用户名: 密码: 验证码:
肌红蛋白诱导肾小管上皮细胞损伤的机制研究及免疫吸附装置的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的:横纹肌溶解可以导致急性肾损伤,肌红蛋白是致病的关键因素。但是,是高铁肌红蛋白还是亚铁肌红蛋白导致肾小管上皮细胞损伤,研究结果并不一致,横纹肌溶解肾损伤的确切机制也尚未阐明。在急性肾损伤过程中,常有细胞凋亡,近年研究发现内质网应激在细胞凋亡中具有重要作用。肌红蛋白可以引起肾小管上皮细胞凋亡,但此过程是否由内质网应激所诱导,以及相关的凋亡信号传导通路,尚未明确。
     本研究通过对比分析高铁和亚铁肌红蛋白对HK-2细胞的作用,证实配位铁价态对肌红蛋白细胞毒性的影响。进而以亚铁肌红蛋白诱导HK-2细胞凋亡,检测内质网应激及相关凋亡蛋白的表达,解析肌红蛋白诱导凋亡的内质网应激机制。最后,以抗体为配基构建肌红蛋白免疫吸附实验治疗装置,初步验证其清除功能。
     方法:1.分析肌红蛋白配位铁价态对其肾小管上皮细胞毒性的影响:①HK-2细胞分别与高铁和亚铁两种价态的肌红蛋白孵育,以MTT试验评估细胞活性,细胞培养上清乳酸脱氢酶(LDH)检测评价细胞损伤程度,分析肌红蛋白配位铁价态对其细胞毒性的影响。②不同剂量亚铁肌红蛋白孵育HK-2细胞,以MTT试验评估细胞活性,培养上清LDH检测评价细胞损伤,Hoechst染色评估细胞凋亡,分析亚铁肌红蛋白肾小管上皮细胞毒性的剂量效应关系。2.探索肌红蛋白诱导肾小管上皮细胞凋亡的内质网应激机制:①亚铁肌红蛋白孵育HK-2细胞,Western blot检测孵育后各时间点的内质网应激和相关凋亡蛋白的表达,分析可能参与凋亡的信号途径。②在阻断内质网IP3R钙通道的基础上,以亚铁肌红蛋白孵育HK-2细胞,Western blot检测内质网应激和相关凋亡蛋白表达的变化,流式细胞仪检测细胞凋亡率,分析肌红蛋白诱导HK-2细胞凋亡的内质网应激机制。3.构建肌红蛋白免疫吸附实验治疗装置:①利用生物分析软件筛选并合成肌红蛋白抗原肽段,经免疫、纯化获得肌红蛋白多克隆抗体。②经纯度、效价、特异性检测,选取优势肽段与筛选的载体交联,制备免疫吸附填料并装配免疫吸附柱。③初步验证体
     结果:1.亚铁肌红蛋白诱导肾小管上皮细胞损伤:①200uM亚铁肌红蛋白孵育HK-2细胞,细胞活性在48h显著降低,LDH释放量在24h显著增加;高铁肌红蛋白对HK-2细胞无显著影响。②分别以12.5-200uM亚铁肌红蛋白孵育HK-2细胞,结果显示亚铁肌红蛋白剂量与HK-2细胞活性呈负相关,与培养上清LDH释放量呈正相关,与细胞凋亡率呈正相关。2.肌红蛋白通过内质网应激介导肾小管上皮细胞凋亡:①200uM亚铁肌红蛋白孵育HK-2细胞,内质网伴侣蛋白Grp78在3-12h维持较高表达,线粒体凋亡途径启动者caspase-9在12-24h维持较高表达,而内质网特异性凋亡途径启动者caspase-4表达量与对照组无显著差异。②阻断内质网IP3R钙通道同时给予亚铁肌红蛋白孵育,与单用亚铁肌红蛋白孵育相比较,Grp78表达进一步增高,caspase-9显著抑制,caspase-4显著增高,HK-2细胞凋亡率无显著改变。3.构建肌红蛋白免疫吸附实验治疗装置:①设计、合成2条抗原肽段L-12与D-12,偶联大分子蛋白KLH并免疫大耳白兔,抗血清经纯化获得2种兔抗大鼠肌红蛋白多克隆抗体,抗L-12和抗D-12。②SDS-PAGE电泳检测纯度,ELISA检测效价,Western blot和免疫组化检测抗体特异性,选取抗D-12抗体与筛选的D-380树脂交联,制备免疫吸附填料并装配1ml和5m1吸附柱。③泵管系统模拟体外循环验证结果显示吸附柱有较好的清除功能并可以复用。快速蛋白液相色谱仪验证结果显示吸附柱对肌红蛋白的吸附率显著高于其它蛋白(白蛋白和溶菌酶)。
     结论:1.配位铁价态决定了肌红蛋白的细胞毒性,是亚铁肌红蛋白而非高铁肌红蛋白引起肾小管上皮细胞损伤,其抑制细胞活性、产生细胞损伤、诱导细胞凋亡的作用呈剂量依赖性。2.亚铁肌红蛋白诱导肾小管上皮细胞发生内质网应激,进而通过依赖caspase-9的线粒体途径介导细胞凋亡。内质网IP3R钙通道阻断时,依赖caspase-4的内质网特异性途径可能成为介导细胞凋亡的替代途径,提示单纯阻断线粒体途径不能抑制凋亡。3.以肌红蛋白抗体为配基构建的免疫吸附实验治疗装置对肌红蛋白具有优良的清除功能。
Backgroundst Objective:About 13-50% of rhabdomyolysis is complicated with AKI and myoglobin is the key element. Literatures about myoglobin toxicity mainly focus on oxidative stress, but the results diverse. The excact mechanisms of myoglobin induced kidney injury remains unclear. Apoptosis often occurs in animal models of AKI or cultured cells. Endoplasmic reticulum stress (ERS) has recently been found to play an important role in apoptosis. Myoglobin is able to induce apoptosis in tubular epithelial cells, but whether it is mediated by ERS and the signaling pathways are still unknown. In this study we mainly focus on myoglobin renal toxicity and the ERS mechanisms in myoglobin induced tubular epithelial cell apoptosis, then construct experimental immunoadsorbent devices.
