R, Hashimoto K, Wu X, BonnetS, Haromy A, Archer S L. The neurovascular mechanism of clitoral erection: nitricoxide and cGMP-stimulated activation of BKCa channels [J]. Faseb J,2004,18(12):1382-1391.
    [121] Pickkers P, Hughes A D, Russel F G, Thien T, Smits P. In vivo evidence for K(Ca)channel opening properties of acetazolamide in the human vasculature [J]. Br JPharmacol,2001,132(2):443-450.
    [122] Bang L, Nielsen-Kudsk J E, Gruhn N, Trautner S, Theilgaard S A, Olesen S P,Boesgaard S, Aldershvile J. Hydralazine-induced vasodilation involves opening ofhigh conductance Ca2+-activated K+channels [J]. Eur J Pharmacol,1998,361(1):43-49.
    [123] Lu T, Chai Q, Yu L, d'Uscio L V, Katusic Z S, He T, Lee H C. Reactive oxygenspecies signaling facilitates FOXO-3a/FBXO-dependent vascular BK channel beta1subunit degradation in diabetic mice [J]. Diabetes,2012,61(7):1860-1868.
    [124] Lu T, Wang X L, He T, Zhou W, Kaduce T L, Katusic Z S, Spector A A, Lee H C.Impaired arachidonic acid-mediated activation of large-conductance Ca2+-activatedK+channels in coronary arterial smooth muscle cells in Zucker Diabetic Fatty rats[J]. Diabetes,2005,54(7):2155-2163.
    [125] McGahon M K, Dash D P, Arora A, Wall N, Dawicki J, Simpson D A, Scholfield CN, McGeown J G, Curtis T M. Diabetes downregulates large-conductanceCa2+-activated potassium beta1channel subunit in retinal arteriolar smooth muscle[J]. Circ Res,2007,100(5):703-711.
    [126] Zhang D M, He T, Katusic Z S, Lee H C, Lu T. Muscle-specific f-box only proteinsfacilitate bk channel beta(1) subunit downregulation in vascular smooth musclecells of diabetes mellitus [J]. Circ Res,2010,107(12):1454-1459.
    [127] Papassotiriou J, Kohler R, Prenen J, Krause H, Akbar M, Eggermont J, Paul M,Distler A, Nilius B, Hoyer J. Endothelial K(+) channel lacks the Ca(2+)sensitivity-regulating beta subunit [J]. Faseb J,2000,14(7):885-894.
    [128] Brewster J L, de Valoir T, Dwyer N D, Winter E, Gustin M C. An osmosensingsignal transduction pathway in yeast [J]. Science,1993,259(5102):1760-1763.
    [129] Lee K H, Choi E Y, Kim M K, Hyun M S, Jang B I, Kim T N, Kim S W, Song S K,Kim J H, Kim J R. Regulation of hepatocyte growth factor-mediated urokinaseplasminogen activator secretion by MEK/ERK activation in human stomach cancercell lines [J]. Exp Mol Med,2006,38(1):27-35.
    [130] Hsieh Y H, Wu T T, Huang C Y, Hsieh Y S, Hwang J M, Liu J Y. p38mitogen-activated protein kinase pathway is involved in protein kinaseCalpha-regulated invasion in human hepatocellular carcinoma cells [J]. Cancer Res,2007,67(9):4320-4327.
    [131] Nick J A, Young S K, Arndt P G, Lieber J G, Suratt B T, Poch K R, Avdi N J,Malcolm K C, Taube C, Henson P M, Worthen G S. Selective suppression ofneutrophil accumulation in ongoing pulmonary inflammation by systemic inhibitionof p38mitogen-activated protein kinase [J]. J Immunol,2002,169(9):5260-5269.
    [132] Koike N, Takeyoshi I, Ohki S, Tokumine M, Matsumoto K, Morishita Y. Effects ofadding P38mitogen-activated protein-kinase inhibitor to celsior solution in canineheart transplantation from non-heart-beating donors [J]. Transplantation,2004,77(2):286-292.
    [133] Hashimoto N, Takeyoshi I, Yoshinari D, Tsutsumi H, Tokumine M, Totsuka O,Sunose Y, Ohwada S, Matsumoto K, Morishita Y. Effects of a p38mitogen-activated protein kinase inhibitor as an additive to Euro-Collins solution onreperfusion injury in canine lung transplantation1[J]. Transplantation,2002,74(3):320-326.
    [134] Noguchi K, Yamana H, Kitanaka C, Mochizuki T, Kokubu A, Kuchino Y.Differential role of the JNK and p38MAPK pathway in c-Myc-ands-Myc-mediated apoptosis [J]. Biochem Biophys Res Commun,2000,267(1):221-227.
