用户名: 密码: 验证码:
儿童急性淋巴细胞白血病患者Midkine的表达及其与药物外排关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     中期因子(MK)是近年来发现的肝素结合性生长因子,它与多向性生长因子(PTN)共同组成了MK家族。研究表明,MK在多种人类肿瘤组织中高表达,并参与肿瘤的发病过程。MK的生物学功能包括促进有丝分裂、促进转化、血管新生、抗凋亡和溶解纤维蛋白等。在急性髓细胞白血病(AML)细胞株和患者单个核细胞中发现有MK的异常表达,这意味着MK可能参与了白血病的发生、发展,但目前国内外关于儿童急性淋巴细胞白血病(ALL)患者MK表达情况的临床研究结果的报道却很少见。
     多药耐药(MDR)目前仍然是治疗血液系统肿瘤的主要障碍之一,主要是指由一种药物诱发,引起对其它多种不同结构的药物同时产生交叉耐药,导致一些联合化疗方案失败的现象。导致MDR发生的主要机制是药物外排蛋白的过量表达引起了抗肿瘤药物的外排,其他机制包括细胞凋亡反应的改变、DNA修复的激活或药物作用靶点的变更等。目前研究显示MK通过抗凋亡、促进细胞生长、抗老化等作用促进肿瘤细胞对细胞毒药物的耐受,但关于MK影响肿瘤细胞对药物的外排能力的研究结果还未见报道。
     目的
     本研究通过检测MK在不同时期儿童ALL中的表达,研究MK在儿童ALL中的临床意义;同时测定MDRl基因的表达及观察不同个体对药物罗丹明123外排的功能,来探讨MK与白血病细胞对化疗药物外排作用的关系。
     方法
     选取2006年12月至2009年2月期间在中国医学科学院血液病医院就诊的153例初治及缓解期儿童ALL病例为实验对象,采用实时定量聚合酶链反应(real-time PCR)对患者及15例对照的骨髓标本行MK mRNA, MDR1mRNA的检测;选取其中30例B细胞(B-lineage) ALL初治患者和对照的单个核细胞,在激光共聚焦显微镜下观察这些细胞对药物罗丹明123的外排,并应用流式细胞仪测定细胞内的平均荧光强度(MFI)。
     结果
     通过实验观察和计算,对照组、B-lineage ALL完全缓解期患者组及B-lineageALL初治期患者组单个核细胞的MK mRNA的相对表达量呈现依次增高的现象,分别为0.795(0.697-1.570),3.012(0.932-5.076),12.909(2.385~26.347),三组数据的差异具有统计学意义(P<0.01);而三组患者之间MDR1mRNA的水平未见明显差异。在罗丹明123的外排实验中发现B-lineage ALL初治患者组白血病细胞的MFI较对照组数据表现为明显减低(t=3.585,P<0.01)。患者白血病细胞中的MFI与MK mRNA水平表现为明显的负相关(r=-0.869,P<0.001)关系,与MDR1mRNA水平没有表现出相关关系。
     结论
     对儿童B-lineage ALL的研究发现:初治患者单个核细胞MK水平升高,完全缓解后MK水平减低,该基因的检测在临床中可作为儿童白血病疗效判定标准之一。高表达MK的白血病细胞药物外排能力较强,该因子可能影响儿童血液肿瘤中的化疗耐受,为临床中提高化疗药物敏感性提供了新的思路。初治患者MDR1的表达与Rh123外排没有表现出相关关系,参与儿童ALL多药耐药的其他转运蛋白需要进一步研究以明确。
Background:Midkine (MK) is a heparin-binding growth factor that was found rescent years as the product of a retinoic acid-responsive gene. It has45%sequence identity to pleiotrophin (PTN), and together PTN comprise a family of heparin-binding growth factors. In addition, it has been reported that MK exerts several cancer-related activities, including cell growth, survival, mitogenesis, transformation, angiogenesis, anti-apoptotosis, and fibrinolysis.
     In acute myeloid leukemia (AML) cell lines and AML patients'cell, the abnormal expression of MK was found. So, MK may involve in the occurrence and development of acute leukemia. However there are a few reports about clinic study of MK expression in childhood acute lymphoblastic leukemia patients (ALL) at home and abroad,
     multidrug resistance (MDR), ability of cancer cell to different chemotherapeutic drugs, is a major clinical obstacle in the treatment of hematological malignancies. And the main mechanism of MDR is the antineoplastic drug efflux induced by overexpression of drug transport proteins. Other mechanisms involved in MDR include alterations in the apoptotic response, activation of DNA repair or alterations in drug-target interactions. Numerous studies have been performed to confirm that MK promotes cancer cells to resistant to cytotoxic agents by anti-apoptotic, promoting cell growth, and anti-aging. However, it has never been reported that MK is associated with the ability of drug efflux of cancer cells.
     Objective:To investigate the expression of midkine gene in childhood acute lymphoblastic leukemia patients (ALL) and to explore the clinical significance of midkine. To explore the possible effects of midkine (MK) gene on the chemotherapeutic drugs efflux in leukemia cells by observing Rh123efflux in different individuals.
