用户名: 密码: 验证码:
ACTN3基因多态性与体能素质及踝关节扭伤表型的关联研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
引言:辅肌动蛋白是肌动蛋白结合蛋白家族的成员。两个钙敏感的α-辅肌动蛋白亚型(ACTN2和ACTN3)表达在骨骼肌。它们是肌节Z线的主要结构部分,起到锚合肌动蛋白细肌丝的作用。在人类,ACTN2表达在骨骼肌和心肌纤维,而ACTN3仅仅表达在骨骼肌快速糖酵解的IIx纤维。此外,α-辅肌动蛋白-2和α-辅肌动蛋白-3相互作用参与肌肉蛋白一系列的信号传递和代谢作用。因为一个未成熟的终止密码子造成基因ACTN3的16号外显子第1747位核苷酸存在C→T的转换,即精氨酸密码子被取代,造成基因ACTN3的多态性。XX等位基因不能产生α-辅肌动蛋白-3,但是没有和任何疾病表型有关联。先前的研究表明除了人类没有别的哺乳动物存在这种多态性,各种人种都有这种基因ACTN3多态性。有大约19%的高加索人是缺失ACTN3的,在世界上不同人种X等位基因频率分布超过15%。α-辅肌动蛋白有很高的保守性,最近的研究显示ACTN3的缺失是人类进化的选择,它影响肌肉的代谢。近来有很多的研究显示ACTN3影响人的运动能力。对精英高加索运动员研究证实,在精英爆发力和力量型运动员中纯合子RR频率分布明显高于对照。XX基因型明显和女性耐力运动员相关,但是和男性耐力运动员没有关联。相似的发现被报道证明这种相关性,大量的横断面研究支持, R-等位基因和肌肉高速收缩呈正相关。此外,IIx纤维中ACTN3蛋白含量高于IIa型纤维,在RR基因型中IIx(快肌糖酵解)纤维的比例大于XX基因型的。
     在运动中踝关节扭伤是最常见的骨骼肌肉关节损伤之一。研究显示几个内在和外在的原因和急性踝关节扭伤(AAS)有关。最近的文献表明腱和韧带组织的损伤与基因遗传相关。编码一些腱和韧带组织的细胞外基质蛋白质类的基因变异与骨骼肌肉软组织损伤存在关联。研究表明在运动积极的人群中基因TNC, COL5A1和MMP3与肌腱慢性病变有关。基因TNC的变异和跟腱断裂有关,基因COL1A1, COL12A1和COL5A1的变异与十字韧带断裂和肩关节脱位有关。但是引起AAS的基因因素目前还未见有报道。肌肉力量较弱和肌力不平衡是踝关节扭伤的原因之一,因此提高肌肉力量和瞬间爆发力应该能减少这种损伤。仅仅表达在快速糖酵解肌纤维Z线的基因ACTN3和力量/爆发力表型存在关联。
     在高加索人种,ACTN3 R577X与运动成绩的相关性已清楚地在精英级运动员中观察到,但涉及非运动员的研究却提供了许多混淆的结果。ACTN3 R577X多态性和骨骼肌生理功能之间的相关性在中国非运动员中没有被调查过。根据这一假设,ACTN3 R577X多态性对中国汉族人运动能力的影响与对白种人的影响是一致的,即ACTN3 RR纯合子比XX纯合子有较高的基线肌肉力量/强度。我们还假设,XX型个体将有更好的耐力相比RR纯合子携带者。为了检验这一假设,并确定在中国非运动员的ACTN3 R577X多态性与身体和性能表型的关联,我们对452个年轻男士兵的身体组成特征,力量、爆发力和耐力进行相关分析。
     在高加索人种,ACTN3 R577X与耐力表型的相关性已清楚地在精英级运动员中观察到,但涉及中国运动员的研究却未见报道。我们假设中国汉族耐力型运动员XX基因型频率分布较高而RR基因型频率分布较低相比普通对照。为验证这个假设,我们分析中国耐力运动员和基因ACTN3的关联。
     目前,ACTN3 R577X与肌肉力量/爆发力的相关性已清楚地在很多研究中观察到。就我们所知道的,还没有ACTN3 R577X基因多态性与急性踝关节扭伤是否相关的研究报道。因此,本研究的主要目的是探讨中国汉族男性军人急性踝关节扭伤患者与ACTN3 R577X基因多态性的相关性。
     目的:先前的研究表明基因ACTN3 577R等位基因和爆发力、力量能力有显著的关联,而577X等位基因则有利于耐力能力。首先,我们检测中国汉族男性军人ACTN3基因型和等位基因的频率分布,并分析ACTN3基因和中国汉族男性军人运动能力的关联。其次,我们测试XX基因型是否在中国耐力运动员中有较高的频率分布相对于普通对照组。最后,本实验将探讨ACTN3基因多态性和急性踝关节扭伤表型的关联性。
     方法:通过研究452个中国年轻男性军人,我们检测ACTN3基因型和等位基因的频率分布,分析ACTN3基因和运动能力的关联。通过研究250个中国省级和国家级水平的耐力运动员和450个普通对照,我们检测ACTN3基因型和等位基因的频率分布,分析ACTN3基因和运动能力的关联。142个经临床或者手术诊断的急性踝关节扭伤患者和280个从没有过踝关节损伤史的自愿者进行对照研究,分析其相关性。用荧光定量PCR法检测ACTN3基因的多态性。
     结果:1. ACTN3基因型频率分布(RR 39.8%, RX 43.4%, XX 16.8%)和ACTN3等位基因频率分布(R 61.5%, X 38.5%)明显和高加索人种分布一致。我们仅仅发现ACTN3基因和握力有关联。XX型的个体的握力要明显低于RR型的个体的握力(P = 0.007),但是XX型的个体和RX型的个体握力没有差别(P = 0.121),RR型的个体和RX型的个体握力也没有差别(P = 0.117)。我们没有发现ACTN3基因多态性和短跑、耐力有关联。
     2.我们的结果显示在女性耐力运动员中ACTN3 XX基因型(21.2 vs. 15.8%; P = 0.02)和X等位基因(51.3 vs. 41.1%; P = 0.019)的分布频率明显高于对照,但男性运动员没有差异。另外,ACTN3 XX基因型频率分布在顶尖的女性耐力运动员中是28.6%,明显高于其他对照。
     3.急性踝关节扭伤组和对照组的ACTN3频率分布差异显著,ACTN3 RR基因型频率分布(23.2 vs. 35%; P = 0.011)和R等位基因型频率分布(47.9 vs. 58.9%; P = 0.002)。AAS组ACTN3 RR基因型频率明显低于对照组(23.2% vs 35%; OR = 1.8; 95%可信区间:1.1-2.8; P = 0.014)。ACTN3 RR基因型频率随着AAS损伤等级的提高有一个下降的线性趋势。
     结论:①我们的结果显示ACTN3基因仅仅和中国年轻男性士兵的握力有关联。
     ②我们的结果显示ACTN3 R577X多态性和中国女性耐力运动员有关联,但是和中国男性耐力运动员没有关联。
     ③本研究结果显示在中国汉族军人急性踝关节扭伤患者和ACTN3 R577X多态性有关联。这是第一次发现携带ACTN3 RR基因型的个体有降低AAS的风险。
Introduction: The alpha-actinins are a family of actin-binding proteins. Two calcium-insensitiveα-actinins isoforms (ACTN2 and ACTN3) are expressed in skeletal muscle. They constitute the major structural components of the sarcomeric Z-line involved in anchoring together the actin-containing thin filaments. In humans, ACTN2 is found in skeletal and cardiac muscle fibers, while the expression ofα-actinin-3 is restricted to a subset of fast glycolytic skeletal muscle typeⅡx fibres. Moreover,α-actinin-2 andα-actinin-3 also interact with many muscle proteins carry out a variety of signaling and metabolic functions.