     Methods:1.Valent states of coordinated iron affect myoglobin toxicity:i)HK-2 cells were incubated with ferrous or ferric myoglobin, respectively, then cell viability was evaluated by MTT assay, cell injury by LDH release test. ii)HK-2 cells were incubated with different doses of ferrous myoglobin to analyse the dose-effect relationships.2.ERS mechanisms in myoglobin induced apoptosis: i)HK-2 cells were incubated with ferrous myoglobin and proteins relating to ERS or apoptosis were analysed by western blot. ii)With IP3R calcium channel blocked by 2-APB, HK-2 cells were incubated with ferrous myoglobin. Then we determined protein expression of Grp78, caspase-4, caspase-9, caspase-3 by western blot and evaluated cell apoptosis by flow cytometry.3.Construct inmmunoadsorbent devices:i)Achieved the purified rabbit anti-rat myoglobin polyclonal antibodies. ii)Prepared immunoadsorbent columns. iii)Verified the adsorption capacity in vitro.
     Results:1.Ferrous myoglobin cell toxicity:i)HK-2 cells incubated with ferrous myoglobin showed lower viability, more cell injury while ferric myoglobin didn't affect HK-2 cells. ii)Ferrous myoglobin dosage was correlated positively with cell LDH release and apoptosis rate, and inversely with cell viability.2.ERS mediated tubular epithelial cell apoptosis:i)Incubated with 200uM ferrous myoglobin, Grp78 increased and remained at high level in 3-12h while caspase-9 remained high in 12-24h. Caspase-4 was non significant to control. ii)Compared to merely myoglobin incubation,2-APB plus myoglobin incubation showed further more Grp78 expression, inhibited caspase-9, dramatically increased caspase-4, and cell apoptosis wasn't ameliorated.3.Immunoadsorbent devices:i)Synthesized 2 antigen peptides, L-12 and D-12. Linked with KLH and immuned rabbits, obtained 2 polyclonal antibodies, anti-L-12 and anti-D-12 pAb. ii)Determined purity, titer and specificity of the antibodies, then corsslinked anti-D-12 pAb with D-380 resin to prepare adsorbent fillings. Then assemble immunoadsorbent devices. iii)The mimic extracorporeal system verification indicated that the immnoadsorbent column had good function and reusable. FPLC verification showed the removal of myoglobin was significantly more than that of other proteins, i.e., BSA or lysozyme.
     Conclusions:1.Valent state of cocordinated iron in myoglobin determines its cell toxicity. It is ferrous myoglobin that causes tubular cell injuries and the toxicity is dose-dependent.2.Ferrous myoglobin can induce ERS, then mediates cell apoptosis by caspase-9 dependent mitochondrial pathway. When IP3R calcium channel is blocked, caspase-4 dependent endoplasmic reticulum specific pathway may serve as a substitutive apoptosis pathway.3.With myoglobin polyclonal antibody as the ligand, the immnoadsorbent devices have good adsorption capacity.
引文
[1]Zager RA. Heme protein-induced tubular cytoresistance:expression at the plasma membrane level. Kidney Int.1995.47(5):1336-45.
    [2]Zager RA, Burkhart K. Myoglobin toxicity in proximal human kidney cells: roles of Fe, Ca2+, H202, and terminal mitochondrial electron transport. Kidney Int.1997.51 (3):728-38.
    [3]Knochel JP. Rhabdomyolysis and myoglobinuria. Annu Rev Med.1982.33:
    435-43.
    [4]Bosch X, Poch E, Grau JM. Rhabdomyolysis and acute kidney injury. N Engl J Med.2009.361(1):62-72.
    [5]Holt S, Moore K. Pathogenesis of renal failure in rhabdomyolysis:the role of myoglobin. Exp Nephrol.2000.8(2):72-6.
    [6]Iwata M, Zager RA. Myoglobin inhibits proliferation of cultured human proximal tubular (HK-2) cells. Kidney Int.1996.50(3):796-804.