     Methods:A total of153children with ALL diagnosed in Blood Diseases Hospital, Institute of Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College from December2006to February2009were enrolled in this study. Real-time quantitative PCR method was used to determine the expression of midkine and MDR1at mRNA level in patients and15control children. Meanwhile, laser scanning confocal microscope was used to observe the rhodamine123efflux from the leukemia cells in30new diagnosed B-lineage ALL patients and the mononuclear cells from15children with nonmalignant hematological diseases,(as control).
     Results:Significant statistic difference in midkine gene expression was found among the normal group, the complete remission group and the de novo group, and the midkine levels were increased in turns (P<0.01). In the rhodamine123efflux test, mean fluorescence intensity (MFI) in the leukemia cells was obviously lower than that in normal cells and mere was an evident inverse correlation between the MFI and MK mRNA expression. Otherwise, there was no significant correlation between the MFI and MDR1mRNA expression.
     Conclusions:MK expressed highly in new diagnosed B-lineage ALL patients, decreased in CR patients. MK gene level may be one of indexes to assess therapeutic effect. There was powerful efflux capability of rhodamine123in leukemia cells with high midkine gene expression.The midkine may participate in multidrug resistance. This study provided a new way to improve the sensitivity of chemotherapy in clinical treatment. But MDR1levels had no correlation with the degree of rhodamine123efflux, the futher experiments will be done to identify the other transportprotein contributing to MDR in children ALL.
引文
1. Ikematsu S, Yano A, Aridome K, et al. Serum midkine levels are increased in patients with various types of carcinomas. Br J Cancer,2000; 83(6):701-706
    2. Muramaki M, Miyake H, Hara I, Kamidono S. Introduction of midkine gene into human bladder cancer cells enhances their malignantphenotype but inereases then-sensitivity to antiangiogenic therapy. Clin Cancer Res,2003; 9(14):5152-5160
    3. Kadomatsu K, Hagihara M, Akhter S, et al. Midkine induces the transformation of NIH3T3 cells. Br J Cancer,1997; 75(3):354-359
    4. Ohuchida T, Okamoto K, Akahane K, et al. Midkine protects hepatocellular carcinoma cells against TRAIL-mediated apoptosis through down-regulation of caspase-3 activity. Cancer,2004; 100(11):2430-2436
    5. Kang HC, Kim IJ, Park JH, et al. Identification of genes with differential expression in acquired drug-resistant gastric cancer cells using high-density oligonucleotide microarrays. Clin Cancer Res,2004; 10 (1 Pt 1):272-284
    6. Dai LC, Wang X, Yao X, et al. Antisense oligonucleotides targeting midkine induced apoptosis and increased chemosensitivity in hepatocellular carcinoma cells. Acta Pharmacol Sin,2006; 27(12):1630-1636
    7. Arceci RJ. Clinical significance of P-glycoprotein in multidrug resistance malignancies. Review. Blood,1993; 81(9):2215-2222.
    8. Ivy SP, Olshefski RS, Taylor BJ, et al. Correlation of P-glycoprotein expression and function in childhood acute leukemia:a Children's Cancer Group study. Blood, 1996; 88(1):309-318.
    9. Tafuri A, Gregorj C, Petrucci MT, et al. GIMEMA Group. MDR1 protein expression is an independent predictor of complete remission in newly diagnosed adult acute lymphoblastic leukemia. Blood,2002; 100(3):974-981.
    10. Wattel E, Lepelley P, Merlat A, et al. Expression of the multidrug resistance P glycoprotein in newly diagnosed adult acute lymphoblastic leukemia:absence of correlation with response to treatment. Leukemia,1995; 9(11):1870-1874.
    11.张之南,沈悌,血液病诊断及疗效标准.3版.北京:科学出版社,2007:116-121
    12. Martin Schrappe. Risk-adapted stratification and treatment of childhood acute lymphoblastic leukaemia. Radiat Prot Dosimetry.2008; 132(2):130-133.
    13. Livak KJ, Schmittgen TD. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-(△△Ct) Method. Methods,2001; 25(4): 402-408
    14. Johnstone RW, Cretney E, Smyth MJ. Pglycoprotein protects leukemia cells against caspase-dependant, but not caspase-independent, cell death. Blood,1999; 93(3): 1075-1085.
    15. Winick NJ, Carroll WL, Hunger SP. Childhood leukemia-new advances and challenges. N Engl J Med.2004; 351(6):601-603.
    16. Schrappe M. Evolution of BFM trials for childhood ALL. Ann Hematol 2004; 83(suppl 1):121-123.
    17.杨琳,董作仁,潘峻等,中期因子在急性髓系白血病患者的表达及临床意义.中国实验血液学杂志,2006;14(3):442-445
    18. Sandra F, Harada H, Nakamura N, et al. Midkine induced growlh of ameloblastoma through MAPK and Akt pathways. Oral Oncol,2004; 40(3):274-280
    19. Mirkin BL, Clark S, Zheng X, et al. Identification of midkine as a mediator for intercellular transfer of drug resistance. Oncogene,2005; 24(31):4965-4974
    20. de Figueiredo-Pontes LL, Pintao MC, Oliveira LC.et al. Determination of P-glycoprotein, MDR-related protein 1, breast cancer resistance protein, and lung-resistance protein expression in leukemic stem cells of acute myeloid leukemia. Cytometry B Clin Cytom,2008; 74(3):163-168.