     The R577X SNP originated as a result of a C-to-T transition at position 1747 in exon 16 that replaces an arginine codon 577(577R) for a premature stop codon (577X). The X-allele fail to produceα-actinin-3 protein, but without association with any disease phenotype. A previous study has suggested that no other mammal has polymorphism for null alleles of ACTN3 except human. This allele is found in every human population tested. There are approximate 19% of Caucasian (combined male and female) who are ACTN3 deficient, and the X-allele frequency is greater than 15% in several of the world’s general populations. Theα-actinin has been shown to be highly conserved, and recent evidence has proposed that absence of ACTN3 gene function shows positive selection in humans owing to its effect on muscle metabolism. Recently, there are more and more studies indicating that the ACTN3 genotype impact on human exercise performance phenotypes. The research of the R577X polymorphism in elite Caucasian athletes demonstrated RR homozygotes are over-represented in male and female elite sprint and power athletes relative to those in controls. The XX genotype was significantly associated with female elite endurance athletic performance, without the same effect on male endurance athletes. Similar findings have been replicated to have confirmed these associations and a number of cross-sectional studies have also supported that there is a positive association between the R-allele and high velocity muscle contractions. Furthermore, recent study has shown that the proportions of type IIx (fast-twitch glycolytic) fibers was greater in the RR than those in the XX genotype group, and ACTN3 protein content is higher in type IIx compared with type IIa fibers.
     Ankle sprains are one of the more common sites of musculoskeletal injuries during physical activity. Several extrinsic and intrinsic factors have been shown to be associated with these injuries. Recent reviews indicate that a genetic component has been implicated in those tendons and ligaments injuries. Sequence variants within genes that encode for several tendon and/or ligament extracellular matrix proteins have been shown to be associated with specific musculoskeletal soft tissues injuries. Polymorphisms within the TNC, COL5A1 and MMP3 genes have been associated with chronic Achilles tendinopathy in a physically active population. The variant within the TNC gene also appears to co-segregate with Achilles tendon ruptures, while sequence variants within the COL1A1, COL12A1 and COL5A1 genes have been shown to be associated with cruciate ligament ruptures and/or shoulder dislocations. However, the exact mechanisms which cause these acute ankle injuries are unknown. Muscle weakness/imbalance has been shown to be associated with ankle sprains, and therefore increased muscle strength/power may improve ankle sprains. The ACTN3 gene, which is only expressed in the Z line of fast glycolytic muscle fiber was found to associate with power/strength performance.
     In Caucasian, the associations of ACTN3 R577X with athletic performance have been clearly observed in elite-level athletes, but studies involving non-athletes have provided many confounded results (Moran et al., 2007; Santiago et al., 2009). The functional relationships between ACTN3 R577X polymorphism and physical functioning of skeletal muscle in Chinese non-athletes have not been examined. Under the hypothesis that the influence of the ACTN3 R577X polymorphism on athletic performance in Chinese is in accordance with the influence in Caucasian, it would be predicted that the ACTN3 homozygotes (RR) would have higher baseline muscle power/strength compared with the homozygotes (XX). We also hypothesized that the XX genotype would have more endurance compared with the homozygotes (RR). To test this hypothesis, and determine the association of the ACTN3 R577X polymorphism with physical- and performance-related phenotypes in a Chinese non-athlete population, we executed an association analysis using 452 Chinese young male soldiers for body composition-, strength/power- and endurance-related traits.
     In Caucasian, the associations of ACTN3 R577X with endurance performance have been clearly observed in elite-level athletes, but studies involving Chinese athletes have not been examined. We hypothesized that the frequency of ACTN3 XX genotype is higher and that of RR is lower among Han Chinese athletes. To test this hypothesis, we sought to determine the association of the ACTN3 R577X polymorphism with endurance athletes in China.
     At present, the associations of ACTN3 with muscle strength/power performance have been clearly observed in many studies. To the best of our knowledge, however, no information is available concerning the association between ACTN3 gene polymorphisms and acute ankle sprains. Therefore, the principal aim of this study was to determine the genetic association between the ACTN3 gene and acute ankle sprains in a young Chinese Han population.
     Objective:
     Previous studies have shown highly significant association between ACTN3 genotype and sprint/power performance, while the nonfunctional allele (577X) was believed to provide an advantage for endurance performance. First, we examined the distribution of ACTN3 genotypes and alleles and analyzed the association between ACTN3 genotypes and athletic performance in Chinese young male soldiers. Second, in this study we tested whether XX genotype was over-represented in Chinese endurance athletes compared to the general population.Third, the aim of this study was also to investigate if the ACTN3 gene polymorphism is associated with acute ankle sprains in Chinese young soldiers.
     Methods:
     In a study of 452 Chinese young male soldiers, we examined the distribution of ACTN3 genotypes and alleles and analyzed the association between ACTN3 genotypes and athletic performance.
     In a study of 250 Chinese endurance athletes of provincial or national competitive standard and 450 controls, we examined the distribution of ACTN3 genotypes and alleles and analyzed the association between ACTN3 genotypes and athletic performance.
     One hundred and forty-two participants with clinically and surgically diagnosed acute ankle sprains(AAS), as well as 280 physically active controls participants (CON) without any history of ankle sprains were included in this case-control genetic association study.
     The ACTN3 allelic variant and genotype was analyzed by Q-PCR.
     Results:
     1. The frequencies of the ACTN3 R577X genotype (RR 39.8%, RX 43.4%, and XX 16.8%) and R577X allele (R 61.5%, X 38.5%) were significantly consistent with the frequencies of Caucasian. We only observed a significant association between ACTN3 R577X genotypes and grip strength. Subjects with the XX genotype displayed significantly lower handgrip strength compared with individuals with RR (P = 0.007) genotypes, but the difference between XX and RX means (P = 0.121) and that between RR and RX means (P = 0.117) was not significant. We did not observe a predominant association between the ACTN3 R577X genotypes and sprint phenotypes and endurance phenotypes.
     2. We proved that the ACTN3 XX genotype (21.2 vs. 15.8%; P = 0.02) and X allele (51.3 vs. 41.1%; P = 0.019) were significantly over-represented in female endurance athletes compared to controls, while no genotype-related differences were observed in male endurance athletes. Besides, the frequency of the ACTN3 XX genotype (28.6%) was the highest in a group of highly elite athletes compared with other groups, which supported the hypothesis that the absence ofα-actinin-3 provided some sort of advantage for endurance athletes.
     3. The distribution of the ACTN3 gene in the AAS and controls showed significant differences with both the frequencies of the ACTN3 RR genotype (23.2 vs. 35%; P = 0.011) and R allele (47.9 vs. 58.9%; P = 0.002). The RR genotype of the ACTN3 was significantly low-represented in the AAS group compared with the controls (23.2% vs 35%; odds ratio = 1.8; 95% confidence interval, 1.1-2.8; P = 0.014). Compared with healthy controls, there was a decreasing linear trend (P = 0.01) in the 577RR genotype with increasing AAS grade.
     Conclusions:
     ①Our results indicate that ACTN3 R577X polymorphism is only associated with grip strength in Chinese young male soldiers.
     ②Our results indicated that ACTN3 R577X polymorphism was associated with endurance performance in female athletes but not male athletes in China.
     ③The ACTN3 R577X is associated with AAS in Chinese participants in this study. This is the first study to suggest that individual with a RR genotype are at decreased risk of AAS. Further studies are required to explore and replicate these findings.