    [7]Zager RA, Foerder CA. Effects of inorganic iron and myoglobin on in vitro proximal tubular lipid peroxidation and cytotoxicity. J Clin Invest.1992.89(3):989-95.
    [8]Minigh JL, Valentovic MA. Characterization of myoglobin toxicity in renal cortical slices from Fischer 344 rats. Toxicology.2003. 184(2-3):113-23.
    [9]Valentovic MA, Minigh J. Pyruvate attenuates myoglobin in vitro toxicity. Toxicol Sci.2003.74(2):345-51.
    [10]Ustundag S, Yalcin O, Sen S, Cukur Z, Ciftci S, Demirkan B. Experimental myoglobinuric acute renal failure:the effect of vitamin C. Ren Fail. 2008.30(7):727-35.
    [11]Zhu W, Wilks A, Stojiljkovic I. Degradation of heme in gram-negative bacteria:the product of the hemO gene of Neisseriae is a heme oxygenase. J Bacteriol.2000.182(23):6783-90.
    [12]Kuntsevich VI, Feinfeld DA, Audia PF, et al. In-vitro myoglobin clearance by a novel sorbent system. Artif Cells Blood Substit Immobil Biotechnol.2009.37(1):45-7.
    [13]Korantzopoulos P, Galaris D, Papaioannides D. Pathogenesis and treatment of renal dysfunction in rhabdomyolysis. Intensive Care Med. 2002.28(8):1185; author reply 1186.
    [14]Parry SN, Ellis N, Li Z, Maitz P, Witting PK. Myoglobin induces oxidative stress and decreases endocytosis and monolayer permissiveness in cultured kidney epithelial cells without affecting viability. Kidney Blood Press Res.2008.31(1):16-28.
    [15]Reeder BJ, Wilson MT. Hemoglobin and myoglobin associated oxidative stress:from molecular mechanisms to disease States. Curr Med Chem. 2005.12(23):2741-51.
    [16]Reeder BJ. The redox activity of hemoglobins:From physiological functions to pathological mechanisms. Antioxid Redox Signal.2010
    [17]O'Regan S, Fong JS, Drummond KN. Renal injury after muscle extract infusion in rats:absence of toxicity with myoglobin. Experientia. 1979.35(6):805-6.
    [18]Nath KA, Balla G, Vercellotti GM, et al. Induction of heme oxygenase is a rapid, protective response in rhabdomyolysis in the rat. J Clin Invest.1992.90(1):267-70.
    [19]Muller-Eberhard U, Fraig M. Bioactivity of heme and its containment. Am J Hematol.1993.42(1):59-62.
    [20]KENDREW JC. Myoglobin and the structure of proteins. Science.1963. 139:1259-66.
    [21]Frauenfelder H, McMahon BH. Relaxations and fluctuations in myoglobin. Biosystems.2001.62(1-3):3-8.
    [22]Chu K, Vojtchovsky J, McMahon BH, Sweet RM, Berendzen J, Schlichting I. Structure of a ligand-binding intermediate in wild-type carbonmonoxy myoglobin. Nature.2000.403(6772):921-3.
    [23]Gonzalez-Michaca L, Farrugia G, Croatt AJ, Alam J, Nath KA. Heme:a determinant of life and death in renal tubular epithelial cells. Am J Physiol Renal Physiol.2004.286(2):F370-7.
    [24]Hebbel RP, Eaton JW. Pathobiology of heme interaction with the erythrocyte membrane. Semin Hematol.1989.26(2):136-49.
    [1]Holt SG, Moore KP. Pathogenesis and treatment of renal dysfunction in rhabdomyolysis. Intensive Care Med.2001.27(5):803-11.
    [2]Bagley WH, Yang H, Shah KH. Rhabdomyolysis. Intern Emerg Med.2007. 2(3):210-8.
    [3]Melli G, Chaudhry V, Cornblath DR. Rhabdomyolysis:an evaluation of 475 hospitalized patients. Medicine (Baltimore).2005.84(6):377-85.
    [4]Basic-Jukic N, Kes P, Bubic-Filipi L, Vranjican Z. Rhabdomyolysis and acute kidney injury secondary to concomitant use of fluvastatin and rapamycin in a renal transplant recipient. Nephrol Dial Transplant. 2010.
    [5]de Meijer AR, Fikkers BG, de Kei jzer MH, van EBG, Drenth JP. Serum creatine kinase as predictor of clinical course in rhabdomyolysis:a 5-year intensive care survey. Intensive Care Med.2003.29(7):1121-5.
    [6]Lorz C, Benito-Martin A, Justo P, et al. Modulation of renal tubular cell survival:where is the evidence. Curr Med Chem.2006.13(4): 449-54.
    [7]Green DR, Kroemer G. Pharmacological manipulation of cell death: clinical applications in sight. J Clin Invest.2005.115(10):2610-7.
    [8]Gburek J, Birn H, Verroust PJ, et al. Renal uptake of myoglobin is mediated by the endocytic receptors megalin and cubilin. Am J Physiol Renal Physiol.2003.285(3):F451-8.
    [9]Zager RA. Heme protein-induced tubular cytoresistance:expression at the plasma membrane level. Kidney Int.1995.47(5):1336-45.
