用户名: 密码: 验证码:
踝关节三维有限元模型的建立及三角韧带损伤和重建的踝关节生物力学有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
踝关节韧带损伤是最常见的运动性损伤,其数量约占整个运动损伤的25%,其中内翻扭伤导致踝关节外侧副韧带(Lateral Collateral Ankle Ligament)的损伤又约占踝关节韧带损伤的85%。踝关节外侧副韧带是维持踝关节稳定的重要结构,尤以距腓前韧带Anterior Talofibular Ligament, ATFL)及跟腓韧带(Calcaneofibular Ligament,CFL)起主要稳定作用,其损伤可导致踝关节外侧不稳定,严重影响踝关节功能。同时CFL对距下关节也起到稳定作用,其损伤也会影响距下关节的功能。距下关节参与了踝关节多种运动的组成,如果距下关节受到损伤或不稳,也会影响踝关节的功能。
     相对容易损伤的外侧韧带,单独的踝关节内侧韧带损伤是不常见的,大部分三角韧带损伤或者合并了外踝骨折,或者合并了韧带联合损伤。国外学者Brostrom收集了281例急性踝关节扭伤的病例,内侧韧带扭伤仅仅只有3%。几乎所有的内侧韧带损伤病例都是部分韧带撕脱。国外学者Harper回顾了42例三角韧带完全断裂伤患者,都无一例外地合并了其他损伤。然而,强烈的外翻暴力仍然可以导致单独的三角韧带损伤。三角韧带损伤的3个主要机制分别是足的旋前-外展、旋前-外旋和旋后-外旋。
     尽管内侧三角韧带有着极低的损伤发生率,并且大部分都不需要修复,但三角韧带损伤常常带来明显的疼痛和功能障碍。学者Clanton认为,三角韧带损伤的病人会感到内踝不适,同时踝关节会呈现外翻和外展。
     病人往往会要求施行能够纠正旋转不稳定、距骨倾斜及在冠状面外翻成角的重建手术。
     胫后肌腱损伤导致的成人获得性平足症,女性发病率高于男性,尤其好发于60岁以上的老年人。疾病的临床特征是胫后肌腱和足内侧纵弓的功能不全.从而引起足后跟的外旋、中足的外展和前足的旋后。X线影像学特征是,随着畸形的发展,外侧第一跖骨-跗骨角不断增大,以及前后观上距舟关节接触面积的不断减小,其他关节也会发生类似畸形。
     Myerson改进了Johnson和Strom提出的胫后肌腱损伤的分类系统。他在原分类系统中加入了StageⅣ,即伴有三角韧带损伤,该损伤导致了距骨在踝穴的外翻倾斜。Stage R的平足症可以再细分为两个亚期,分别为柔软性平足症(StageⅣa)和僵硬性平足症(StageⅣb)。僵硬性平足症,常常伴有内侧足跟的滑动,需要行关节融合术治疗当Stage Ⅳ平足症合并有踝关节炎时,不管是关节融合还是关节置换,都需要额外对足的畸形进行纠正。然而,柔软性平足症可通过三角韧带重建技术来治疗。
     基于此,许多学者将精力投入到三角韧带重建术式的研究中。目前,文献中已经有几种三角韧带重建技术的报道。
     Wiltberger和Mallory描述了一种重建三角韧带的技术。他们在胫骨远端横断一半胫后肌腱,再纵向切开,肌腱远端仍然附着于生理附着点,近端则通过早已在凿通的内踝隧道,穿出的肌腱在隧道外自身缝合。
     Deland等则描述了用腓长肌腱移植的重建方法。他们在腓长肌腱止点上方切断腓长肌腱,将腓长肌腱通过距骨的骨隧道来到内踝,再通过内踝的骨隧道来到胫骨外侧,并固定肌腱于胫骨外侧。
     Kitaoka等进行了一项生物力学研究,研究三角韧带重建术在平足症畸形的作用。同侧的踇长伸肌腱被用来移植重建三角韧带,肌腱通过内踝和内侧楔骨的隧道,穿出后再自身缝合。
     Hintermann等评估了19例实施了平底足手术的患者,其中3例为三角韧带重建术。在这些重建术中,内踝和舟骨粗隆钻出骨隧道,把同侧游离的跖肌腱通过这些骨隧道,然后自身缝合。
     关节生物力学研究方法多种多样,包括动物实验、尸体实验和物理实验等。踝关节动物实验模型选材困难,而人体标本获取更是极为不易。随着电子计算机技术的发展,有限元分析(Finite element analysis, FEA)已经迅速发展成为一种现代计算方法。在仿真实验中,可以对模型材料参数进行实验条件仿真,模拟拉伸、弯曲、扭转等各种力学实验,以求解获得在不同实验条件下模型任意部位变形、应力/应变分布、内部能量变化、极限破坏分析等变化情况,由于有限元分析相较于传统研究方法拥有诸多优势,因此被迅速引入生物力学研究领域,成为传统经典生物力:学研究的有力补充。
     本文将根据踝关节的影像学图像资料,建立踝关节的三维有限元模型,并以有限元分析方法为手段,研究踝关节内侧三角韧带对踝关节的稳定作用,分析踝关节实施了上述四种重建方法后的运动学参数和肌腱韧带的生物力学参数。基于此目的,本课题组把工作分成以下三部分:
     第一章:人踝关节三维有限元模型建立及其有效性验证
     第二章:人踝关节内侧三角韧带完整和损伤的有限元分析
     第三章:人踝关节内侧三角韧带四种重建方法的有限元分析
     第一章人踝关节三维有限元模型建立及其有效性验证
     目的:建立一个包含胫腓骨下段、距骨、跟骨、足舟骨、内侧楔骨、踝关节软骨、距下关节软骨、踝关节外侧韧带、内侧三角韧带、距下关节韧带的较完整的踝关节三维有限元数学模型,为进一步研究踝关节内侧三角韧带提供基础通用工具,并验证其有效性。