引文
[1] Zhang CF, Wang L, Zhang T, Jin F. Human genetics of pgysical performance. Yi Chuan Xue Bao,2004,31(3):317~324
    [2]周后德,李小玲,李桂源.单核苷酸多态性的研究进展.国外医学.生理病理科学与临床分册, 2003, 23(5):444~447
    [3] Oliver DH,Thompson RE,Griffin CA,Eshleman JR.Use of single nucleotide polymorphisms (SNP) and real-time polymerase chain reaction for bone marrow engraftment analysis. J Mol Diagn, 2000, 2(4): 202 ~ 208
    [4] Walburger DK,Afonina IA,Wydro R.An improved realtime PCR method for simultaneous detection of C282Y and H63D mutations in the HFE gene associated with hereditary hemochromatosis. Mutat Res, 2001, 432 (324):69~78
    [5] Gupta M,Song P,Yates CR,Meibohm B.Real-time PCR based genotyping assay for CXCR polymorphisms. Clin Chim Acta, 2004, 341(122):93~100
    [6] MacArthur DG, North KN. A gene for speed? The evolution and function of alpha-actinin-3.Bioessays, 2004, 26(7):786-795
    [7] Beggs AH, Byers TJ, Knoll JH, Boyce FM, Bruns GA, Kunkel LM. Cloning and characterization of two human skeletal muscle alpha-actinin genes located on chromosomes 1 and 11.J Biol Chem, 1992,267(13):9281-9288
    [8] Honda K, Yamada T, Endo R, Ino Y, Gotoh M, Tsuda H, Yamada Y, Chiba H, Hirohashi S. Actinin-4, a novel actin-bunding protein associated with cell motility and cancer invasion. J Cell Biol, 1998, 140(6):1383-1393
    [9] Southby J, Gooding C, Smith CW. Polypyrimidine tract binding protein functions as a repressor to regulate alternative splicing of alpha-actininmutally exclusive exons. Mol Cell Biol, 1999, 19(4):2699-2711
    [10] Kremerskothen J, Teber I, Wendholt D, Liedtke T, B?ckers TM, Barnekow A. Brain-specific splicing of alpha-actinin 1 (ACTN1) mRNA. Biochem Biophys Res Commun, 2002, 295(3):678-681
    [11] Mills M, Yang N, Weinberger R, Vander Woude DL, Beggs AH, Easteal S, North K. Differential expression of the actin-binding proteins, alpha-actinin -2 and -3, in different species: implications for the evolution of functional redundancy. Hum Mol Genet, 2001, 10(13):1335-1346
    [12] Blanchard A, Ohanian V, Critchley D. The structure and function of alpha-actinin. J Muscle Res Cell Mortil, 1989, 10(4):280-289
    [13]韩兴,张兴.荧光能量转移法及电镜方法研究:α-辅肌动蛋白同脂膜的相互作用.生物物理学报,1997,13:40-44
    [14] Gimona M, Djinovic-Carugo K, Kranewitter WJ, Winder SJ. Functional plasticity of CH domains. FEBS Lett, 2002, 513(1):98-106
    [15] Djinovic-Carugo K, Gautel M, Yl?nne J, Young P. The spectrin repeat: a structural platform for cytoskeletal protein assemblies. FEBS Lett, 2002, 513(1):119-123
    [16] Noegel A, Witke W, Schleicher M. Calcium-sensitive non-muscle alpha-actinin contains EF-hand structures and highly conserved regions. FEBS Lett, 1987, 221(2):391-396
    [17] Squire JM.Architecture and function in the muscle sarcomere.Curr Opin Struct Biol, 1997, 7(2):247-257
    [18] Ohtsuka H,Yajima H,Maruyama K, Kimura S.The N-terminal Z repeat 5 of connectin/tinin binds to the C-terminal region of alpha-actinin.Biochem Biophys Res Commun, 1997,235(1):1-3
    [19] Flood G, Rowe AJ, Critchley DR, Gratzer WB. Further analysis of the roleof spectrin repeat motifs in alpha-actinin dimmer formation.Eur Biophys J, 1997, 25(5-6):431-435
    [20] Chan Y,Tong HQ,Beggs AH,Kunkel LM.Human skeletal muscle-specific alpha-actinin-2 and -3 isoforms form homodimers and heterodimers in vitro and in vivo.Biochem Biophys Res Commun,1998,248(1):134-139
    [21] Salmikangas P, Mykk?nen OM, Gr?nholm M, Heiska L, Kere J, Carpén O. Myotilin, a novel sarcomeric protein with two Ig-like domains, is encoded by a candidate gene for limb-girdle muscular dystrophy.Hum Mol Genet, 1999, 8(7):1329-1336
    [22] Ohtsuka H,Yajima H,Maruyama K,Kimura S.Binding of the N-terminal 63 kDa portion of connectin/titin to alpha-acinin as revealed by the yeast two-hybrid system.FEBS Lett, 1997,401(1):65-67
    [23] Nave R, Fürst DO, Weber K. Interaction of alpha-actinin and nebulin in vitro. Support for the existence of a fourth filament system in skeletal muscle.FEBS Lett, 1990, 269(1):163-166
    [24] Papa I, Astier C, Kwiatek O, Raynaud F, Bonnal C, Lebart MC, Roustan C, Benyamin Y. Alpha actinin-CapZ, and anchoring complex for thin filaments in Z-line. J Muscle Res Cell Motil, 1999, 20(2):187-197
    [25] Hance JE, Fu SY,Watkins SC,Beggs AH,Michalak M. alpha-Actinin-2 is a new component of the dystrophin-glycoprotein complex. Arch Biochem Biophys, 1999, 365(2):216-222
    [26] Otey CA,Pavalko FM,Burridge K.An interaction between alpha-actinin and theβ1 integrin subunit in vitro.J Cell Biol, 1990,111:721-729
    [27] Faulkner G, Pallavicini A, Formentin E, Comelli A, Ievolella C, Trevisan S, Bortoletto G, Scannapieco P, Salamon M, Mouly V, Valle G, Lanfranchi G. ZASP: a new Z-band alternatively spliced PDZ-motif protein.J Cell Biol,1999, 146(2):465-475
    [28] Kotaka M, Kostin S, Ngai S, Chan K, Lau Y, Lee SM, Li H, Ng EK, Schaper J, Tsui SK, Fung K, Lee C, Waye MM.Ineraction of hCLIM1, an enigma family protein,with alpha-actinin 2. J Cell Biochem, 2000, 78(4):558-565
    [29] Zhou Q,Ruiz-Lozano P,Martone ME,Chen J. Cypher, a striated muscle -restricted PDZ and LIM domain-containing protein, binds to alpha -actinin-2 and protein kinase C.J Biol Chem,1999,274(28):19807-19813
    [30] Xia H,Winokur ST,Kuo WL,Altherr MR,Bredt DS.Actinin-associated LIM protein:identification of a domain interaction between PDZ and spectrin-like repeat motifs.J Cell Biol,1997,139(2):507-515
    [31] Pomiès P, Louis HA, Beckerle MC. CRP1, a LIM domain protein implicated in muscle differentiation, interacts with alpha-actinin. J Cell Biol, 1997, 139(1):157-168
    [32] Burgue?o J, Blake DJ, Benson MA, Tinsley CL, Esapa CT, Canela EI, Penela P, Mallol J, Mayor F Jr, Lluis C, Franco R, Ciruela F.The adenosine A2A receptor interacts with the actin-binding protein alpha-actinin.J Biol Chem, 2003,278(39):37545-37552
    [33] Dunah AW, Wyszynski M, Martin DM, Sheng M, Standaert DG. alpha-actinin-2 in rat striatum:localization and interaction with NMDA glutamate receptor subunits. Brain Res Mol Brain Res, 2000, 79(1-2):77-87
    [34] Sadeghi A, Doyle AD, Johnson BD.Regulation of the cardiac L-type Ca2+ channel by the actin-binding proteins alpha-actinin and dystrophin.Am J Physiol Cell Physiol, 2002, 282(6):C1502-C1511