    [10]Iwata M, Zager RA. Myoglobin inhibits proliferation of cultured human proximal tubular (HK-2) cells. Kidney Int.1996.50(3):796-804.
    [11]Zager RA, Burkhart K. Myoglobin toxicity in proximal human kidney cells: roles of Fe, Ca2+, H202, and terminal mitochondrial electron transport. Kidney Int.1997.51(3):728-38.
    [12]Price PM, Safirstein RL, Megyesi J. The cell cycle and acute kidney injury. Kidney Int.2009.76(6):604-13.
    [13]Kerr JF, Wyllie AH, Currie AR. Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer.1972. 26(4):239-57.
    [14]Kroemer G, Galluzzi L, Vandenabeele P, et al. Classification of cell death:recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ.2009.16(1):3-11.
    [15]Kroemer G, Levine B. Autophagic cell death:the story of a misnomer. Nat Rev Mol Cell Biol.2008.9(12):1004-10.
    [16]Periyasamy-Thandavan S, Jiang M, Wei Q, Smith R, Yin XM, Dong Z. Autophagy is cytoprotective during cisplatin injury of renal proximal
    tubular cells. Kidney Int.2008.74(5):631-40.
    [17]Ellis HM, Horvitz HR. Genetic control of programmed cell death in the nematode C. elegans. Cell.1986.44(6):817-29.
    [18]Thornberry NA, Lazebnik Y. Caspases:enemies within. Science.1998. 281(5381):1312-6.
    [19]Nicholson DW. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ.1999.6(11):1028-42.
    [20]Danial NN, Korsmeyer SJ. Cell death:critical control points. Cell. 2004.116(2):205-19.
    [21]Li P, Nijhawan D, Budihardjo I, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell.1997.91(4):479-89.
    [22]Baumgartner HK, Gerasimenko JV, Thorne C, et al. Caspase-8-mediated apoptosis induced by oxidative stress is independent of the intrinsic pathway and dependent on cathepsins. Am J Physiol Gastrointest Liver Physiol.2007.293(1):G296-307.
    [23]Groenendyk J, Michalak M. Endoplasmic reticulum quality control and apoptosis. Acta Biochim Pol.2005.52(2):381-95.
    [24]Nakagawa T, Zhu H, Morishima N, et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature.2000.403(6765):98-103.
    [25]Saleh M, Vaillancourt JP, Graham RK, et al. Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms. Nature. 2004.429(6987):75-9.
    [26]Matsuzaki S, Hiratsuka T, Kuwahara R, Katayama T, Tohyama M. Caspase-4 is partially cleaved by calpain via the impairment of Ca2+ homeostasis under the ER stress. Neurochem Int. 2010.56(2):352-6.
    [27]Kim SJ, Zhang Z, Hitomi E, Lee YC, Mukherjee AB. Endoplasmic reticulum stress-induced caspase-4 activation mediates apoptosis and neurodegeneration in INCL. Hum Mol Genet.2006.15(11):1826-34.
    [28]Hitomi J, Katayama T, Eguchi Y, et al. Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Abeta-induced cell death. J Cell Biol.2004.165(3):347-56.
    [29]Rao RV, Ellerby HM, Bredesen DE. Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ.2004.11(4):372-80.
    [30]Dyuysekina AE, Dolgikh DA, Samatova BEN, Tiktopulo EI, Balobanov VA, Bychkova VE. pH-induced equilibrium unfolding of apomyoglobin: substitutions at conserved Trp14 and Metl31 and non-conserved Val17 positions. Biochemistry (Mosc).2008.73(6):693-701.
    [31]Lorz C, Justo P, Sanz A, Subira D, Egido J, Ortiz A. Paracetamol-induced renal tubular injury:a role for ER stress. J Am Soc Nephrol.2004. 15(2):380-9.
    [32]Justo P, Lorz C, Sanz A, Egido J, Ortiz A. Intracellular mechanisms of cyclosporin A-induced tubular cell apoptosis. J Am Soc Nephrol.2003. 14(12):3072-80.
    [33]Gerasimenko JV, Gerasimenko OV, Palejwala A, Tepikin AV, Petersen OH, Watson AJ. Menadione-induced apoptosis:roles of cytosolic Ca(2+) elevations and the mitochondrial permeability transition pore. J Cell Sci.2002.115 (Pt 3):485-97.
    [34]Riedl SJ, Shi Y. Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol.2004.5(11):897-907.
    [35]Basu A, Castle VP, Bouziane M, Bhalla K, Haldar S. Crosstalk between extrinsic and intrinsic cell death pathways in pancreatic cancer: synergistic action of estrogen metabolite and ligands of death receptor family. Cancer Res.2006.66(8):4309-18.
    [36]Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell.1998.94(4): 491-501.
    [37]Di SF, Ferraro E, Tufi R, Achsel T, Piacentini M, Cecconi F. Endoplasmic reticulum stress induces apoptosis by an apoptosome-dependent but caspase 12-independent mechanism. J Biol Chem.2006.281(5):2693-700.
