用户名: 密码: 验证码:
三氮唑埃博霉素类似物的合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
埃博霉素具有紫杉醇类似的生物活性,但是它们对多重耐药性的癌细胞有更好的活性。更重要的是它们对于一些拮抗紫杉醇的细胞系也有作用,此外还具有良好的水溶性以及相对简单的结构。为了探寻它们的SAR信息,以及寻找更多的具有活性的埃博霉素类似物,在世界范围内掀起了合成埃博霉素类化合物的热潮。
     首先,在第二章介绍了大环上的12-13双键被三氮唑环取代的1,4-三氮唑埃博霉素类似物2-1。同样在该章研究了三氮唑埃博霉素似物2-1在碱金属作用下的裂解方式。
     文献上报道了CuAAC反应产物1,4-三氮唑和线性药物分子中酰胺和双键相似,其对应的类似物保持了相当的生物性质。Chen和Kong最近报道了一种在生理条件或乙腈下纳米氧化亚铜催化的CuAAC反应。因此,为了探寻三氮唑模拟12-13双键的可能性以及评价纳米氧化亚铜构筑大环的效率,我们报道了通过纳米氧化亚酮催化下的click反应得到1,4-三氮唑埃博霉素类似物2-1。
     通过Aldol反应,Horner-Wadsworth-Emmons反应,大环酯化以及点击反应等反应合成了1,4-三氮唑埃博霉素类似物。关键步骤是利用纳米氧化亚酮催化的1,3偶极环加成反应产生大环和三氮唑环。这是第一次评价纳米氧化亚酮在构筑大环分子的效率。较高的反应产率证明了纳米氧化亚铜是一种较好的分子内大环成环的催化剂。通过计算机模拟,X-单晶衍射,NMR等构象分析显示了C10-C14位的刚性和平面结构以及C1-C7位构象的变化导致了1,4-三氮唑埃博霉素类似物活性的丧失。我们使用傅立叶变换离子回旋共振质谱仪研究了化合物2-1在质子和碱金属辅助下的碰撞活化解离质谱。
     其次,在第三章,一种新颖的1,5-三氮唑埃博霉素类似物3-1通过[Cp*RuCl]_4催化的1,3偶极环加成反应合成。计算机模拟表明了1,5三氮唑埃博霉素类似物3-1和天然产物埃博霉素A的结构相似度要比1,4三氮唑埃博霉素类似物2-1好许多。中间体3-2在[Cp*RuCl]_4催化下发生1,3-偶极环加成反应以41%的产率得到中间体3-19。三氮唑埃博霉素类似物3-1的生物活性正在研究中。
     在第四章我们正在尝试将抗癌药物埃博霉素和人类急性髓细胞白血病的干细胞凋亡剂含笑内酯合并在一起做成杂合药物。而这种策略可能帮助我们发现更多具有生物活性的癌症干细胞凋亡剂。现在我致力于完成这个杂合药物并且已经成功得到两个关键的中间体。
Epothilone has similar biological activity to taxol, but they are more active against multi-drug-resistant cells. Moreover, it has been recognized that epothilones are effective against a number of Taxol-resistant tumor cell lines. Besides, it has better water solubility and far simpler structure than taxane. A worldwild effort to synthesize the epothilone class of molecules, and to get more detailed SAR studies and search more specific and higher activity epothilone derivatives.
     Firstly, the Triazole-epothilone analogue2-1which the12-13olefine was replaced by triazole ring was introduced in the charpter2. The effects of alkali metal ion cationization on fragmentation pathways of Triazole-epothilone analogue2-1was also investigated in this charpter.
     The CuAAC product-1,4-triazole, was reported to be isostatic to amides and olefins in drugs with linear structure, and the resulted analogues maintain significant biological activity. Chen and Kong recently reported the use of Cu2O nanoparticles (Cu2O-NPs) to catalyze CuAAC reaction either under physiological conditions or in acetonitrile. Thus, to explore the possibility to mimic the olefin at C12-C13position and evaluate the efficiency of Cu2O-NP for cyclization of large ring, here we report the synthesis of1,4Triazole-Epothilone analogue2-1with Cu2ONP catalyzed click reaction.