     方法:采用计算机断层扫描(CT)和核磁共振成像(MRI)扫描同一青年男性的中立位右踝关节,将影像学图像保存为DICOM数据,并导入到逆向工程学软件MIMICS10.0.1,由CT数据逆向构建踝关节各组成骨的三维仿真几何模型,由MRI数据逆向建立踝关节和距下关节软骨三维仿真几何模型。使用MIMICS10.01自带的有限元前处理软件MAGICS9.9(?)各所有三维仿真几何模型进行表面平滑处理和表面网格重新优化后保存,导入有限元分析处理软件Ansys12.0,建立一个封闭的由shell93壳单元和solid92实体单元组成的较完整的踝关节三维有限元模型。利用Ansys里仅受压的link10杆单元模拟构建踝关节外侧韧带、内侧三角韧带、距下关节韧带,并对模型各部分赋予材料属性,即建成较完整的正常成人的踝关节三维有限元模型。使用有限元分析法模拟运算踝关节的前抽屉实验,所得结果与文献中相同实验工况的实验结果进行对照,验证踝关节有限元模型的有效性。
     结果:利用逆向工程学软件MIMICS10.01有限元分析软件Ansys12.0(?)顺利地建立了包含胫腓骨下段、距骨、跟骨、足舟骨、内侧楔骨和踝关节、距下关节软骨、踝关节内外侧韧带、距下关节韧带在内的人体踝关节的三维有限元模型。通过模拟计算踝关节的前抽屉实验,与文献中实验数据进行对照,验证了该模型的有效性。
     结论:本研究基于CT和MRI所建立的踝关节三维有限元模型的几何重建精确、逼真,可以顺利实施网格化,可有效的计算踝关节运动学参数和力学参数:
     第二章人踝关节内侧三角韧带完整和损伤的有限元分析
     目的:运用有限元分析方法研究人踝关节内侧三角韧带浅层和深层结构与踝关节稳定性的关系。
     方法:以建立的踝关节三维有限元模型为基础,模拟内侧三角韧带完整、浅层断裂、完全断裂3组模型,分别予以外旋或外翻力矩,运用有限元分析方法模拟运算3种模型在背屈-20°、-10°、0°、10°、20°五个不同角度时踝关节外旋和外翻的角度。将3组模型的实验结果数据进行比较,探讨内侧三角韧带浅层损伤和完全损伤对踝关节稳定性的影响。
     结果:踝关节在背屈-20°-20°范围内,三角韧带浅层断裂组的距骨外旋角相比正常组显著增大,而外翻角轻度增加(P<0.05)。三角韧带完全断裂组的距骨外翻角相比浅层断裂组显著增大,而外旋角仅轻度增加(P<0.05)。
     结论:三角韧带浅层结构可能主要维持踝关节的外旋稳定性。三角韧带深层结构可能主要维持踝关节的外翻稳定性。
     第三章人踝关节内侧三角韧带不同重建方法的有限元分析
     目的:运用有限元分析方法研究Wiltberger、Deland、Kitaoka、 Hintermann四种人踝关节内侧三角韧带重建方法的生物力学特性并进行比较,着重探讨四种重建术恢复踝关节稳定性的能力。
     方法:运用所建立的人踝关节三维有限元模型,模拟Wiltberger、 Deland、Kitaoka、Hintermann四种三角韧带重建模型,均分别予以外旋或外翻力矩,运用有限元分析方法模拟运算四种重建模型在背屈-20°、-10°、0°、10°、20°五个不同角度时踝关节外旋和外翻的角度。最后与韧带完整组在五个背屈角度下的数据进行对比,初步探讨在计算机模拟环境下哪种重建方法能更好的恢复踩关节的稳定性。
     结果:踝关节在背屈-20°-20°范围内,kitaoka组的外旋角度相比其他三组模型最接近韧带完整组(P<0.05),比完整组的外旋角度略大,而Deland组的外翻角度最接近韧带完整组,甚至小于韧带完整组(P<0.05)。
     结论:Wiltberger、Deland、Kitaoka、Hintermann四种三角韧带重建方法中,没有任何一种能完全恢复踝关节的外旋和外翻稳定性。其中,kitaoka法最大限度的恢复了踝关节的外旋稳定性,而Deland(?)去则完全恢复踝关节的外翻稳定性。
Isolated medial ankle sprains are relatively uncommon, with most deltoid injuries occurring in combination with medial malleolus fractures or syndesmosis injuries. In Brostrom"s series of281acute ankle sprains, medial side ankle sprains constituted only3%. Nearly all of the medial-side injuries were partial ligament tears. In Harper's review of42patients with complete deltoid ligament ruptures, all had other injuries. However, isolated injury to the deltoid ligament can occur during an eversion injury and several other conditions. The3most characteristic mechanisms of injury are pronation-abduction, pronation-external rotation, and supination-external rotation of the foot. In patients who have posterior tibial tendon disorder, trauma-and sports-related deltoid disruptions, and valgus talar tilting after triple arthrodesis or total ankle arthroplasty, the isolated injury of deltoid ligament can also be seen.