    [38]Obeng EA, Boise LH. Caspase-12 and caspase-4 are not required for caspase-dependent endoplasmic reticulum stress-induced apoptosis. J Biol Chem.2005.280(33):29578-87.
    [39]Masud A, Mohapatra A, Lakhani SA, Ferrandino A, Hakem R, Flavell RA. Endoplasmic reticulum stress-induced death of mouse embryonic fibroblasts requires the intrinsic pathway of apoptosis. J Biol Chem. 2007.282(19):14132-9.
    [40]Morishima N, Nakanishi K, Takenouchi H, Shibata T, Yasuhiko Y. An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J Biol Chem.2002.277(37):34287-94.
    [41]Sanz AB, Santamaria B, Ruiz-Ortega M, Egido J, Ortiz A. Mechanisms of renal apoptosis in health and disease. J Am Soc Nephrol.2008.19(9): 1634-42.
    [42]Campanella M, Pinton P, Rizzuto R. Mitochondrial Ca2+ homeostasis in health and disease. Biol Res.2004.37(4):653-60.
    [43]Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death:the calcium-apoptosis link. Nat Rev Mol Cell Biol.2003.4(7):552-65.
    [44]Kroemer G, Reed JC. Mitochondrial control of cell death. Nat Med.2000. 6(5):513-9.
    [45]Martinou JC, Desagher S, Antonsson B. Cytochrome c release from mitochondria:all or nothing. Nat Cell Biol.2000.2(3):E41-3.
    [46]Davidson SM, Duchen MR. Calcium microdomains and oxidative stress. Cell Calcium.2006.40(5-6):561-74.
    [47]Van Coppenolle F, Vanden AF, Slomianny C, et al. Ribosome-translocon complex mediates calcium leakage from endoplasmic reticulum stores. J Cell Sci.2004.117(Pt 18):4135-42.
    [48]Lomax RB, Camello C, Van Coppenolle F, Petersen OH, Tepikin AV. Basal and physiological Ca(2+) leak from the endoplasmic reticulum of pancreatic acinar cells. Second messenger-activated channels and translocons. J Biol Chem.2002.277(29):26479-85.
    [49]Rizzuto R, Pinton P, Carrington W, et al. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science.1998.280(5370):1763-6.
    [50]Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol.2000.1(1):11-21.
    [1]KENDREW JC, DICKERSON RE, STRANDBERG BE, et al. Structure of myoglobin: A three-dimensional Fourier synthesis at 2 A. resolution. Nature.1960. 185(4711):422-7.
    [2]Lameire N, Van Biesen W, Vanholder R. Acute renal failure. Lancet.2005. 365(9457):417-30.
    [3]谢院生,陈香美.加深对横纹肌溶解症的认识.军医进修学院学报.2008.29(6):447-448.
    [4]Frauenfelder H, McMahon BH. Relaxations and fluctuations in myoglobin. Biosystems.2001.62(1-3):3-8.
    [5]Weller P, Jeffreys AJ, Wilson V, Blanchetot A. Organization of the human myoglobin gene. EMBO J.1984.3(2):439-46.
    [6]曾瑞云,朱鼎宏,王红,郑佐娅,周芸,陶义训.抗人肌红蛋白单克隆抗体的制备和初步鉴定.上海第二医科大学学报.1996.(01):23-25.
    [7]许国双,陈香美,孙雪峰等.小鼠抗人Nanog多克隆抗体的制备及其鉴定.解放军医学杂志.2006.31(5):413-415.
    [8]Reeder BJ, Wilson MT. Hemoglobin and myoglobin associated oxidative stress:from molecular mechanisms to disease States. Curr Med Chem. 2005.12(23):2741-51.
    [9]Huerta-Alardin AL, Varon J, Marik PE. Bench-to-bedside review: Rhabdomyolysis — an overview for clinicians. Crit Care.2005.9(2): 158-69.
    [10]Ronco C. Extracorporeal therapies in acute rhabdomyolysis and myoglobin clearance. Crit Care.2005.9(2):141-2.
    [11]Naka T, Jones D, Baldwin I, et al. Myoglobin clearance by super high-flux hemofiltration in a case of severe rhabdomyolysis:a case report. Crit Care.2005.9(2):R90-5.
    [12]Fukagawa M. Nephrology in earthquakes:sharing experiences and information. Clin J Am Soc Nephrol.2007.2(4):803-8.
    [13]Vanholder R, der Tol A v, De Smet M, et al. Earthquakes and crush syndrome casualties:lessons learned from the Kashmir disaster. Kidney Int.2007.71(1):17-23.
    [14]王沂芹,张静波,唐建英等.汶川大地震导致挤压综合征呈现急性肾损伤的血液净化治疗.中国血液净化.2008.(08):449-451.
    [15]谢红浪,刘志红,季大玺等.连续性血液净化在地震致挤压综合征伴多器官功能障碍综合征救治中的应用.肾脏病与透析肾移植杂志.2008.(03):206-215.
    [16]张利,陈香美.挤压综合征的诊治.军医进修学院学报.2008.29(6):452-453.