    [35] Cukovic D,Lu GW,Wible B,Steele DF,Fedida D.A discrete amino terminal domain of Kv1.5 and Kv1.4 potassium channels interacts with the spectrinrepeats of alpha-actinin-2.FEBS Lett, 2001,498(1):87-92
    [36] Frey N, Richardson JA, Olson EN. Calsarcins, a novel family of sarcomeric calcineurin-binding proteins. Proc Natl Acad Sci USA, 2000, 97(26):14632 -14637
    [37] Frey N, Olson EN. Calsarcin-3, a novel skeletal muscle-specific member of the calsarcin family, interacts with multiple Z-disc proteins.J Biol Chem, 2002, 277(16):13998-14004
    [38] Chin ER, Olson EN, Richardson JA, Yang Q, Humphries C, Shelton JM, Wu H, Zhu W, Bassel-Duby R, Williams RS.A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Gene Dev, 1998, 12(16):2499-2509
    [39] Olson EN, Williams RS.Remodeling muscles with calcineurin.Bioessays, 2000, 22(6):510-519
    [40] Tang J, Taylor DW, Taylor KA.The three-dimensional structure of alpha-actinin obtained by cryoelectron microscopy suggests a model for Ca2+-dependent actin binding.J Mol Biol, 2001, 310(4):845-858
    [41] Fukami K,Sawada N,Endo T,Takenawa T. Identification of a phosphatidylinositol 4,5-bisphosphate-binding site in chicken skeletal muscle alpha-actinin.J Biol Chem,1996,271(5):2646-2650
    [42] Young P, Gautel M. The interaction of titin and alpha-actinin is controlled by a phospholipid-regulated intramolecular pseudoligand mechanism. EMBO J, 2000, 19(23):6331-6340
    [43] Fukami K, Furuhashi K, Inagaki M, Endo T, Hatano S, Takenawa T. Requirement of phosphatidylinositol 4,5-bisphosphate for alpha-actinin function. Nature, 1992, 359(6391): 150-152
    [44] Fraley TS, Tran TC, Corgan AM, Nash CA, Hao J, Critchley DR,Greenwood JA. Phosphoinositide binding inhibits alpha-actinin bundling activity. J Biol Chem, 2003, 278(26): 24039-24045
    [45] North KN, Yang N, Wattanasirichaigoon D, Mills M, Easteal S, Beggs AH. A common nonsense mutation results in alpha-actinin-3 deficiency in the general population.Nature Genet, 1999, 21(4):353-354
    [46] Mills M, Yang N, Weinberger R, Vander Woude DL, Beggs AH, Easteal S, North K. Differential expression of the actin-binding proteins, alpha-actinin-2 and -3, in different species: implications for the evolution of functional redundancy.Hum Mol Genet, 2001, 10(13):1335-1346
    [47] Yang N, MacArthur DG, Gulbin JP, Hahn AG, Beggs AH, Easteal S, North K. ACTN3 genotype is associated with human elite athletic performance.Am J Hum Genet, 2003, 73(3):627-631
    [48] Niemi AK, Majamaa K.Mitochondrial DNA and ACTN3 genotypes in Finnish elite endurance and sprint athletes.Eur J Hum Genet, 2005, 13(8):965-969
    [49] Clarkson PM, Hoffman EP, Zambraski E, Gordish-Dressman H, Kearns A, Hubal M, Harmon B, Devaney JM. ACTN3 and MLCK genotype associations with exertional muscle damage.J Appl Physiol, 2005, 99(2): 564-569
    [50] Montgomery HE, Marshall R, Hemingway H, Myerson S, Clarkson P, Dollery C, Hayward M, Holliman DE, Jubb M, World M, Thomas EL, Brynes AE, Saeed N, Barnard M, Bell JD, Prasad K, Rayson M, Talmud PJ, Humphries SE. Human gene for physical performance. Nature, 1998, 393(6682):221-222
    [51] Myerson S, Hemingway H, Budget R, Martin J, Humphries S, Montgomery H. Human angiotensin I-converting enzyme gene and enduranceperformance. J Appl Physiol, 1999, 87(4): 1313-1316
    [52] Gayagay G, Yu B, Hambly B, Boston T, Hahn A, Celermajer DS, Trent RJ. Elite endurance athletes and the ACE I allele--the role of genes in athletic performance. Hum Genet, 1998, 103(1): 48-50
    [53] Alvarez R, Terrados N, Ortolano R, Iglesias-Cubero G, Reguero JR, Batalla A, Cortina A, Fernández-García B, Rodríguez C, Braga S, Alvarez V, Coto E. Genetic variation in the renin-angiotensin system and athletic performance. Eur J Appl Physiol, 2000, 82(1-2):117-120
    [54] Scanavini D, Bernardi F, Castoldi E, Conconi F, Mazzoni G. Increased frequency of the homozygous II ACE genotype in Italian Olympic endurance athletes. Eur J Hum Genet, 2002, 10(10):576-577
    [55] Tsianos G, Sanders J, Dhamrait S, Humphries S, Grant S, Montgomery H. The ACE gene insertion/deletion polymorphism and elite endurance swimming. Eur J Appl Physiol, 2004, 92(3):360-362
    [56] Taylor RR, Mamotte CD, Fallon K, van Bockxmeer FM. Elite athletes and the gene for angiotensin-converting enzyme. J Appl Physiol, 1999, 87(3): 1035 -1037
    [57] Karjalainen J, Kujala UM, Stolt A, M?ntysaari M, Viitasalo M, Kainulainen K, Kontula K. Angiotensinogen gene M235T polymorphism predicts left ventricular hypertrophy in endurance athletes. J Am Coll Cardiol, 1999, 34(2):494-499
    [58] Nazarov IB, Woods DR, Montgomery HE, Shneider OV, Kazakov VI, Tomilin NV, Rogozkin VA.The angiotens in converting enzyme I/D polymorphism in Russian athletes. Eur J Hum Genet, 2001, 9(10):797-801
    [59] Bolo M, Reyes D, Martnez C. ACE genotype and endurance performance level in Hispanic marathon runners. Med Sci Sports Exerc, 2004, 36: S260
    [60]张秀丽,席翼,文立,胡扬,刘刚.耐力训练对动态心功能的影响与ACE基因多态性的关联研究.天津体育学院学报,2005,20:17-20
    [61]席翼,张秀丽,胡扬,刘刚,包大鹏,张海霞,吴建.中国北方汉族青年ACE基因I/D多态性频率分布特征.天津体育学院学报,2006,21:205-208
    [62]胡杨.体育科研中的基因多态性战略.中国运动医学杂志,2005,24:619-623
    [63] Wolfarth B, Rivera MA, Oppert JM, Boulay MR, Dionne FT, Chagnon M, Gagnon J, Chagnon Y, Perusse L, Keul J, Bouchard C. A polymorphism in the alpha2a-adrenoceptor gene and endurance athlete status. Med Sci Sports Exerc, 2000, 32(10):1709-1712
    [64]张涛,张传芳,金锋,王沥.体能相关基因研究的新进展.遗传, 26(2):219~226
    [65] Moore Geoffrey E, Shuldiner Alan R, Zmuda Joseph M, Ferrell Robert E, McCole Steve D, Hagberg James M. Obesity gene variant and elite endurance performance. Metabolism Clinical and Experimental, 2001, 50(12):1391~1392
    [66] Wagoner Lynne E, Craft Laura L, Singh Balkrishna, Suresh Damodhar P, Zengel Paul W, Mc Guire Nancy, Abraham William T,Chenier Thomas C, Dorn Gerald WII, Liggett Stephen B. Polymorphisms of the beta2 adrenergic receptor determine exercise capacity in patients with heart failure. CirculationResearch, 2000, 86(8):834~840
    [67]李伟文.过氧化物酶体增殖物激活受体γ共激活因子-1的研究进展.国外医学临床生物化学与检验学分册,2005,26(1):21-25
    [68]孙亮,朱小泉,王沥.核辅激活因子PGC-1表达的分子调控机制.中国生物化学与分子生物学报,2005,21(4):431-439
    [69]杜国光,李平风,顾文霞.辅调节因子在核受体基因表达调控中的作用.中国生物化学与分子生物学报,2000,16(5):565-568