     Deltoid ligament injuries can be a significant source of pain and disability. According to Clanton, patients experience medial ankle discomfort and have slight valgus and abduction of the ankle with ambulation.
     Patients requiring a reconstructive operation typically exhibit rotatory instability as well as enhanced talar translation or valgus angulation in the coronal plane. Several approaches to deltoid reconstruction have been reported.
     Wiltberger and Mallory described a technique of reconstructing the deltoid by dividing the posterior tibial tendon longitudinally. The dorsal half of the tendon was left attached distally at the navicular, but transected proximally. A vertical drill hole was made in the medial malleolus through which the proximal end of the tendon was passed from plantar to dorsal and then sutured to itself.
     Deland et al described a technique for reconstruction in the setting of Stage IV posterior tibial tendon insufficiency. Their technique involves passing a peroneus longus tendon graft through a bone tunnel in the talus from lateral to medial and then through a second tunnel from the tip of the medial malleolus to the lateral tibia.
     Kitaoka et al described a deltoid ligament reconstruction technique in the setting of flatfoot deformity. The extensor hallucis longus tendon was harvested and passed through drill holes in the medial malleolus and medial cuneiform. It was then sutured back upon itself at both sites.
     Hintermann et al described a procedure for reconstruction of the deltoid ligament. Bone tunnels were created in the medial malleolus and navicular tuberosity. A free plantaris tendon autograft was harvested, placed through the bone tunnels, and sutured back on to itself.
     Though several techniques can be used for surgical reconstruction of the deltoid ligament, the ideal method is not known. The purpose of this study was to evaluate the biomechanical results of those deltoid ligament reconstructions using finite element analysis.
     In addition, the knowledge of stress inside the ligaments and reconstructed grafts which could help to better understand the biomechanical behavior of the reconstructed joint is extremely difficult in the experimental measurement. Therefore, in this paper the finite element analysis helps to assess this biomechanical parameter.
     Based on this, the study was divided into the following steps:
     Chapter One Development and validation of a three-dimensional finite element ankle model of human
     Objective:To develop a three-dimentional finite element model of the intact human ankle and take the verification analysis in the kinematics of the model.
     Methods:An healthy ankle of a male (age25, height170cm and weight65kg) was scanned in neutral position using Computer Tomography(CT) and magnetic resonance image (MRI). The geometry of the skeletons of the ankle were rebuilt from the CT images and the articular cartilage from MRI images with Mimics10.01software. According to Mimics software, Magics9.9software which implemented in Mimics and Ansys software, a three-dimentional finite element ankle model was developed on the basis of CT and MRI images. The model consisted of the distal of the tibia and the fibula, the whole talus, the calcaneus bone, the navicular bone, the medial cuneiform bone, the articular cartilage, and the ligaments surrounding the ankle joint including the lateral ligaments and medial deltoid ligament complex. Bone structures were meshed with rigid surface elements due to their small strain compared to soft structures. Articular cartilage was meshed with3D tetrahedral deformable elements. Link elements that have only tension function capability were used to simulate ligaments and grafts bearing the tension load. The anterior drawer test of the talus was simulated in Ansys software to validate the model.
     Results:An effective and high simulative three-dimensional finite element model of the ankle including six bony structures, cartilage and nine principal ligaments surround the ankle joint complex was developed. The anterior drawer test of the talus in Ansys software validated the model compare to literatures.
     Conclusion:The three-dimensional finite element model of the ankle was effective so that it can be used to simulate the real ankle for the future study such as the kinematics and biomechanics of the ankle in the deficiency or reconstruction of the medial deltoid ligaments complex.
     Chapter two The finite element analysis of the intact and deficiency medial deltoid ligment in ankle model of human
     Objective:To evaluate the kinematics and biomechanics of the ankles of which the medial deltoid ligament complex is nomal, the superficial deltoid and the whole deltoid is deficient respectively with finite element analysis.
     Methods:In addition to the intact ankle model, superficial deltoid-deficient, the whole deltoid-deficient models were simulated based on the intact finite elements ankle model. The forces in the ligaments and the kinematics of talus were predicted for an eversional or external torque through the range of ankle flexion in Ansys software.
     Results:When the superficial structure of the deltoid ligament complex is deficient, the talar tilt increased slightly under an eversional torque, however, the external rotational displacement of the talus increased drastically under an external torque(P<0.05). And, the difference of the external rotational displacement between the superficial deltoid-deficient and deltoid-deficient ankle was very small. However, the difference of the valgus angulation of the talus between them was tremendous relatively(P<0.05).
     Conclusion:This study showed that the superficial structure of deltoid ligament complex resist external rotation of the talus relative to the tibia mostly and the deep structure resists eversion of the one relatively.
     Chapter three The finite element analysis of the tenodesis reconstruction in ankle with medial deltoid ligment deficiency in ankle model of human
     Objective:To evaluate the kinematics and biomechanics of the tenodesis reconstruction in ankle with deltoid ligament deficiency using finite element analysis.