    [17]Kramer P, Wigger W, Rieger J, Matthaei D,. Scheler F. [Arteriovenous haemofiltration:a new and simple method for treatment of over-hydrated patients resistant to diuretics]. Klin Wochenschr.1977. 55(22):1121-2.
    [18]Kuntsevich VI, Feinfeld DA, Audia PF, et al. In-vitro myoglobin clearance by a novel sorbent system. Artif Cells Blood Substit Immobil Biotechnol.2009.37(1):45-7.
    [1]Holt SG, Moore KP. Pathogenesis and treatment of renal dysfunction in rhabdomyolysis. Intensive Care Med.2001.27(5):803-11.
    [2]Bagley WH, Yang H, Shah KH. Rhabdomyolysis. Intern Emerg Med.2007. 2(3):210-8.
    [3]Melli G, Chaudhry V, Cornblath DR. Rhabdomyolysis:an evaluation of 475 hospitalized patients. Medicine (Baltimore).2005.84(6):377-85.
    [4]Ward MM. Factors predictive of acute renal failure in rhabdomyolysis. Arch Intern Med.1988.148(7):1553-7.
    [5]Basic-Jukic N, Kes P, Bubic-Filipi L, Vranjican Z. Rhabdomyolysis and acute kidney injury secondary to concomitant use of fluvastatin and rapamycin in a renal transplant recipient. Nephrol Dial Transplant. 2010.
    [6]de Meijer AR, Fikkers BG, de Keijzer MH, van EBG, Drenth JP. Serum creatine kinase as predictor of clinical course in rhabdomyolysis:a 5-year intensive care survey. Intensive Care Med.2003.29(7):1121-5.
    [7]Woodrow G, Brownjohn AM, Turney JH. The clinical and biochemical features of acute renal failure due to rhabdomyolysis. Ren Fail.1995. 17(4):467-74.
    [8]谢院生,陈香美.加深对横纹肌溶解症的认识.军医进修学院学报.2008.
    29(6):447-448.
    [9]Reeder BJ, Wilson MT. Hemoglobin and myoglobin associated oxidative stress:from molecular mechanisms to disease States. Curr Med Chem. 2005.12(23):2741-51.
    [10]Huerta-Alardin AL, Varon J, Marik PE. Bench-to-bedside review: Rhabdomyolysis — an overview for clinicians. Crit Care.2005.9(2): 158-69.
    [11]Zager RA. Heme protein-induced tubular cytoresistance:expression at the plasma membrane level. Kidney Int.1995.47(5):1336-45.
    [12]Zager RA, Burkhart K. Myoglobin toxicity in proximal human kidney cells: roles of Fe, Ca2+, H202, and terminal mitochondrial electron transport. Kidney Int.1997.51 (3):728-38.
    [13]KENDREW JC, DICKERSON RE, STRANDBERG BE, et al. Structure of myoglobin: A three-dimensional Fourier synthesis at 2 A. resolution. Nature.1960. 185(4711):422-7.
    [14]Frauenfelder H, McMahon BH. Relaxations and fluctuations in myoglobin. Biosystems.2001.62(1-3):3-8.
    [15]Weller P, Jeffreys AJ, Wilson V, Blanchetot A. Organization of the human myoglobin gene. EMBO J.1984.3(2):439-46.
    [16]Knochel JP. Rhabdomyolysis and myoglobinuria. Annu Rev Med.1982.33: 435-43.
    [17]Zager RA, Gamelin LM. Pathogenetic mechanisms in experimental hemoglobinuric acute renal failure. Am J Physiol.1989.256(3 Pt 2): F446-55.
    [18]Bosch X, Poch E, Grau JM. Rhabdomyolysis and acute kidney injury. N Engl J Med.2009.361(1):62-72.
    [19]Holt S, Moore K. Pathogenesis of renal failure in rhabdomyolysis:the role of myoglobin. Exp Nephrol.2000.8(2):72-6.
    [20]Iwata M, Zager RA. Myoglobin inhibits proliferation of cultured human proximal tubular (HK-2) cells. Kidney Int.1996.50(3):796-804.
    [21]Zager RA, Foerder CA. Effects of inorganic iron and myoglobin on in vitro proximal tubular lipid peroxidation and cytotoxicity. J Clin Invest.1992.89(3):989-95.
    [22]Parry SN, Ellis N, Li Z, Maitz P, Witting PK. Myoglobin induces oxidative stress and decreases endocytosis and monolayer permissiveness in cultured kidney epithelial cells without affecting viability. Kidney Blood Press Res.2008.31(1):16-28.
    [23]Kim SH, Chang JW, Kim SB, Park SK, Park JS, Lee SK. Myoglobin induces vascular cell adhesion molecule-1 expression through c-Src kinase-activator protein-1/nuclear factor-kappaB pathways. Nephron Exp Nephrol.2010.114(2):e48-60.
    [24]Plotnikov EY, Chupyrkina AA, Pevzner IB, Isaev NK, Zorov DB. Myoglobin causes oxidative stress, increase of NO production and dysfunction of kidney's mitochondria. Biochim Biophys Acta.2009.1792(8):796-803.