     The1,4-Triazole-epothilone analogues was synthesized by aldol reaction, Horner-Wadsworth-Emmons reaction, macrolactonization and click reaction. The key step to generate the macrocyclic ring and the triazole ring is to apply Cu2O Nanoparticles (Cu2O-NP) catalyzed1,3-Dipolar Cycloaddition. This is the first time to evaluate the efficiency of Cu2O-NP for cyclization of large ring. The superior yield of this reaction demonstrates that the Cu2O-NP is a feasible catalyst for intramolecular macrocyclic ring formation. Conformational analysis with computational modeling, X-ray crystallography and NMR studies showed that rigid and planar conformation on region C10-C14and the conformational change on region C1-C7is probably vital to epothilone's biological activity. The collisionally activated dissociation mass spectra of the protonated and alkali metal cationized ions of1,4triazole-epothilone analogue2-1were studied in a Fourier transform ion cyclotron resonance mass spectrometer.
     Then, in charpter3, a novel type of1,5-Triazole-epothilone analogue3-1was synthesized by1,3-Dipolar Cycloaddition which catalyzed by [Cp*RuCl]4. The computational modeling suggested the conformation of1,5-triazole epothilone analogue3-1is much more similar as natural epothilone A than1,4-Trizaole epothilone analogue2-1. Exposure of the key intermediate3-2to catalyst system [Cp*RuCl]4provided cyclization product3-19in41%yield. The bioactivity of1,5-triazole epothilone3-1is being under invertigation.
     In the charpter4, we are trying to combine anti-cancer drug epothilone and human acute myelogenous leukemia stem and progenitor cells apoptosis agent into a hybrid drug4-1. This strategy may help us to find more cancer stem apoptosis agents with significant biological activity. I am currently working on synthesizing this novel hybrid drug and two key intermediates were obtained.
引文
[1]a) Muir C S. Epidemiology, Basic Science, and the Prevention of Cancer:Implications for the Future. Cancer. Res.,1990,50:6441-6448; b) Ames B N, Gold L S. Misconceptions on Pollution and the Causes of Cancer. Angew. Chem. Int. Ed.,1990,29:1197-1208c) Bishop J M. The molecular genetics of cancer. Science,1987,235:305-311d) Schuller H M. The signal transduction model of carcinogenesis. Biochem. Pharmacol,1991,42:1511-1523; e) Hart, I. R.; Saini, A. Biology of tumour metastasis. Lancet,1992,339:1453-1457
    [2]Nicolaou K C, Roschangar F, Vourloumis D. Chemical Biology of Epothilones. Angew. Chem. Int. Ed.,1998,37:2014-2045
    [3]张骁等.抗肿瘤药物的研发现状及前景展望.中国制药信息,2005(9):10-14
    [4]Hofle G, Bedorf N, Gerth K, et al.(GBF), DE-B4138042,1993 [Chem. Abstr.1993,120,52841].
    [5]Hofle G, Bedorf N, Gerth K, et al.(GBF), DE-B4211055,1993[Chem Abstr.1993,119,180598].
    [6]a) Bollag D M, McQueney P A, Zhu J, et al. Epothilones, a New Class of Microtubule-stabilizing Agents with a Taxol-like Mechanism of Action. Cancer Res.1995,55:2325-2333; b) Bollag D M. Epothilones: novel microtubule-stabilising agents. Exp. Opin. Invest. Drugs.1997,6:867-873
    [7]Gerth K, Bedorf N, Hofle G, et al. Epothilons A and B:Antifungal and cytotoxic compounds from sorangium cellulosum (Myxobacteria). Production, physic-chemistry and biological properties. J. Antibiot.,1996,49:560-563
    [8]Grever M R, Schepartz S A, Chabner B A. The National Cancer Institute:cancer drug discovery and development program. Semin. Oncol,1992,19:622-638
    [9]Schiff P B, Fant J, Horwitz S B. Promotion of microtubule assembly in vitro by taxol. Nature,1979,277:665-667