     Methods:In addition to the intact ankle model, Wiltberger reconstruction, Deland reconstruction, Kitaoka reconstruction and Hintermann reconstruction models were simulated. The forces in the ligaments and grafts and the kinematics of talus were predicted for an eversional or external torque through the range of ankle flexion in Ansys software.
     Results:No reconstructions could completely restore the values for ankle stability and the stresses of the lateral ligaments to normality. But compatively, The Kitaoka procedure was most effective in limiting the external rotation(P<0.05), in addition to the Deland procedure, was in limiting the eversion(P<0.05).
     Conclusion:This study showed that Kitaoka has advantage with regard to rotational stabilities as well as ligaments stress in comparison with other methods. And the Deland procedure is good at the evertional stabilities in comparison with others.
引文
[1]Ming-Yan Zhang, Can Xu, Kang-Hua Li. Finite Element Analysis of Nonanatomic Tenodesis Reconstruction Methods of Combined Anterior Talofibular Ligament and Calcaneofibular Ligament Deficiency. Foot&Ankle Int:2011.32(10):1000-1008.
    [2]邱贵兴.运动医学骨科核心知识.第一版.北京:人民卫生出版社2009.154.
    [3]Gefen A. Stress analysis of the standing foot following surgical plantar fascia release. J Biomech:2002.35(5):629-637.
    [4]牛文鑫.丁祖泉.三种三维有限元建模方法在跟骨模型建立中的应用和比较.医用生物力学:2007.22(4):345-350.
    [5]MOW VC. Proctor CS and Kelly A. Basic Biomechanics of the Musculoskeletal System[M]. Biomechanics of articular cartilage:1989:
    [6]Golano P. Vega J. de Leeuw PA. Malagelada F, Manzanares MC.Gotzens V. van Dijk CN. Anatomy of the ankle ligaments:a pictorial essay. Knee Surg Sports Traumatol Arthrosc:2010.18(5):557-569.
    [7]Imhauser CW. Siegler S. Udupa JK. Toy JR. Subject-specific models of the hindfoot reveal a relationship between morphology and passive mechanical properties. J Biomech:2008.41(6):1341-1349.
    [8]Fung YC. Elasticity of soft tissues in simple elongation[J]. Am J Physiol:1967. 213(6):1532-1544.
    [9]Viidik A. Elasticity and tensile strength of the anterior cruciate ligament in rabbits as influenced by training[J]. Acta Physiol Scand:1968.74(3):372-380.
    [10]Funk JR, Hall GW. Crandall JR. et al. Linear and quasi-linear viscoelastic characterization of ankle ligaments[J]. J Biomech Eng:2000.122(1):15-22.
    [11]Siegler S. Block J and Schneck CD. The mechanical characteristics of the collateral ligaments of the human ankle joint[J]. Foot Ankle:1988, 8(5):234-242.
    [12]Sarrafian S. Anatomy of the foot and ankle. Descriptive. Topographic. Functional:1983
    [13]Bahr R. Pena F. Shine J. et al. Mechanics of the anterior drawer and talar tilt tests. A cadaveric study of lateral ligament injuries of the ankle[J]. Acta Orthop Scand:1997.68(5):435-441.
    [14]Hollis JM, Blasier RD and Flahiff CM. Simulated lateral ankle ligamentous injury:Change in ankle stability [J]. Am J Sports Med:1995,23(6):672-677.
    [15]Johnson EE and Markolf KL. The contribution of the anterior talofibular ligament to ankle laxity [J]. J Bone Joint Surg Am:1983,65(1):81-88.
    [16]Kaneko K. Biomechanical studies of the lateral collateral ligaments of the ankle using amputated limbs [J]. Nihon Seikeigeka Gakkai Zasshi:1985, 59(5):545-558.
    [17]Rasmussen O. Stability of the ankle joint. Analysis of the function and traumatology of the ankle ligaments[J]. Acta Orthop Scand Suppl:1985. 211:1-75.
    [18]Tohyama H. Beynnon BD. Renstrom PA, et al. Biomechanical analysis of the ankle anterior drawer test for anterior talofibular ligament injuries[J]. J Orthop Res:1995,13(4):609-614.
    [19]Bresler B, Frankel J P. The forces and moments in the leg during level walking. Trans ASME:1950.72:27-30.
    [20]高士濂.实用解剥图谱一下肢分册[M].2版.上海:上海科学技术出版社.2004:275-281.
    [21]Cheung JT, An KN. Zhang M. Consequences of partial and total plantar fascia release:a finite element study[J]. Foot Ankle Int:2006,27(2):125-132.
    [22]lmhauser CW, Siegler S. Udupa JK, et al. Subject-specific models of the hindfoot reveal a relationship between morphology and passive mechanical properties [J]. J Biomech:2008,41(6):1341-1349.
    [23]Liacouras PC, Wayne JS. Computational modeling to predict mechanical function of joints:application to the lower leg with simulation of two cadaver studies[J]. J Biomech Eng:2007,129(6):811-817.
    [4]杨济匡.方海峰.人体下肢有限元动力学分析模型的建立和验证.湖南大学学报(自然科学版):2005.32(5):31-36.
    [25]Eberhardt AW,Lewis JL and Keer LM. Contact of layered elastic spheres as a model of joint contact:effect of tangential load and friction[J]. J Biomech Eng: 1991,113(1):107-108.
    [26]Weiss JA, Gardiner JC,Ellis BJ. et al. Three-dimensional finite element modeling of ligaments:Technical aspects. Med Eng Phy:2005,27(10): 845-861.