    [25]Minigh JL, Valentovic MA. Characterization of myoglobin toxicity in renal cortical slices from Fischer 344 rats. Toxicology.2003. 184(2-3):113-23.
    [26]Valentovic MA, Minigh J. Pyruvate attenuates myoglobin in vitro toxicity. Toxicol Sci.2003.74(2):345-51.
    [27]Zhu W, Wilks A, Stojiljkovic I. Degradation of heme in gram-negative bacteria:the product of the hemO gene of Neisseriae is a heme oxygenase. J Bacteriol.2000.182(23):6783-90.
    [28]Kuntsevich VI, Feinfeld DA, Audia PF, et al. In-vitro myoglobin clearance by a novel sorbent system. Artif Cells Blood Substit Immobil Biotechnol.2009.37(1):45-7.
    [29]Ustundag S, Yalcin 0, Sen S, Cukur Z, Ciftci S, Demirkan B. Experimental myoglobinuric acute renal failure:the effect of vitamin C. Ren Fail. 2008.30(7):727-35.
    [30]Korantzopoulos P, Galaris D, Papaioannides D. Pathogenesis and treatment of renal dysfunction in rhabdomyolysis. Intensive Care Med. 2002.28(8):1185; author reply 1186.
    [31]张德莉,黄应平,罗光富等.Fenton及Photo-Fenton反应研究进展.环境化学.2006.25(2):121-127.
    [32]钱忠明.铁代谢——基础与临床.2001.科学出版社.
    [33]KENDREW JC. Myoglobin and the structure of proteins. Science.1963. 139:1259-66.
    [34]Chu K, Vojtchovsky J, McMahon BH, Sweet RM, Berendzen J, Schlichting I. Structure of a ligand-binding intermediate in wild-type carbonmonoxy myoglobin. Nature.2000.403(6772):921-3.
    [35]Muller-Eberhard U, Fraig M. Bioactivity of heme and its containment. Am J Hematol.1993.42(1):59-62.
    [36]Gonzalez-Michaca L, Farrugia G, Croatt AJ, Alam J, Nath KA. Heme:a determinant of life and death in renal tubular epithelial cells. Am J Physiol Renal Physiol.2004.286(2):F370-7.
    [37]Hebbel RP, Eaton JW. Pathobiology of heme interaction with the erythrocyte membrane. Semin Hematol.1989.26(2):136-49.
    [38]Silaghi-Dumitrescu R, Reeder BJ, Nicholls P, Cooper CE, Wilson MT. Ferryl haem protonation gates peroxidatic reactivity in globins. Biochem J.2007.403(3):391-5.
    [39]Nath KA, Balla G, Vercellotti GM, et al. Induction of heme oxygenase is a rapid, protective response in rhabdomyolysis in the rat. J Clin Invest.1992.90(1):267-70.
    [40]Reeder BJ, Wilson MT. Hemoglobin and myoglobin associated oxidative stress:from molecular mechanisms to disease States. Curr Med Chem. 2005.12(23):2741-51.
    [41]Reeder BJ. The redox activity of hemoglobins:From physiological functions to pathological mechanisms. Antioxid Redox Signal.2010.
    [42]0'Regan S, Fong JS, Drummond KN. Renal injury after muscle extract infusion in rats:absence of toxicity with myoglobin. Experientia. 1979.35(6):805-6.
    [43]Lorz C, Benito-Martin A, Justo P, et al. Modulation of renal tubular cell survival:where is the evidence. Curr Med Chem.2006.13(4): 449-54.
    [44]Price PM, Safirstein RL, Megyesi J. The cell cycle and acute kidney injury. Kidney Int.2009.76(6):604-13.
    [45]Kerr JF, Wyllie AH, Currie AR. Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer.1972. 26 (4):239-57.
    [46]Kroemer G, Galluzzi L, Vandenabeele P, et al. Classification of cell death:recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ.2009.16(1):3-11.
    [47]Kroemer G, Levine B. Autophagic cell death:the story of a misnomer. Nat Rev Mol Cell Biol.2008.9(12):1004-10.
    [48]Periyasamy-Thandavan S, Jiang M, Wei Q, Smith R, Yin XM, Dong Z. Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells. Kidney Int.2008.74(5):631-40.
    [49]Nath KA, Grande JP, Croatt AJ, Likely S, Hebbel RP, Enright H. Intracellular targets in heme protein-induced renal injury. Kidney Int. 1998.53(1):100-11.
    [50]Gonzalez-Michaca L, Farrugia G, Croatt AJ, Alam J, Nath KA. Heme:a determinant of life and death in renal tubular epithelial cells. Am J Physiol Renal Physiol.2004.286(2):F370-7.
    [51]D'Agnillo F, Alayash AI. A role for the myoglobin redox cycle in the induction of endothelial cell apoptosis. Free Radic Biol Med.2002. 33(8):1153-64.
    [52]Ellis HM, Horvitz HR. Genetic control of programmed cell death in the
    nematode C. elegans. Cell.1986.44(6):817-29.
    [53]Thornberry NA, Lazebnik Y. Caspases:enemies within. Science.1998. 281(5381):1312-6.