    [70] Puigserver P, Spiegelman BM. Peroxisome proliferator-activatedreceptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator.Endoc Rev, 2003, 24(1):78-90
    [71] Knutti D, Kralli A. PGC-1, a versatile coactivator. Trends Endocrinol Metab, 2001, 12(8):360-365
    [72] Norrbom J, Sundberg CJ, Ameln H, Kraus WE, Jansson E, Gustafsson T. PGC-1alpha mRNA expression is influenced by metabolic perturbation in exercising human skeletal muscle. J Appl Physiol, 2004, 96(1):189-194
    [73] Baar K, Wende AR, Jones TE, Marison M, Nolte LA, Chen M, Kelly DP, Holloszy JO. Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB J, 2002, 16(14): 1879 - 1886
    [74] Henriette Pilegaard, Bengt Saltin, P Darrell Neufer. Exercise induces transient transcriptional activation of the PGC-1 agene in human skeletal muscle. J Physiol, 2003, 546(3):851-858
    [75] Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel-Duby R, Spiegelman BM. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature, 2002, 418(6899): 797 -801
    [76] Vega RB, Huss JM, Kelly DP. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol, 2000, 20(5):1868-1876
    [77] Scarpulla RC. Nuclear activators and coactivators in mammalian mitochondrial biogenesis.Biochim Biophys Acta, 2002, 1576 (1-2):1-14
    [78] Czubryt MP, McAnally J, Fishman GI, Olson EN. Regulation of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1 alpha ) and mitochondrial function by MEF2 and HDAC5. ProcNatl Acad Sci U S A, 2003, 100(4): 1711 -1716
    [79] Wu H, Kanatous SB, Thurmond FA, Gallardo T, Isotani E, Bassel-Duby R, Williams RS. Regulation of mitochondrial biogenesis in skeletal muscle by CaMK.Science, 2002, 296(5566):349-352
    [80] Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J, Adelmant G, Stafford J, Kahn CR, Granner DK, Newgard CB, Spiegelman BM. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature, 2001, 413 (6852): 131 - 138
    [81] Michael LF, Wu Z, Cheatham RB, Puigserver P, Adelmant G, Lehman JJ, Kelly DP, Spiegelman BM. Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc Natl Acad Sci U S A, 2001, 98(7): 3820– 3825
    [82] Franks PW, Barroso I, Luan J, Ekelund U, Crowley VE, Brage S, Sandhu MS, Jakes RW, Middelberg RP, Harding AH, Schafer AJ, O'Rahilly S, Wareham NJ. PGC-1alpha genotype modifies the association of volitional energy expenditure with [OV0312]O2max. Med Sci Sports Exerc, 2003, 35(12):1998~2004
    [83] Lucia A, Gómez-Gallego F, Barroso I, Rabadán M, Bandrés F, San Juan AF, Chicharro JL, Ekelund U, Brage S, Earnest CP, Wareham NJ, Franks PW. PPARGC1A genotype (Gly482Ser) predicts exceptional endurance capacity in European men.J Appl Physiol, 2005, 99(1):344-348
    [84]何子红,胡扬,刘刚,席翼,文立.中国北方地区汉族男性PPARGC1基因多态性与耐力训练效果的关联性研究.中国运动医学杂志,2006,25:156-160
    [85] Rivera MA, Dionne FT, Simoneau JA, Perusse L, Chagnon M, Chagnon Y,Gagnon J, Leon AS,Rao DC, Skinner JS, Wilmore JH, Bouchard C.Muscle specific creatine kinase gene polymorphism and VO2max in the heritage Family Study. Medicine and Science in Sports and Exercise, 1997, 29(10): 1311~ 1317
    [86] Bouchard C, Rankinen Tuomo, Chagnon YC, et al. Genomic scan for maximal oxygen uptake and its response to training in the HERITAGE family study. J Appl Physiol, 2000, 88:551-559
    [87] Hagberg James M, Ferrell Robert E, Katzel LeslieI, Dengel Donald R, Sorkin John D, Goldberg Andrew P.Apolipoprotein E genotype and exercise training induced increases in plasma high density lipoprotein (HDL) and HDL2 cholesterol levels in over weight men. Metab Clin Exp, 48(8): 943~945
    [88] Mac Donald K S, Fowke K R, Kimani J, Dunand V A,Nagelk2erke NJD, Ball TB, Oyugi J, Njagi E, Gaur LK, Brunham RC, Wade J , Luscher M A, Krausa P, Rowland Jones S, Ngugi E, Bwayo J J, Plummer F A. Influence of HLA supertypes on susceptibility and resistance to human immunodeficiency virus type 1 infection. J Infect Dis, 2000, 181: 1581 ~ 1589
    [89] Rodas Gil,Ercilla Guadalupe,Javierre Casimiro,Garrido Eduar do,Calvo Mar,Segura Ramon,Ventura Josep Li.Could the A2A 11 human leukocyte antigen locus correlate with maximal aerobic power?Clin Sci, 92(4):331~333
    [90] Anderson S, Bankier A T, Barre ll B G, de Bruijn M H L, Coul son A R,Drouin J, Eperon I C, Nierlich D P, Roe BA, Sanger F, Schreier P H, Smith A J H, Staden R, Young IG. Sequence and organization of the human mitochondrial genome. Nature, 1981, 290:457~465
    [91] Giles R E, Blanc H, Cann H M, Wallace D C. Maternal inheritance of human mitochondrial DNA. Proc Nat Acad Sci, 1980, 77:6715~6719
    [92] GrasbonFrodl E M,Kosel S,Sprinz l M,vonEitzen U,Mehraein P,Graeber M B. Two novel point mutations of mitochondrial tRNA genes inhistologically confirmed Parkinson disease. Neurogenetics, 1999, 2: 121 ~ 127
    [93] DIONNEFT,TURCOTTEL,THIBAULTM C,BOULAYM R,SKINNERJ S,BOUCHARD C. Mitochondrial DNA sequence polymorphism, VO2max, and response to endurance training. Medicine and Sciencein Sports and Exercise, 1993, 25(7):766~774
    [94]常芸,于长隆,刘爱杰,高晓嶙,何子红,胡水清.我国耐力运动员线粒体DNA高变区序列多态性分析.中国运动医学杂志,2004,23: 4-10
    [95] Geusens P, Vandevyver C, VanhoofJ, et al. Quadriceps and grip strength are related to vitamin D receptor genotype in elderly nonobese women. J Bone Mineral Res, 1997, 12: 2082-2088
    [96] Gonzalez C, Taylor W E, Yarasheski K, et al. Organization of the human myostatin gene and expression in healthy men and HIV-infected men with muscle wasting.ProcNatAcadSci,1998,95:14938-14943
    [97] Seibert M J, Xue QL, Fried LP, et al. Polymorphic variation in the human myostatin (GDF-8) gene and association with strength measures in the Women. S Health and Aging Study II cohort. J Am Geriatrics Soc, 2001, 49:1093-1096
    [98] Ivey FM, Roth SM, Ferrell RE, et al. Effects of age, gender, and myostatin genotype on the hypertrophic response to heavy resistance strength training. J Gerontol A Biol Sci Med Sci, 2000, 55:M641-8
    [99] Sleeman MW, Anderson KD, Lambert PD, Yancopoulos GD, Wiegand SJ. The ciliary neurotrophic factor and its receptor, CNTFR alpha. Pharm Acta Helv, 2000, 74:265-272
    [100] Bartlett SE, Banks GB, Reynolds AJ, Waters MJ, Hendry IA, Noakes PG. Alterations in ciliary neurotrophic factor signaling in rapsyn deficient mice. J Neurosci Res, 2001, 64(6): 575-81