    [27]Bandak FA,Tannous RE. Toridis T. On the development of an osseo-ligamentous finite element model of the human ankle joint. Int J Solid Stru:2001.38(10-13):1681-1697.
    [28]Cheng HY. Lin CL, Wang HW, et al. Finite element analysis of plantar fascia under stretch-The relative contribution of windlass mechanism and Achilles tendon force. J Biomech:2008,41(9):1937-1944.
    [29]牛文鑫.足底韧带在足弓结构维持作用中的生物力学机制研究.硕士学位论文.2007.3,同济大学.
    [30]牛文鑫,杨云峰.俞光荣.等.人体足部三维有限元模型的有效构建方法及其合理性的实验分析研究.生物医学工程学杂志:2009.26(1):80-84.
    [31]张字宸.李颉,牛文鑫.等.人工颈椎间盘置换对多节段下颈椎活动影响的三维有限元分析.中华医学杂志:2008.88(17):1214-1216.
    [32]Yang YF. Yu GR, Zhou JQ. et al. The displacements of human foot after plantar ligaments injury:A cadaveric study and finite element analysis. The 2nd International Conference on Bioinformatics and Biomedical Engineering: 2008:2460-2463.
    [33]Yang YF, Yu GR. Huang SP. et al. Effect of the plantar fasciotomy on the movement of the foot arch. The 1st International Conference on Bioinformatics and Biomedical Engineering:2007:486-489.
    [34]Yang YF. Yu GR. Niu WX. et al. Effect of the plantar ligaments injury on the longitudinal arch height of the human foot. Lecture Notes in Computer Science. v 4689 LNBI. Life System Modeling and Simulation. International Conference: 2007:111-119.
    [35]Shen GS. Xu YJ. Zhou HB. et al. Effect of femoral tunnel angle on tunnel enlargement in anterior cruciate ligament reconstructions. The Seventh Asian-Pacific Conference on Medical and Biological Engineering:IFMBE Proceedings 2008.19:103-106.
    [36]沈光思.徐又佳,周海斌,等.基于MRI的全膝关节有限元模型建立与前交叉韧带重建术模拟方案.医用生物力学:2008,23(5):353-356.
    [37]沈光思.徐又佳.周海斌,等.前交叉韧带重建术股骨隧道角度与隧道壁承受应力关系的研究.临床骨科杂志:2008,11(5):469-472.
    [38]姜华亮.华锦明.许新忠,等.正常人膝关节三维有限元模型的建立.苏州大学学报(医学版):2008.28(3):421-422.
    [39]杨云峰,俞光荣,牛文鑫,等.人体足主要骨韧带结构三维有限元模型的建立及分析.中国运动医学杂志:2007,26(5):542-546.
    [40]Cheung JTM. Zhang M, An KN. Effect of plantar fascia stiffness on the biomechanical responses of the ankle-foot complex. Clin Biomech:2004.19(8): 839-846.
    [41]Actis RL, Ventura LB, Smith KE, et al. Numerical simulation of the plantar pressure distribution in the diabetic foot during the push-off stance[J]. Med Biod Eng Comput:2006,44(8):653-663.
    [42]Wu Lr. Quantitative Validation Method of Simulation Model Validity[J]. Missies and Space Vehicles:2000.246(4):23-26.
    [43]Pijnenburg AC. Van Dijk CN. Bossuyt PM. Marti RK. Treatment of ruptures of the lateral ankle ligaments:a meta-analysis. J Bone Joint Surg:Am 2000.82: 761-773.
    [44]Ferran NA, Maffulli N. Epidemiology of sprains of the lateral ankle ligament complex. Foot Ankle Clin:2006.11:659-662.
    [45]Fujii T. Kitaoka HB. Watanabe K. Luo ZP, An KN. Ankle Stability in Simulated Lateral Ankle Ligament Injuries. Foot & Ankle International 2010: 31:531-537.
    [46]Becker HP. Rosenbaum D. Chronic, recurring ligament instability in the lateral ankle. Orthopade:1999.28:483.
    [47]Kato T. The diagnosis and treatment of the instability of the subtalar joint. J Bone Joint Surg:1995.77(B):401.
    [48]F.Bonnel. E.Toullec. C.Mabit,Y.tourne. Chronic ankle instability:Biomechanics and pathomechanics of ligaments injury and associated lesions. Orthopaedics & Traumatologv:surcerv & Research:2010,96:424-432.
    [49]Harper. MC:The deltoid ligament. An evaluation of need for surgical repair. Clin Orthop Relat Res:1988.156-168.
    [50]Brostrom. L:Sprained ankles.3. Clinical observations in recent ligament ruptures. Acta Chir Scand:1965.130:560-569.
    [51]Yde. J:The Lauge Hansen classification of malleolar fractures. Acta Orthop Scand:1980.51:181-192.
    [52]Lauge-Hansen. N:Fractures of the ankle.Ⅱ combined experimental surgical and experimental roentgenologic investigation. Arch Surg:1950.60:957-985.
    [53]Sclafani, SJ:Ligamentous injury of the lower tibiofibular syndesmosis: radiographic evidence. Radiology:1985.156:21-27.
    [54]Baxter. DE:The foot and ankle in sport. St. Louis. Mosby:1995.