    [54]Nicholson DW. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ.1999.6(11):1028-42.
    [55]Danial NN, Korsmeyer SJ. Cell death:critical control points. Cell. 2004.116(2):205-19.
    [56]Li P, Nijhawan D, Budihardjo I, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell.1997.91(4):479-89.
    [57]Groenendyk J, Michalak M. Endoplasmic reticulum quality control and apoptosis. Acta Biochim Pol.2005.52(2):381-95.
    [58]Dyuysekina AE, Dolgikh DA, Samatova BEN, Tiktopulo El, Balobanov VA, Bychkova VE. pH-induced equilibrium unfolding of apomyoglobin: substitutions at conserved Trp14 and Metl31 and non-conserved Val17 positions. Biochemistry (Mosc).2008.73(6):693-701.
    [59]Nakagawa T, Zhu H, Morishima N, et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature.2000.403(6765):98-103.
    [60]Yoneda T, Imaizumi K, Oono K, et al. Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J Biol Chem.2001.276(17):13935-40.
    [61]Larner SF, Hayes RL, Wang KK. Unfolded protein response after neurotrauma. J Neurotrauma.2006.23 (6):807-29.
    [62]Nakagawa T, Yuan J. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol.2000. 150(4):887-94.
    [63]Saleh M, Vaillancourt JP, Graham RK, et al. Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms. Nature. 2004.429(6987):75-9.
    [64]Matsuzaki S, Hiratsuka T, Kuwahara R, Katayama T, Tohyama M. Caspase-4 is partially cleaved by calpain via the impairment of Ca2+ homeostasis under the ER stress. Neurochem Int.2010.56(2):352-6.
    [65]Kim SJ, Zhang Z, Hitomi E, Lee YC, Mukherjee AB. Endoplasmic reticulum stress-induced caspase-4 activation mediates apoptosis and neurodegeneration in INCL. Hum Mol Genet.2006.15(11):1826-34.
    [66]Hitomi J, Katayama T, Eguchi Y, et al. Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Abeta-induced cell death. J Cell Biol.2004.165(3):347-56.
    [67]Binet F, Chiasson S, Girard D. Evidence that endoplasmic reticulum (ER) stress and caspase-4 activation occur in human neutrophils. Biochem Biophys Res Commun.2010.391 (1):18-23.
    [68]Rao RV, Ellerby HM, Bredesen DE. Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ.2004.11(4):372-80.
    [69]Di SF, Ferraro E, Tufi R, Achsel T, Piacentini M, Cecconi F. Endoplasmic reticulum stress induces apoptosis by an apoptosome-dependent but caspase 12-independent mechanism. J Biol Chem.2006.281(5):2693-700.
    [70]Obeng EA, Boise LH. Caspase-12 and caspase-4 are not required for caspase-dependent endoplasmic reticulum stress-induced apoptosis. J Biol Chem.2005.280(33):29578-87.
    [71]Masud A, Mohapatra A, Lakhani SA, Ferrandino A, Hakem R, Flavell RA. Endoplasmic reticulum stress-induced death of mouse embryonic fibroblasts requires the intrinsic pathway of apoptosis. J Biol Chem. 2007.282(19):14132-9.
    [72]Arduino DM, Esteves AR, Domingues AF, Pereira CM, Cardoso SM, Oliveira CR. ER-mediated stress induces mitochondrial-dependent caspases activation in NT2 neuron-like cells. BMB Rep.2009.42(11):719-24.
    [73]Morishima N, Nakanishi K, Takenouchi H, Shibata T, Yasuhiko Y. An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J Biol Chem.2002.277(37):34287-94.
    [74]Riedl SJ, Shi Y. Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol.2004.5(11):897-907.
    [75]Basu A, Castle VP, Bouziane M, Bhalla K, Haldar S. Crosstalk between extrinsic and intrinsic cell death pathways in pancreatic cancer: synergistic action of estrogen metabolite and ligands of death receptor family. Cancer Res.2006.66(8):4309-18.
    [76]Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell.1998.94(4): 491-501.
    [77]Baumgartner HK, Gerasimenko JV, Thorne C, et al. Caspase-8-mediated apoptosis induced by oxidative stress is independent of the intrinsic pathway and dependent on cathepsins. Am J Physiol Gastrointest Liver Physiol.2007.293(1):G296-307.
    [78]Gerasimenko JV, Gerasimenko OV, Palejwala A, Tepikin AV, Petersen OH, Watson AJ. Menadione-induced apoptosis:roles of cytosolic Ca(2+) elevations and the mitochondrial permeability transition pore. J Cell Sci.2002.115 (Pt 3):485-97.
    [79]der Kallen CJ v, van GMM, Stehouwer CD, Schalkwijk CG. Endoplasmic reticulum stress-induced apoptosis in the development of diabetes:is there a role for adipose tissue and liver. Apoptosis.2009.14(12): 1424-34.
    [80]Sanz AB, Santamaria B, Ruiz-Ortega M, Egido J, Ortiz A. Mechanisms of renal apoptosis in health and disease. J Am Soc Nephrol.2008.19(9): 1634-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700