    [101] Wang MC. Effects of ciliary neurotrophic factor (CNTF) on protein turn over in cultured muscle cells.Cytokine, 2000, 12:41-48
    [102] Peroulakis ME, Forger NG. Ciliary neurotrophic factor increases muscle fiber number in the developing levator ani muscle of female rats. Neurosci Lett, 2000, 296(2-3):73-76
    [103] Takahashi R, Yokoji H, Misawa H, Hayashi M,Hu J,Deguchi T. A null mutation in the human CNTF gene is not causally related to neurological diseases. Nature Genet, 1994, 7:79~84
    [104] Roth Stephen M, Schrager Matthew A, Ferrell Robert E, Riech man Steven E, Metter E Jeffrey, Lynch Nicole A, Lindle Rose marry S, Hurley Ben F.CNTF genotype is associated with muscular strength and quality in humans across the adult age span. Journal of Applied Physiology, 2001, 90(4): 1205 ~ 1210
    [105] Roth SM, Schrager MA, Ferrell RE, Riechman SE, Metter EJ, Lynch NA, Lindle RS, Hurley BF. CNTF genotype is associated with musclar strength and quality in humans across the adult age span. J Appl Physiol, 2001, 90(4):1205-1210
    [106] Labuda M,Ross M V,Fujiwara T M,Morgan K,Ledbetter D,Hughes M R,Glorieux F H.Two hereditary defects related to vitamin D metabolism map to the same region of human chromosome 12q II. Cytogenet, Cell Genet, 1991, 58:1978
    [107] Miyamoto K, Kesterson R A, Yamamoto H, Taketani Y, Nishiwaki E, Tatsumi S, Inoue Y,Morita K, Takeda E, Pike J W. Structural organization of the human vitamin D receptor chromosomal gene and its promoter. Molec Endocr, 1997, 11:1165~1179
    [108] Geusens Piet, Vandevyver Caroline, Vanhoof Johan, Cassiman Jean Jacques, Boonen Steven, Raus Jef. Quadriceps and grip strength are related to vitamin D receptor genotype in elderly nonobese women. Journal of Bone and Mineral Research, 1997, 12(12):2082~2088
    [109] Fleury C, Neverova M, Collins S, Raimbault S, Champigny O, Levi Meyrueis C, Bouillaud F, Seldin M F, Surwit R S, Ricquier D, Warden C H.Uncoupling protein-2:a novel gene linked to obesity and hyperinsulinemia. Nature Genet, 1997, 15:269~272
    [110] Astrup A, Toubro S, Dalgaard LT, Urhammer SA, Sorensen TIA, Pedersen O. Impact of the v/v55 polymorphism of the uncoupling protein 2 gene on 24h energy expenditure and substrate oxidation. International Journal of Obesity, 1999, 23(10):1030~1034
    [111] Buemann B, Schierning B, Toubro S, Bibby B M, Sorensen T, Dalgaard L, Pedersen O, Astrup A. The association between the val/ala 55 polymorphism of the uncoupling protein 2 gene and exercise efficiency. International Journal of Obesity, 2001, 25(4):467~471
    [112] Rankinen Tuomo, Perusse Louis, Borecki Ingrid, Chagnon Yvon C, Gagnon Jacques, Leon Arthur S, Skinner James S, Wilmore Jack H, Rao D C, Bouchard Claude. The Na+-K+-AT Pase a2 gene and train ability of cardiorespiratory endurance: the HER2IT AGE family study. J Appl Physiol, 2000, 88(1): 346~351
    [113] Grant SFA, Reid D M, Blake G, Herd R, Fogelman I, Ralston S H. Reduced bone density and osteoporosis associated with a polymorphic Sp1 binding site in the collagen type I alpha 1 gene. Nature Genet, 1996, 14:203~205
    [114] Uitterlinden A G, Burger H, Huang Q, Yue F, Mc Guigan FEA, Grant SFA, Hofman A, vanLeeuwen JPTM, Pols HAP, Ralston SH. Relation of alleles of the collagen type I alpha1 gene to bone density and the risk of osteoporotic fractures in post menopausal women.New Eng J Med, 1998, 338: 1016 ~1021
    [115] Van Pottelbergh I, Goemaere S,Nuytinck L,DePaepe A,Kauf man JM. Association of the type I collagen alpha 1 Sp1 polymorphism, bone density and upper limb muscle strength in community dwelling elderly men. Osteoporos Int, 2001, 12(10):895~901
    [116] Bennett E P, Steffensen R, Clausen H. Genomic cloning of the human histo-blood group ABO locus. Biochem Biophys Res Commun, 1995, 206:18–25
    [117] Kannus P, Natri A. Etiology and pathophysiology of tendon ruptures in sports. Scand J Med Sci Sports, 1997, 7:107–112
    [118] Kujala U M, Jarvinen M, Natri A. ABO blood groups and musculo- keletal injuries. Injury, 1992, 23:131–133
    [119] Maffulli N, Kader D. Tendinopathy of tendo Achillis. J Bone Joint Surg Br, 2002, 84:1–8
    [120] Jozsa L, Balint J B, Kannus P. Distribution of blood groups in patients with tendon rupture. J Bone Joint Surg Br, 1989, 71-B: 272-274
    [121] Aroen A, Helgo D, Granlund O G. Contralateral tendon rupture risk is increased in individuals with a previous Achilles tendon rupture. Scand J Med Sci Sports, 2004, 14:30-33
    [122] Mahrlein R, Schmelzeisen H, Papathanassopoulos A. Achillessehnen rupturen und blutgruppenzugehorigkeit. Aktuelle Traumatol, 1995, 25:13-15
    [123] Leppilahti J, Puranen J, Orava S. ABO blood group and Achilles tendon rupture. Ann Chir Gynaecol, 1996, 85:369-371
    [124] Maffulli N, Reaper J A, Waterston S W. ABO blood groups and Achilles tendon rupture in the Grampian region of Scotland. Clin J Sport Med, 2000, 10:269-271
    [125] Mokone G G. Risk factors for Achilles tendon injuries: an emphasis on the identification of specific genetic factors. South Africa: University of Cape Town, 2006
    [126] Jarvinen T A, Kannus P, Jarvinen T L. Tenasci‐nC in the pathobiology and healing process of musculoskeletal tissue injury. Scand J Med Sci Sports, 2000, 10:376–382
    [127] Jarvinen T A, Jozsa L, Kannus P. Mechanical loading regulates tenascin-C expression in the osteotendinous junction. J Cell Sci, 1999, 112:3157–3166
    [128] Jarvinen T A, Jozsa L, Kannus P. Mechanical loading regulates the expression of tenascin-C in the myotendinous junction and tendon but does not induce de novo synthesis in the skeletal muscle. J Cell Sci, 2003, 116:857–866
    [129] Jones F S, Jones P L. The tenascin family of ECM glycoproteins: structure, function, and regulation during embryonic development and tissue remodeling. Dev Dyn, 2000, 218:235–259
    [130] Mokone GG, Gajjar M, September AV. The Guani‐nethym ine dinucleotide repeat polymorphism within the te‐naCsc in gene is associated with Achilles tendon injuries. Am J Sports Med, 2005, 33:1016–1021
    [131] Smith M, Simpson N E. Report of the committee on the genetic constitution of chromosomes 9 and 10. Cytogenet Cell Genet, 1989, 51:202–225