    [10]Kowalski R J, Giannakakou P, Hamel E. Activities of the Microtubule-stabilizing Agents Epothilones A and B with Purified Tubulin and in Cells Resistant to Paclitaxel (Taxol(?)). J. Biol. Chem.,1997,272:2534-2541
    [11]Hofle G, Bedorf N, Steinmetz H, et al. Epothilone A and B-Novel16-Membered Macrolides with Cytotoxic Activity:Isolation, Crystal Structure, and Conformation in Solution. Angew. Chem. Int. Ed.,1996,35:1567-1569
    [12]a) Balog A,Meng D, Danishefsky S J, et al. Total Synthesis of (-)-Epothilone A. Angew. Chem. Int. Ed.,1996,35:2801-2803; b) Schinzer D, Limberg A, Bauer A, et al. Total Synthesis of (-)-Epothilone A. Angew. Chem. Int. Ed.,1997,36:523-524
    [13]Su D S, Meng D, Danishefsky S J, et al. Total Synthesis of (-)-Epothilone B:An Extension of the Suzuki Coupling Method and Insights into Structure-Activity Relationships of the Epothilones. Angew. Chem. Int. Ed.,1997,36:757-759
    [14]Meng D, Bertinato P, Danishefsky S J, et al.Total Syntheses of Epothilones A and B. J. Am. Chem. Soc.,1997,119:10073-10092
    [15]Nicolaou K C, Ninkovic S, Sarabia F, et al. Total Syntheses of Epothilones A and B via a Macrolactonization-Based Strategy. J. Am. Chem. Soc.,1997,119:7974-7991
    [16]Nicolaou K C, Sarabia F, Ninkovic S, et al. Total Synthesis of Epothilone A:The Macrolactonization Approach. Angew. Chem. Int. Ed.,1997,36:525-527
    [17]Nicolaou K C, He Y, Vourloumis D, et al. The Olefin Metathesis Approach to Epothilone A and Its Analogues. J. Am. Chem. Soc.,1997,119:7960-7973
    [18]Meng D, Su D S, Danishefsky S J, et al. Remote Effects in Macrolide Formation through Ring-Forming Olefin Metathesis:An Application to the Synthesis of Fully Active Epothilone Congeners. J. Am.Chem. Soc.,1997,119:2733-2734
    [19]Kolb H C, Sharpless K B. The growing impact of click chemistry on drug discovery. Drug discovery today,2003,8:1128-1137
    [20]董卫莉,赵卫光,李正名等.“链接”化学及其应用.有机化学,2006(26):271-277
    [21]李娟,段明,张烈辉等.点击化学及其应用.化学进展,2007(19):1755-1760
    [22]Gaich T, Mulzer J. Synthesis of Epothilones via a Silicon-Tethered RCM Reaction. Org. Lett.,2005,7:1311-1313
    [23]Taylor R E, Chen Y. Total Synthesis of Epothilones B and D. Org. Lett.2001,3:2221-2224
    [24]Bock V D, Hiemstra H, Maarseveen J H V. CuI-Catalyzed Alkyne-Azide "Click" Cycloadditions from a Mechanistic and Synthetic Perspective. Eur. J. Org. Chem.,2006,51-68
    [25]Appendino G, Bacchiega S, Minassi A, et al. The1,2,3-Triazole Ring as a Peptido-and Olefinomimetic Element:Discovery of Click Vanilloids and Cannabinoids. Angew. Chem. Int. Ed.,2007,46:9312-9315
    [26]Pagliai F, Pirali T, Grosso E D, et al. A. Rapid Synthesis of Triazole-Modified Resveratrol Analogues via Click Chemistry. J. Med. Chem.,2006,49:467-470
    [27]Lee T, Cho M, Ko S Y, et al. Synthesis and Evaluation of1,2,3-Triazole Containing Analogues of the Immunostimulant a-GalCer. J. Med. Chem.,2007,50:585-589
    [28]Kelly A R, Wei J, Kesavan S, et al. Accessing Skeletal Diversity Using Catalyst Control:Formation of n and n+1Macrocyclic Triazole Rings. Org. Lett.,2009,11:2257-2260
    [1]Jung J C, Kache R, Vines K K, et al. Total Syntheses of Epothilones B and D. J. Org. Chem.,2004,69:9296-9284
    [2]Chen, Y.; Li, Y. Intermediates and methods for the preparation of Epothilone. PCT Int. Appl. WO2009064800,2009
    [3]Kobayashi Y, Yoshida S, Asano M, et al. Nickel-Catalyzed Coupling Producing (2Z)-2,4-Alkadien-l-ols, Conversion to (E)-3-Alkene-1,2,5-triol Derivatives, and Synthesis of Decarestrictine D. J. Org. Chem.,2007,72:1707-1716