    [135] Berra E, Diaz-Meco M T, Moscat J. The activation of p38and apoptosis by theinhibition of Erk is antagonized by the phosphoinositide3-kinase/Akt pathway [J]. JBiol Chem,1998,273(17):10792-10797.
    [136]王四旺.“中药分子”与“分子中药”[J].第四军医大学学报,2008,29(18):1633-1636.
    [137]王四旺.“分子中药学”内涵与现代中医药[J].亚太传统医药,2008,4(3):9-12.
    [138] Wu J B, Song N N, Wei X B, Guan H S, Zhang X M. Protective effects of paeonolon cultured rat hippocampal neurons against oxygen-glucose deprivation-inducedinjury [J]. J Neurol Sci,2008,264(1-2):50-55.
    [139] Li Volti G, Salomone S, Sorrenti V, Mangiameli A, Urso V, Siarkos I, Galvano F,Salamone F. Effect of silibinin on endothelial dysfunction and ADMA levels inobese diabetic mice [J]. Cardiovasc Diabetol,2011,10:62.
    [140] Wang Y, Liu L, Hu C, Cheng Y. Effects of Salviae Mitiorrhizae and Cortex Moutanextract on the rat heart after myocardial infarction: a proteomic study [J]. BiochemPharmacol,2007,74(3):415-424.
    [141] Huang P L. eNOS, metabolic syndrome and cardiovascular disease [J]. TrendsEndocrinol Metab,2009,20(6):295-302.
    [142] Skyrme-Jones R A, O'Brien R C, Luo M, Meredith I T. Endothelial vasodilatorfunction is related to low-density lipoprotein particle size and low-densitylipoprotein vitamin E content in type1diabetes [J]. J Am Coll Cardiol,2000,35(2):292-299.
    [143] Li Z L, Liu J C, Hu J, Li X Q, Wang S W, Yi D H, Zhao M G. Protective effects ofhyperoside against human umbilical vein endothelial cell damage induced byhydrogen peroxide [J]. J Ethnopharmacol,2012,139(2):388-394.
    [144] Wang T, Fu F, Han B, Zhang L, Zhang X. Danshensu ameliorates the cognitivedecline in streptozotocin-induced diabetic mice by attenuating advanced glycationend product-mediated neuroinflammation [J]. J Neuroimmunol,2012,245(1-2):79-86.
    [145] Bao M H, Zhang Y W, Zhou H H. Paeonol suppresses oxidized low-densitylipoprotein induced endothelial cell apoptosis via activation of LOX-1/p38MAPK/NF-kappaB pathway [J]. J Ethnopharmacol,2013,146(2):543-551.
    [146] Chen N, Liu D, Soromou L W, Sun J, Zhong W, Guo W, Huo M, Li H, Guan S,Chen Z, Feng H. Paeonol suppresses lipopolysaccharide-induced inflammatorycytokines in macrophage cells and protects mice from lethal endotoxin shock [J].Fundam Clin Pharmacol,2013,[Epub ahead of print]
    [147] Peiro C, Lafuente N, Matesanz N, Cercas E, Llergo J L, Vallejo S,Rodriguez-Manas L, Sanchez-Ferrer C F. High glucose induces cell death ofcultured human aortic smooth muscle cells through the formation of hydrogenperoxide [J]. Br J Pharmacol,2001,133(7):967-974.
    [148] Pandolfi A, Grilli A, Cilli C, Patruno A, Giaccari A, Di Silvestre S, De Lutiis M A,Pellegrini G, Capani F, Consoli A, Felaco M. Phenotype modulation in cultures ofvascular smooth muscle cells from diabetic rats: association with increased nitricoxide synthase expression and superoxide anion generation [J]. J Cell Physiol,2003,196(2):378-385.
    [149] Redondo S, Ruiz E, Santos-Gallego C G, Padilla E, Tejerina T. Pioglitazone inducesvascular smooth muscle cell apoptosis through a peroxisome proliferator-activatedreceptor-gamma, transforming growth factor-beta1, and a Smad2-dependentmechanism [J]. Diabetes,2005,54(3):811-817.
    [150] Ceylan-Isik A F, Erdogan-Tulmac O B, Ari N, Ozansoy G, Ren J. Effect of17beta-oestradiol replacement on vascular responsiveness in ovariectomizeddiabetic rats [J]. Clin Exp Pharmacol Physiol,2009,36(11): e65-71.
    [151] Zhang C, Wang X H, Zhong M F, Liu R H, Li H L, Zhang W D, Chen H.Mechanisms underlying vasorelaxant action of astragaloside IV in isolated rat aorticrings [J]. Clin Exp Pharmacol Physiol,2007,34(5-6):387-392.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700