    [132] Greenspan D S, Byers M G, Eddy R L. Human collagen gene COL5A1 maps to the q34.2–q34.3 region of chromosome 9, near the locus for Nail‐Patella syndrom e. Genomics, 1992, 12:836–837
    [133] Birk D E. Type V collagen: heterotypic type I/V collagen interactions in the regulation of fibril assembly. Micron, 2001, 32:223–237
    [134] Birk D E, Fitch J M, Babiarz J P. Collagen fibrillogenesis in vitro: interaction of types I and V collagen regulates fibril diameter. J Cell Sci, 1990, 95:649–657
    [135] Mokone G G, Schwellnus M P, Noakes T D. The COL5A1 gene and Achilles tendon pathology. Scand J Med Sci Sports, 2006, 16:19–26
    [136] Collins M, Mokone GG, September AV, van der Merwe L, Schwellnus MP. The COL5A1 genotype is associated with range of motion measurements. Scand J Med Sci Sports, 2009, 19(6):803-10
    [137] Raleigh SM, van der Merwe L, Ribbans WJ, Smith RK, Schwellnus MP, Collins M. Variants within the MMP3 gene are associated with Achilles tendinopathy: possible interaction with the COL5A1 gene. Br J Sports Med, 2009, 43(7):514-20
    [138] September AV, Cook J, Handley CJ, van der Merwe L, Schwellnus MP, Collins M. Variants within the COL5A1 gene are associated with Achilles tendinopathy in two populations. Br J Sports Med, 2009, 43(5):357-65
    [139] Posthumus M, September AV, O'Cuinneagain D, van der Merwe W, Schwellnus MP, Collins M. The COL5A1 gene is associated with increased risk of anterior cruciate ligament ruptures in female participants. Am J Sports Med, 2009, 37(11):2234-40
    [140] Davidson S. Research suggests importance of haplotypes over SNPs.Nat Biotechnol, 2000, 18(11):1134~1135
    [141] Heid CA, Stevens J, Livak KJ, Williams PM.Real time quantitative PCR.Genome Res, 1996,6(10):986-994
    [142] Levin RE.The application of real time PCR to food and agricultural systemes.A Review Food Biotechnology, 2004, 18(1):97-133
    [143] Bottema CD, Sommer SS.PCR amplification of specific alleles: rapiddetection of known mutations and polymorphisms. Mutat Res, 1993, 288(1):93~102
    [144] Squire JM. Architecture and function in the muscle sarcomere. Current Opinion in Structural Biology, 1997, 7: 247–257
    [145] North KN, Beggs AH. Deficiency of a skeletal muscle isoform of alpha-actinin (alpha-actinin-3) in merosin-positive congenital muscular dystrophy. Neuromuscular disorders, 1996, 6: 229–235
    [146] North KN, Yang N, Wattanasirichaigoon D, Mills M, Easteal S, Beggs AH. A common nonsense mutation results in alpha-actinin-3 deficiency in the general population. Nature Genetics, 1999, 21: 353–354
    [147] Vainzof M, Costa CS, Marie SK, Moreira ES, Reed U, Passos-Bueno MR, Beggs AH, Zatz M. Deficiency of alpha-actinin-3 (ACTN3) occurs in different forms of muscular dystrophy. Neuropediatrics, 1997, 28:223–228
    [148] Mills M, Yang N, Weinberger R, Vander Woude DL, Beggs AH, Easteal S, North K. Differential expression of the actin-binding proteins, alpha-actinin-2 and -3, in different species: implications for the evolution of functional redundancy. Human Molecular Genetics, 2001, 10: 1335–1346
    [149] Niemi AK, Majamaa K. Mitochondrial DNA and ACTN3 genotypes in Finnish elite endurance and sprint athletes. European Journal of Human Genetics, 2005, 13: 965–969
    [150] Papadimitriou ID, Papadopoulos C, Kouvatsi A, Triantaphyllidis C. The ACTN3 gene in elite Greek track and field athletes. International Journal of Sports Medicine, 2008, 29: 352–355
    [151] Roth SM, Walsh S, Liu D, Metter EJ, Ferrucci L, Hurley BF. (). The ACTN3 R577X nonsense allele is under-represented in elite-level strengthathletes. European Journal of Human Genetics, 2008, 16:391–394
    [152] Santiago C, González-Freire M, Serratosa L, Morate FJ, Meyer T, Gómez-Gallego F, Lucia A. ACTN3 genotype in professional soccer players. British Journal of Sports Medicine, 2008, 42: 71–73
    [153] Clarkson PM, Devaney JM, Gordish-Dressman H, Thompson PD, Hubal MJ, Urso M, Price TB, Angelopoulos TJ, Gordon PM, Moyna NM, Pescatello LS, Visich PS, Zoeller RF, Seip RL, Hoffman EP. ACTN3 genotype is associated with increases in muscle strength and response to resistance training in women. Journal of Applied Physiology, 2005, 99: 154–163
    [154] Delmonico MJ, Kostek MC, Doldo NA, Hand BD, Walsh S, Conway JM, Carignan CR, Roth SM, Hurley BF. Alpha-actinin-3 (ACTN3) R577X polymorphism influences knee extensor peak power response to strength training in older men and women. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 2007, 62(2): 206–212
    [155] Moran CN, Yang N, Bailey ME, Tsiokanos A, Jamurtas A, MacArthur DG, North K, Pitsiladis YP, Wilson RH. Association analysis of the ACTN3 R577X polymorphism and complex quantitative body composition and performance phenotypes in adolescent Greeks. European Journal of Human Genetics, 2007, 15: 88–93
    [156] Vincent B, De Bock K, Ramaekers M, Van den Eede E, Van Leemputte M, Hespel P, Thomis MA. ACTN3 (R577X) genotype is associated with fiber type distribution. Physiological Genomics, 2007, 32: 58–63
    [157] Santiago C, Rodríguez-Romo G, Gómez-Gallego F, González-Freire M, Yvert T, Verde Z, Naclerio F, Altm?e S, Esteve-Lanao J, Ruiz JR, Lucia A. Is there an association between ACTN3 R577X polymorphism and musclepower phenotypes in young, non-athletic adults? Scandinavian Journal of Medicine & Science in Sports, 2010, 20(5):771-778
    [158] Harris G. Skinfold thickness and measurement technique. In Anthropometric Standardization Reference Manual, 1998, pp. 55–70
    [159] Jebb SA, Cole TJ, Doman D, Murgatroyd PR, Prentice AM. Evaluation of the novel Tanita body-fat analyser to measure body composition by comparison with a four-compartment model. British Journal of Nutrition, 2000, 83: 115–122
    [160] Swartz AM, Jeremy Evans M, King GA, Thompson DL. Evaluation of a foot-to-foot bioelectrical impedance analyser in highly active, moderately active and less active young men. British Journal of Nutrition, 2002, 88: 205–210
    [161] Druzhevskaya AM, Ahmetov II, Astratenkova IV, Rogozkin VA. Association of the ACTN3 R577X polymorphism with power athlete status in Russians. European Journal of Applied Physiology, 2008, 103: 631–634