    [4]Ooi T, Kagoshima N, Ichikawa H, et al. Pentacoordinate Organoaluminum Chemistry:Catalytic Efficiency of Me3Al in the Epoxide Cleavage with Alkynyllithiums. J. Am. Chem. Soc.,1999,121:3328-3333
    [5]Roush W R, Koyama K, Curtin M L, et al. Studies on the Synthesis of Nargenicin A1:Highly Stereoselective Synthesis of the Complete Carbon Framework via the Transannular Diels-Alder Reaction of an18-Membered Macrolide. J. Am. Chem. Soc.,1996,118:7502-7512
    [6]Mulzer J, Mantoulidis A, Ohler E. Total Syntheses of Epothilones B and D. J. Org. Chem.,2000,65:7456-7467
    [7]Clay den, Greeves, Warren, et al. Organic Chemistry. Oxford:Oxford university press,2001.188
    [8]Stang P J, Fisk T E. Synthesis of1-(Ethynyl)-Vinyl Trifluoromethanesufonates. Synthesis,1979,438-440
    [9]a) Meng D, Bertinato P, Danishefsky S J, et al.Total Syntheses of Epothilones A and B. J. Am. Chem. Soc.,1997,119:10073-10092; b) Lee C B, Wu Z, Danishefsky S J, et al. Insights into Long-Range Structural Effects on the Stereochemistry of Aldol Condensations:A Practical Total Synthesis of Desoxyepothilone F. J. Am. Chem. Soc.,2001,123:5249-5259; c) Zhu B, Panek J S Total Synthesis of Epothilone A. Org. Lett.,2000,2:2575-2578
    [10]Altmann K H, Bold G, Caravatti G, et al. The Total Synthesis and Biological Assessment of trans-Epothilone A. Helv. Chim. Acta.,2002,85:4086-4110
    [11]Bond S, Perlmutter P. N-Acetylbornane-10,2-sultam:A Useful, Enantiomerically Pure Acetate Synthon for Asymmetric Aldol Reactions. J. Org. Chem.,1997,62:6397-6400
    [12]Nicolaou, K. C.; He, Y.; Roschangar, F.; et al. Total Synthesis of EpothiloneE and Analogues with Modified Side Chains through the Stille Coupling Reaction. Angew. Chem. Int. Ed.,1998,37:84-87
    [13]Nicolaou K C, He Y, Vourloumis D, et al. The Olefin Metathesis Approach to Epothilone A and Its Analogues. J. Am. Chem. Soc.,1997,119:7960-7973
    [14]Nunez A, Cuadro A M, Alvarez-Builla J, et al. A New Approach to Polycyclic Azonia Cations by Ring-Closing Metathesis. Org. Lett.,2007, 9:2977-2980
    [15]Aissa C, Riveiros R. Total Syntheses of Amphidinolide T1, T3, T4, and T5. J. Am. Chem. Soc.,2003,125:15512-15520
    [16]Batchelor M J, Gillespie R J, Golec J M C. Total Syntheses of Close Analogues of the Immunosuppressant FK506. Tetrahedron.,1994,50:809-826
    [17]Kabalka G W, Sastry K A R, Hsu H C, et al.Facile Conversion of Alkenes into Alkyl Bromides via Reaction of Organoboranes with Bromine or Bromine Chloride. J. Org. Chem.,1981,46:3113-3115
    [18]Lautens M, Stammers T A. Oxabicyclo[3.2.1]oct-6-enes as Templates for the Stereoselective Synthesis of Polypropionates:Total Synthesis of Callystatin A and C19-epi-Callystatin A. Synthesis,2002,14:1993-2012
    [19]a) Mulzer J, Mantoulidis A. Synthesis of the C(1)-C(9) segment of the Cytotoxic Macrolides Epothilon A and B. Tetrahedron Lett.,1996,37: 9179-9182; b) Nicolaou K C, He Y, Vourloumis D, et al. Total synthesis of Epothilone A:The Olefin Metathesis Approach. Angew. Chem. Int. Ed.,1997,36:166-168; c) Nicolaou K C, Roschangar F, Vourloumis D. Chemical Biology of Epothilones. Angew. Chem. Int. Ed.,1998,37:2014-2045; d) Schinzer D, Bauer A, Bohm O M, et al. Total Synthesis of (-)-Epothilone A. Chem.-Eur. J.,1999,5:2483-2491;(e) Schinzer D, Bauer A, Schieber J. Syntheses of (-)-Epothilone B. Chem.-Eur. J.,1999,5:2492-2500
    [20]Koch G, Wei J, Loiseleur O, et al. Diastereoselective Titanium Enolate Aldol Reaction for the Total Synthesis of Epothilones. Org. Lett.,2002,4:3811-3814