    [55]Clanton, TO:Athletic injuries to the soft tissues of the foot and ankle. Surgery of the Foot and Ankle:St. Louis, Mosby,1130-1132.
    [56]Fujii T. Kitaoka HB, Watanabe K. Luo ZP. An KN. Comparison of modified Brostrom and Evans procedures in simulated lateral ankle injury. Med Sci Sports Exerc:2006,38(6):1025-1031.
    [57]Boss AP, Hintermann B.Anatomical study of the medial ankle ligament complex. Foot Ankle Int:2002,23(6):547-53.
    [58]Milner CE.Soames RW. The medial collateral ligaments of the human ankle joint:anatomical variations. Foot Ankle Int:1988.19(5):289-92.
    [59]Hintermann B, Sommer C. Nigg BM. Influence of ligament transection on tibial and calcaneal rotation with loading and dorsi-plantarflexion.. Foot Ankle Int:1995.16(9):567-571
    [60]Rasmussen O. Kromann-Andersen C. Boe S. Deltoid ligament. Functional analysis of the medial collateral iigamentous apparatus of the ankle joint. Acta Orthop Scand:1993.54(1):36-44
    [61]Huiskes. R.,and Chao. E. Y.:A survey of finite element analysis in orthopaedic biomechanics:the firsht decade. Journal of Biomechanics:1983.16(6):385-409.
    [62]Prendergast. P. J.:Finite element models in tissue mechanics and orthopaedic implant design. Clinical Biomechanics:1997.12(6):343-366.
    [63]Namba. R. S.;Keyak, j.H.;Kim. A. S.; Vu. L. P.;and Skinner. H. B. Cementless implant composition and femoral stress. A finite element analysis. Clinical Orthopaedics & Related Research:1998. (347):261-7.
    [64]Pedersen, D. R.;Brown,T. D.; Maxian, T. A.; and Callaghan, J. J.:Temporal and spatial distributions of directional counterface motion at the acetabular bearing surface in otal hip arthroplasty. IowaOrthopaedic Journal:1998, 18:43-53.
    [65]Scifert. C. F.; Brown, T. D.;and Lipman. J.D.:Finite element analysis of a novel design approach to resisting total hip dislocation. Clinical Biomechanics: 1999.14(10):697-703.
    [66]Miyoshi, S.;Takahashi, T.; Ohtani,M.;Yamamoto, H.; and Kameyama, K. Analysis of the shape of the tibial tray in total knee arthroplasty using a three dimension finite element model. Clinical Biomechanics:2002,17(7):521-525.
    [67]林祥波.固定与旋转平台膝关节假体有限元、体外生物力学分析及临床应用研究:[学位论文].上海:第二军医大学,2009.
    [68]Couteau. B.; Mansat. P.; Estivalezes, E:Darmana, R.; Mansat, M; and Egan. J. Finite element analysis of the mechanical behavior of a scapula implanted with a glenoid prosthesis. Clinical Biomechanics.2001.16(7):566-575.
    [69]何仿.人体肩关节三维有限元模型的建立、验证及在肱骨骨折机制研究方面的应用: [学术论文].上海:第二军医大学,2006.
    [70]Walker. P. S.; Nunamaker, D.; Huiskes. R.; Parchinski. T.; and Greene. D.:A new approach to the fixation of a metacarpophalangeal joint prosthesis. Engineering in Medicine:1983.12(3):135-140.
    [71]Spyrou LA. Aravas N. Muscle-driven finite element simulation of human foot movements. Comput Methods Biomech Biomed Engin:2011.29(7):
    [72]Liang J.Yang Y.Yu G.Niu W.Wang Y. Deformation and stress distribution of the human foot after plantar ligment release:a cadaveric study and finite element analysis. Sci China Life Sci:2011.54(3):267-71.
    [73]Niu W.Yang Y.Yu G.Ding Z. Valid constructing method of three-dimensional finite element human foot model and experimental analysis on its rationality
    [74]Deland JT:Adult-acquired flatfoot deformity. J Am Acad Orthop:2008. 16:399-406.
    [75]Myerson MS:Adult acquired flatfoot deformity:Treatment of dysfunction of the posterior tibial tendon. Instr Course Lect:1997.46:393-405.
    [76]Johnson KA. Strom DE:Tibialis posterior tendon dysfunction. Clin Orthop RelatRes:1989.239:196-206.
    [77]Bluman EM. Title CI. Myerson MS:Posterior tibial tendon rupture:A refined classification svstem. Foot Ankle Clin:2007.12:
    [78]Deland JT. Page A. Sung IH. et al:Posterior tibial tendon insufficiency results at different Stages:2006.2:157-160.
    [79]Wiltberger. BR; Malloy, TM:A new method for reconstructing the deltoid ligament of the ankle. Orthop Rev:1972.1:37-41.
    [80]Deland. JT; de Asia. RJ:Segal. A:Reconstruction of the chronically failed deltoid ligament:a new technique. Foot Ankle Int:2004,25:795-799.
    [81]Kitaoka. HB:Luo. ZP:An. KN:Reconstruction operations for acquired flatfoot:biomechanical evaluation. Foot Ankle Int:1998.19:203-207.
    [82]Hintermann. B:Valderrabano, V:Kundert. HP:Lengthening of the lateral column and reconstruction of the medial soft tissue for treatment of acquired flatfoot deformity associated with insufficiency of the posterior tibial tendon. Foot Ankle Int:1999.20:622-629.