    [162] Massidda M, Vona G, CalòCM. Association between the ACTN3 R577X polymorphism and artistic gymnastic performance in Italy. Genetic Testing and Molecular Biomarkers, 2009, 13(3): 377-380
    [163] Delmonico MJ, Kostek MC, Doldo NA, Hand BD, Walsh S, Conway JM, Carignan CR, Roth SM, Hurley BF. Alpha-actinin-3 (ACTN3) R577X polymorphism influences knee extensor peak power response to strength training in older men and women. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 2007, 62(2): 206–212
    [164] Sean Walsh, Dongmei Liu, E. Jeffrey MetterE, Luigi Ferrucci, Stephen M, Roth. ACTN3 genotype is associated with muscle phenotypes in women across the adult age span. Journal of Applied Physiology, 2008,105:1486-1491
    [165] Yang N, MacArthur DG, Wolde B, Onywera VO, Boit MK, Lau SY, Wilson RH, Scott RA, Pitsiladis YP, North K. The ACTN3 R577X polymorphism in East and West African athletes. Medicine and Science in Sports and Exercise, 2007, 39: 1985-1988
    [166] Saunders CJ, September AV, Xenophontos SL, Cariolou MA, Anastassiades LC, Noakes TD, Collins M. No association of the ACTN3 gene R577X polymorphism with endurance performance in Ironman Triathlons. Annals of Human Genetics, 2007, 71: 777-781
    [167] Lucia A, Gómez-Gallego F, Santiago C, Bandrés F, Earnest C, Rabadán M, Alonso JM, Hoyos J, Córdova A, Villa G, Foster C. ACTN3 genotype in professional endurance cyclists. International Journal of Sports Medicine, 2006, 27: 880-884
    [168] MacArthur DG, Seto JT, Chan S, Quinlan KG, Raftery JM, Turner N, Nicholson MD, Kee AJ, Hardeman EC, Gunning PW, Cooney GJ, Head SI, Yang N, North KN. An Actn3 knockout mouse provides mechanistic insights into the association betweenα-actinin-3 deficiency and human athletic performance. Human Molecular Genetics, 2008, 17: 1076–1086
    [169] MacArthur DG, Seto JT, Raftery JM , Quinlan KG, Huttley GA, Hook JW, Lemckert FA, Kee AJ, Edwards MR, Berman Y, Hardeman EC, Gunning PW, Easteal S, Yang N, North KN. Loss of ACTN3 gene function alters mouse muscle metabolism and shows evidence of positive selection in humans. Nature Genetics, 2007, 39: 1261–1265
    [170] Chan S, Seto JT, MacArthur DG, Yang N, North KN, Head SI. A gene for speed: contractile properties of isolated whole EDL muscle from an alpha-actinin-3 knockout mouse. American Journal of Physiology. CellPhysiology, 2008, 295: C897-904
    [171] Quinlan KG, Seto JT, Turner N, Vandebrouck A, Floetenmeyer M, Macarthur DG, Raftery JM, Lek M, Yang N, Parton RG, Cooney GJ, North KN. Alpha-actinin-3 deficiency results in reduced glycogen phosphorylase activity and altered calcium handling in skeletal muscle. Human Molecular Genetics, 2010, 19, 1335-1346
    [172] Chowrashi P, Mittal B, Sanger JM, Sanger JW. Amorphin is phosphorylase; phosphorylase is an alpha-actinin-binding protein. Cell Motil Cytoskel, 2002, 53: 125–135
    [173] MacArthur DG, North KN. A gene for speed. The evolution and function of alpha-actinin-3. Bioessays, 2004, 26: 786–795
    [174] Rakus D, Mamczur P, Gizak A, Dus D, Dzugaj A. Colocalization of muscle FBPase and muscle aldolase on both sides of the Z-line. Biochem Biophys Res Commun, 2003, 311: 294–299
    [175] Wittke-Thompson JK, Pluzhnikov A, Cox NJ. Rationale inferences about departures from Hardy–Weinberg equilibrium. Am J Hum Genet, 2005, 76:967–986
    [176] Eynon N, Duarte JA, Oliveira J, Sagiv M, Yamin C, Meckel Y, Sagiv M, Goldhammer E. ACTN3 R577X polymorphism and Israeli top-level athletes. Int J Sports Med, 2009, 30:695-698
    [177] Ahmetov II, Druzhevskaya AM, Astratenkova IV, Popov DV, Vinogradova OL, Rogozkin VA. The ACTN3 R577X polymorphism in Russian endurance athletes. Br J Sports Med, 2010, 44: 649-652
    [178] September AV, Schwellnus MP, Collins M. Tendon and ligament injuries: the genetic component. Br J Sports Med, 2007, 41:241–246
    [179] Mokone GG, Gajjar M, September AV, Schwellnus MP, Greenberg J,Noakes TD, Collins M. The guanine-thymine dinucleotide repeat polymorphism within the tenascin-C gene is associated with achilles tendon injuries. Am J Sports Med, 2005, 33:1016–1021
    [180] Mokone GG, Schwellnus MP, Noakes TD, Collins M. The COL5A1 gene and Achilles tendon pathology. Scand J Med Sci Sports, 2006, 16:19–26
    [181] Raleigh SM, van der Merwe L, Ribbans WJ, Smith RK, Schwellnus MP, Collins M. Variants within the MMP3 gene are associated with Achilles tendinopathy: possible interaction with the COL5A1 gene. Br J Sports Med, 2009, 43(7):514-20
    [182] Puffer JC. The sprained ankle. Clin Cornerstone, 2001, 3 (5):38-49
    [183] Casillas MM. Ligamentous injuries of the foot and ankle in adult athletes. In: DeLee JC, Drez D, Miller MD, editors. DeLee and Drez’s orthopedic sports medicine: principles and practice. 2nd ed. Philadelphia, PA: WB Saunders, 2003, p. 2323-76
    [184] van Dijk CN, Mol BW, Lim LS, Marti RK, Bossuyt PM. Diagnosis of ligament rupture of the ankle joint. Physical examination, arthrography, stress radiography and sonography compared in 160 patients after inversion trauma. Acta Orthop Scand, 1996, 67(6):566-70
    [185] Chapman, MW. Part II. Sprains of the ankle. In Instrumental Course Lectures, AAOS, pp. 294-308, C. V. Mosby, St. Louis,1975
    [186] Posthumus M, September AV, Keegan M, O’Cuinneagain D, van der Merwe W, Schwellnus MP, Collins M. Genetic risk factors for anterior cruciate ligament ruptures: COL1A1 gene variant. Br J Sports Med, 2009, 43:352–356
    [187] Posthumus M, September AV, O’Cuinneagain D, van der Merwe W, Schwellnus MP, Collins M. The association between the COL12A1 geneand anterior cruciate ligament ruptures. Br J Sports Med, 2010, 44(16):1160-1165
    [188] Posthumus M, September AV, O’Cuinneagain D, van der Merwe W, Schwellnus MP, Collins M. The COL5A1 gene is associated with increased risk of anterior cruciate ligament ruptures in female participants. Am J Sports Med, 2009, 37:2234–2240
    [189] Jarvinen TA, Kannus P, Jarvinen TL. Tenascin-C in the pathobiology and healing process of musculoskeletal tissue injury. Scand J Med Sci Sports, 2000, 10:376–82
    [190]黄昌林.军事共同科目常见训练伤病的原因与防治.人民军医,1998,11(10):561-562

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700