    [21]Billing J F, Nilsson U J. C2-Symmetric Macrocyclic Carbohydrate/Amino Acid Hybrids through Copper(I)-Catalyzed Formation of1,2,3-Triazoles. J. Org. Chem.,2005,70:4847-4850
    [22]Chan T R, Hilgraf R, Sharpless K B, et al. Polytriazoles as Copper(I)-Stabilizing Ligands in Catalysis. Org. Lett.,2004,6:2853-2855
    [23]Zhang Z, Chen Y, Kong D, et al. Stabilized Copper(I) Oxide Nanoparticles Catalyze Azide-Alkyne Click Reactions in Water. Adv. Synth. Catal,2010,352:1600-1604
    [24]Siemsen P, Livingston R C, Diederich F. Acetylenic coupling:a powerful tool in molecular construction. Angew. Chem. Int. Ed.,2000,39:2632-2657
    [25]易景缎,李晓明.叠氮化锂的制备.火炸药,第一期,1995
    [26]Moss R A, Terpinski J, Cox D P, et al. Krogh-Jespersen, K. Azide and Fluoride Exchange Reactions of Halodiazirines. J. Am. Chem. Soc.,1985,107:2743-2748
    [27]Stachel S J, Lee C B, Danishefsky S J, et al. On the Interactivity of Complex Synthesis and Tumor Pharmacology in the Drug Discovery Process:Total Synthesis and Comparative in Vivo Evaluations of the 15-Aza Epothilones. J. Org. Chem.,2001,66:4369-4378
    [28]a) Wu Y, Sun Y.-P. Synthesis of Nonactin and the Proposed Structure of Trilactone. Org. Lett.,2006,8,2831-2834; b) Davis F A, Ramachandar T. a-Amino1,3-dithioketal mediated asymmetric synthesis of piperidines (L-733,060) and tetrahydrofuran glycines. Tetrahedron Lett.2008,49:870-872
    [29]a) Paterson I, Anderson E A, Dalby S M, et al. Total Synthesis of Spirastrellolide A Methyl Ester-Part1:Synthesis of an Advanced C17-C40Bis-spiroacetal Subunit. Angew. Chem. Int. Ed.,2008,47:3016-3020; b) Hanessian S, Ma J, Wang W. Total Synthesis of Bafilomycin A1Relying on Iterative1,2-Induction in Acyclic Precursors. J. Am. Chem. Soc.,2001,123:10200-10206
    [30]a) Jean M, Roch M L, Renault J, et al. Synthesis of a Laterally Branched Polyamine from a-Methylene-y-butyrolactone Org. Lett.,2005,7:2663-2665; b) Jin S, Miduturu C V, Mckinney D C, Silverman S K. Synthesis of Amine-and Thiol-Modified Nucleoside Phosphoramidites for Site-Specific Introduction of Biophysical Probes into RNA. J. Org. Chem.,2005,70:4284-4299
    [31]Meldal M, Tornoe C W. Cu-Catalyzed Azide-Alkyne Cycloaddition. Chem. Rev.,2008,108:2952-3015
    [32]Wu P, Feldman A K, Sharpless K B, et al. Angew. Chem. Int. Ed.,2004,43:3928-3932
    [33]Liu Y, Zhang L, Wan J, et al. Tetrahedron.,2008,64:10728-10734
    [34]Kelly A R, Wei J, Kesavan S, et al. Org. Lett.,2009,11:2257-2260
    [35]Takenaka S, Tanaka T, Funabiki T, et al. J. Chem. Soc., Faraday Trans.,1998,94,695-700
    [36]Zerbibl C, Amigonil S, Massi L, et al. One-pot synthesis of a new antifungal polymerisable monomer and its characterisation by coordination-ion spray mass spectrometry. Rapid Commun. Mass Spectrom.,2011,25:2141-2148
    [37]Jockusch R A, Price W D, Williams E R. Structure of Cationized Arginine (Arg·M+, M=H, Li, Na, K, Rb, and Cs) in the Gas Phase: Further Evidence for Zwitterionic Arginine. J. Phys. Chem. A,1999,103:9266-9274
    [38]Blum W, Ramstein A R, Kuhnol J, et al. In vivo metabolism of epothilone B in tumor-bearing nude mice:identification of three new epothilone B metabolites by capillary high-pressure liquid chromatography/mass spectrometry/tandem mass spectrometry. Rapid Commun. Mass Spectrom.,2001,15:41-49
    [39]a) Hofle G, Bedorf N, Steinmetz H, et al. Epothilone A and B-Novel16-Membered Macrolides with Cytotoxic Activity:Isolation, Crystal Structure, and Conformation in Solution. Angew. Chem. Int. Ed. Engl.,1996,35,1567-1569; b) Wang M, Xia X, Kim Y, et al. Unified and Quantitative Receptor Model for the Microtubule Binding of Paclitaxel and Epothilone. Org. Lett.,1999,1:43-46