    [83]Haddad SL, Dedhia S. Ren Y. Rotstein J. Zhang LQ. Deltoid ligament reconstruction:a novel technique with biomechanical analysis. Foot Ankle Int: 2011.31(7):639-651.
    [84]Jeng CL. Bluman EM, Myerson MS. Minimally invasive deltoid ligament reconstruction for Stage IV flatfoot deformity.Foot Ankle Int:2011. 32(1):21-30.
    [1]Brekelmalls WA. Poort HW. Sloof T.T. A new method to analyse the mechanical behaviour of the skeletal parts. Acta Orthop Scand:1972,43:301-317.
    [2]Rybieki,E. On the mathematical analysis of stress in the human femur[J]. Biomech:1972.5:203-206.
    [3]钱齐荣,贾连顺,周伟明等.骶髂关节与骨盆的三维有限元模型的建立.美国中华骨科杂志:2000,6(2):158-161.
    [4]盛选禹,唐受琴编著,Catia有限元分析命令详解与实例,北京,第一版,机械工业出版社:2005,3.
    [5]Prendergast PJ Finite element models in tissue mechanics and orthopaedic implant design. ClinBiomech(Bristol, Avon):1997.12(6):343-366.
    [6]Srirangam Kumaresan, Narayan Yoganandan, Frank A. Pintar. et al. Finite element modeling approaches of human cervical spine facet joint capsule. Journal of Biomechanics:1998,31:371-376.
    [7]Shunji Hirokawa. Reiji Tsuruno Three-dimensional deformation and stress distribution in an analytical/computational model of the anterior cruciate ligament. Journal of Biomechanics:2000,33:1069-1077.
    [8]Can A. Yucesoya, Bart H. F.J.M. Koopmana, Peter A. Huijing Three-dimensional finite element modeling of skeletal muscle using a two-domain approach:linked fiber-matrix mesh model. Journal of Biomechanics:2003.35:1253-1262.
    [9]Bendjaballah MZ, Shirazi-Adl A, Zukor DJ. Finite element analysis of human knee joint in varus-valgus. Clin Biomech(Bristol, Avon):1997.12(3):139-148.
    [10]Whyne CM, Hu SS, Lotz JC. Parametric finite element analysis of verterbral bodies affected by tumors. J Biomech:2001.34(10):1317-1324.
    [11]Joyce H Keyak, Stephen A. et al. Prediction of femoral fracture load using automated finite element modeling. Journal of Biomechanics:1998.31: 125-133.
    [12]Keyak JH, Skinner HB, Fleming JA. Effect of force direction on femoral fracture load for two types of loading conditions. J Orthop Res:2001.19(4): 539-544.
    [13]GeorgN. Duda. Francesco Mandruzzato, Markus Heller et at. Mechanical boundary conditions of fracture healing:borderline indications in the treatment of unreamed tibial nailing. Journal of Biomechanics:2001.34:639-650.
    [14]Makarand G, Joshi, SureshG. Advani. Freeman Miller, et al. Analysis of a femoral hip prosthesis designed to reduce stress shielding. Journal of Biomechanicsz:2000.33:1655-1662.
    [15]Norman TL. Thyagarajall G. Saligrama VC. el al. Stem surface roughness alters creep induced subsidence and "taper-lock" in a cemented femoral hip prosthesis. J Biomech:2001.34(10):1325-1333.
    [16]Marco Viceconti. Luca Cristofolioi, Massimiliano Baleani, Pre-clinical validation of a new partiallycemented femoral prosthesis by synergetic use of numerical and experimental methods. Journal of Biomechanics:2001.34: 723-731.
    [17]Huiskes, R..and Chao, E. Y.:A survey of finite element analysis in orthopaedic biomechanics:the firsht decade. Journal of Biomechanics:1983,16(6):385-409.
    [18]Prendergast, P. J.:Finite element models in tissue mechanics and orthopaedic implant design. Clinical Biomechanics:1997,12(6):343-366.
    [19]Namba, R. S.; Keyak, j.H.:Kim. A. S.; Vu. L. P.; and Skinner. H. B.: Cementless implant composition and femoral stress. A finite element analysis. Clinical Orthopaedics & Related Research:1998.347:261-7.
    [20]Pedersen. D. R.; Brown. T. D.:Maxian. T. A.; and Callaghan. J. J.:Temporal and spatial distributions of directional counterface motion at the acetabular bearing surface in otal hip arthroplasty. IowaOrthopaedic Journal:1998.18:43-53.
    [21]Scifert, C. F.; Brown. T. D.:and Lipman. J.D.:Finite element analysis of a novel design approach to resisting total hip dislocation. Clinical Biomechanics: 1999.14(10):697-703.
    [22]Miyoshi. S.:Takahashi. T.:Ohtani. M.:Yamamoto. H.:and Kameyama. K. Analysis of the shape of the tibial tray in total knee arthroplasty using a three dimension finite element model. Clinical Biomechanics:2002.17(7):521-525.
    [23]林祥波.固定与旋转平台膝关节假体有限元、体外生物力学分析及临床应用研究:[学位论文].上海:第二军医大学,2009.
    [24]Couteau. B.:Mansat. P.; Estivalezes. E:Darmana. R.; Mansat. M.:and Egan. J.: Finite element analysis of the mechanical behavior of a scapula implanted with a glenoid prosthesis. Clinical Biomechanics:2001.16(7):566-575.