    [40]a) Taylor R E, Zajicek J. Conformational Properties of Epothilone. J. Org. Chem.,1999,64:7224-7228; b) Taylor R E, Chen Y, Beatty A, et al. Conformation-Activity Relationships in Polyketide Natural Products:A New Perspective on the Rational Design of Epothilone Analogues. J. Am. Chem. Soc.,2003,125:26-27; c) Nettles J H, Li H, Cornett B, et al. The Binding Mode of Epothilone A on a, β-Tubulin by Electron Crystallography. Science,2004,305:866-869
    [41]Buettner R, Corzano R, Rashid C, et al. Alkylation of Cysteine468in Stat3Defines a Novel Site for Therapeutic Development. ACS Chem. Biol,2011,6:432-443
    [1]Nicolaou K C, Sasmal P K, Reddy G R M V, et al. Design, Synthesis, and Biological Properties of Highly Potent Epothilone B Analogues. Angew. Chem. Int. Ed.,2003,42:3515-3520
    [2]Koch G, Wei J, Altmann K.-H., et al. Diastereoselective Titanium Enolate Aldol Reaction for the Total Synthesis of Epothilones. Org. Lett.,2002,4:3811-3814
    [3]Kelly A R, Wei J, Kesavan S, et al. Accessing Skeletal Diversity Using Catalyst Control: Formation of n and n+1Macrocyclic Triazole Rings. Org. Lett.,2009,11:2257-2260
    [1]Walsh J J, Coughlan D, Heneghan N, et al. A novel artemisinin-quinine hybrid with potent antimalarial activity. Bioorg. Med. Chem. Lett.,2007,17:3599-3602
    [2]Tietze L F, Bell H P, Chandrasekhar S. Natural Product Hybrids as New Leads for Drug Discovery. Angew. Chem. Int. Ed.,2003,42:3996-3520
    [3]a) Cragg G M, Newman D J, Snader K M. Natural Products in Drug Discovery and Development. J. Nat. Prod.,1997,60:52-60; b) Cordell G A. Biodiversity and drug discovery-a symbiotic relationship. Phytochemistry,2000,55:463-480
    [4]a) Thompson L A, Ellman J A. Synthesis and Applications of Small Molecule Libraries. Chem. Rev.,1996,96:555-600; b) Tietze L F, Lieb M. Domino reactions for library synthesis of small molecules in combinatorial chemistry. Curr. Opin.Chem. Biol.,1998,2:363-371; c) Guillier F, Orain D, Bradley M. Linkers and Cleavage Strategies in Solid-Phase Organic Synthesis and Combinatorial Chemistry. Chem. Rev.,2000,100:2091-2158; d) Arya P, Baek M. Natural-product-like chiral derivatives by solid-phase synthesis. Curr. Opin. Chem. Biol.,2001,5:292-301
    [5]Schreiber S L. Target-Oriented and Diversity-Oriented Organic Synthesis in Drug Discovery. Science,2000,287:1964-1969
    [6]Castaneda-Acosta J, Fischer N H, Vargas D. Biomimetic Transformations of Parthenolide. J. Nat. Prod.,1993,56:90-98
    [7]Glunz P W, He L, Danishefsky S J, et al. The synthesis and evaluation of12,13-benzodesoxyepothilone B:a highly convergent route. Tetrahedron Lett.,1999,40:6895-6898
    [8]Nicolaou K C, Sasmal P K, Reddy G R M V, et al. Design, Synthesis, and Biological Properties of Highly Potent Epothilone B Analogues. Angew. Chem. Int. Ed.,2003,42:3515-3520
    [9]Grandjean G, Boutonnier A, Guerreiro C, et al. On the Preparation of Carbohydrate-Protein Conjugates Using the Traceless Staudinger Ligation. J. Org. Chem.,2005,70:7123-7132
    [10]Racherla U S, Brown H C. Chiral Synthesis via Organoboranes. Remarkably Rapid and Exceptionally Enantioselective (Approaching100%ee) Allylboration of Representative Aldehydes at-100℃under New Salt-Free Conditions. J. Org. Chem.,1991,56:401-414
    [11]Teruhiko I, Toshiaki A, Eiko O, et al. Two-Directional Elaboration of Hydroxyacetone under Thermodynamically Controlled Conditions: Allylation or2-Propynylation and Aldol Reaction. J. Org. Chem.,2007,72:435-411

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700