    [25]何仿.人体肩关节三维有限元模型的建立、验证及在肱骨骨折机制研究方面的应用:[学位论文].上海:第二军医大学,2006.
    [26]Walker. P. S.:Nunamaker, D.:Huiskes. R.; Parchinski. T.; and Greene. D.:A new approach to the fixation of a metacarpophalangeal joint prosthesis. Engineering in Medicine:1983,12(3):135-140.
    [27]Liacouras PC.Wayne JS. Computational modeling to predict mechanical function of joints:application to the lower leg with simulation of two cadaver studies[J]. J Biomech Eng:2007,129(6):811-817.
    [28]Spyrou LA. Aravas N. Muscle-driven finite element simulation of human foot movements. Comput Methods Biomech Biomed Engin:2011.29(6).
    [29]Liang J.Yang Y.Yu G.Niu Wr.Wang Y. Deformation and stress distribution of the human foot after plantar ligment release:a cadaveric study and finite element analysis. Sci China Life Sci:2011.54(3):267-71.
    [30]Niu W.Yang Y.Yu G.Ding Z. Valid constructing method of three-dimensional finite element human foot model and experimental analysis on its rationality.
    [31]Boss AP, Hintermann B.Anatomical study of the medial ankle ligament complex. Foot Ankle Int:2002.23(6):547-53.
    [32]Milner CE,Soames RW. The medial collateral ligaments of the human ankle joint:anatomical variations. Foot Ankle Int:1988.19(5):289-92.
    [33]Siegler S. Block J and Schneck CD. The mechanical characteristics of the collateral ligaments of the human ankle joint[J]. Foot Ankle:1988. 8(5):234-242.
    [34]Rasmussen O. Stability of the ankle joint. Analysis of the function and traumatology of the ankle ligaments[J]. Acta Orthop Scand Suppl:1985, 211:1-75.
    [35]Rasmussen O. Kromann-Andersen C. Boe S. Deltoid ligament. Functional analysis of the medial collateral ligamentous apparatus of the ankle joint. Acta Orthop Scand:1983.54(1):36-44.
    [36]Deland JT:Adult-acquired flatfoot deformity. J Am Acad Orthop:2008. 16(8):399-406.
    [37]Myerson MS:Adult acquired flatfoot deformity:Treatment of dysfunction of the posterior tibial tendon. Instr Course Lect:1997.46:393-405.
    [38]Johnson KA. Strom DE:Tibialis posterior tendon dysfunction. Clin Orthop RelatRes:1989.239:196-206.
    [39]Bluman EM. Title CI, Myerson MS:Posterior tibial tendon rupture:A refined classification system. Foot Ankle Clin:2007.
    [40]Deland JT, Page A. Sung IH. et al:Posterior tibial tendon insufficiency results at different Stages:2006.2:157-160.
    [41]Hamilton WG:Surgical anatomy of the foot and ankle. Clin Symp:1985. 37:2-32.
    [42]Haiper MC:Deltoid ligament:An anatomical evaluation of function. Foot Ankle:1987.8:19-22.
    [43]Hintermann B:Medial ankle instability. Foot Ankle Clin:2003.8:723-738.
    [44]Boss AP. Hintermann B:Anatomical study of the medial ankle ligament complex. Foot Ankle Int:2002.23:547-553.
    [45]Milner CE. Soames RW:The medial collateral ligaments of the human ankle joint:Anatomical variations. Foot Ankle Int:1998,19:289-292.
    [46]Milner CE, Soames RW:Anatomy of the collateral ligaments of the human ankle joint. Foot Ankle Int:1998,19:757-760,
    [47]Rasmussen O, Kromann-Andersen C. Boe S:Deltoid ligament. Functional analysis of the medial collateral ligamentous apparatus of the ankle joint. Acta Orthop Scand:1983.54:36-44.
    [48]Leardini A. C"Connor JJ. Catani F. et al:The role of the passive structures in the mobility and stability of the human ankle joint:A literature review. Foot Ankle Int:2000.21:602-615.
    [49]Bluman EM. Myerson MS, Stage Ⅳ:Posterior tibial tendon rupture. Foot Ankle Clin:2007.
    [50]Deland JT. de Asia RJ, Segal A:Reconstruction of the chronically failed deltoid ligament:A new technique. Foot Ankle Int:2004.25:795-799.
    [51]Wiltberger BR. Malloy TM:A new method for reconstructing the deltoid ligament of the ankle. Orthop Rev:1972.1:37-41.
    [52]Boyer MI. Bowen V. Weiler P:Reconstruction of a severe grinding injury to the medial malleolus and the deltoid ligament of the ankle using a free plantaris tendon graft and vascularized gracilis free muscle transfer:case report. J Trauma:1994.36:454-457.
    [53]Kitaoka HB. Luo ZP, An KN:Reconstruction operations for acquired flatfoot: biomechanical evaluation. Foot Ankle Int:1998.19:203-207.
    [54]Raikin SM. Myerson MS:Surgical repair of ankle injuries to the deltoid ligament. Foot Ankle Clin:1999.4:745-753.
    [55]Hintermann B. Valderrabano V. Kundert HP:Lengthening of the lateral column and reconstruction of the medial soft tissue for treatment of acquired flatfoot deformity associated with insufficiency of the posterior tibial tendon. Foot Ankle Int:1999.20:622-629.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700