    21. Ueda K, Cornwell MM, Gottesman MM. et al. The MDR1 gene, responsible for multidrug-resistance, codes for P-glycoprotein. Biochem Biophys Res Commun,1986; 141(3):956-962.
    22. Gottesman M, Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Review. Annu Rev Biochem,1993; 62:385-427.
    28. Cole SP, Bhardwaj G, Gerlach JH, et al. Overexpression of a transporter gene in a muhidrug resistant human lung cancer cell line. Science,1992; 258(5088): 1650-1654
    24. Breuninger LM, Paul S, Gaughan K, et al. Expression of multidrug resistanceassociated protein in NIH/3T3 cells confers multidrug resistance associated with increased drug efflux and altered intracellular drug distribution. Cancer Res,1995;55(22):5342-5347.
    25. Kruh GD, Chan A, Myers K, et al. Expression complementary DNA library transfer establishes mrp as a multidrug resistance gene. Cancer Res,1994; 54(7): 1649-1652.
    26. List AF. Non-P-glycoprotein drug export mechanisms of multidrug resistance. Review. Semin Hematol,1997; 34 (4 Suppl 5):20-24.
    27. Schneider E, Cowan KH, Bader H, et al. Increased expression of the multidrug resistance-associated protein gene in relapsed acute leukemia. Blood,1995; 85(1): 186-193.
    28. Nooter K, Westerman AM, Flens MJ, et al. Expression of the multidrug resistanceassociated protein (MRP) gene in human cancers. Clin Cancer Res,1995; 1(11):1301-1310.
    29. Scheper RJ, Scheffer GL, Flens MJ, et al. Transporter molecules in multidrug resistance. Cytotechnology,1996; 19(3):187-190.
    30. Scheffer GL,Wijngaard PL, Flens MJ, et al. The drug resistant related protein LRP is a major vault protein. Nat Med,1995; 1(6):578-582.
    31. Willman CL, Kang H, Potter JW, et al. A gene expression classifier for improved risk classification and outcome prediction in pediatric acute lymphoblastic leukemia (ALL).Blood.(ASH Annual Meeting Abstracts) 2005; 106:Abstract 76232
    32. Hirokazu H, Hiroshi Y, Yoshiyuki T, et al. Increased midkine gene expression in childhood B-precursor acute lymphoblastic leukemia. Leuk Res,2007; 31(8): 1045-1051
    33. Kamel AM, El-Sharkawy N, Yassin D, et al. P-gp expression and Rh 123 efflux assay have no impact on survival in Egyptian pediatric acute lymphoblastic leukemia patients. J Egypt Natl Cane Inst,2005; 17(3):165-172.
    34. Den Boer ML, Pieters R, Kazemier KM, et al. Relationship between major vault protein/lung resistance protein, multidrug resistance-associated protein, P-glycoprotein expression, and drug resistance in childhood leukemia. Blood,1998; 91(6):2092-2098.
    35. Olson DP, Taylor BJ, La M,et al. The prognostic significance of P-glycoprotein, multidrug resistancerelated protein 1 and lung resistance protein in pediatric acute lymphoblastic leukemia:A retrospective study of 295 newly diagnosed patients by the Children's Oncology Group.Leukemia & Lymphoma,2005; 46(5):681-691
    36. Van der Kolk DM, de Vries EG, Koning JA, et al. Activity and expression of the multidrug resistance proteins MRP1 and MRP2 in acute myeloid leukemia cells, tumor cell lines, and normal hematopoietic CD34+ peripheral blood cells. Clin Cancer Res,1998; 4(7):1727-1736
    37. Kakihara T, Tanaka A, Watanabe A, et al. Expression of multidrug resistance-related genes does not contribute to risk factors in newly diagnosed childhood acute lymphoblastic leukemia. Pediatr Int,1999; 41(6):641-647.
    1. Muramatsu H, Inui T, Kimura T, et al. Localization of heparin-binding, neurite outgrowth and antigenic regions in midkine molecule. Biochem Biophys Res Commun.1994,203(2):1131-1139.
    2. Bnhlen P, Kovesdi I. HBNF and MK, members of a novel gene family of heparin-binding proteins with potential roles in embryogenesis and brain function. Review. Prog Growth Factor Res.1991,3(2):143-157
    3. Nakagawara A, Milbrandt J, Muramatsu T, et al. Differential expression of pleiotrophin and midkine in advanced neuroblastomas. Cancer Res.1995,55(8): 1792-1797
    4. Kadomatsu K. The midkine family in cancer, inflammation and neural development. Review. Nagoya J Med Sci.2005,67(3-4):71-82.
    5. Kaname T, Kuwano A, Murano I, et al. Midkine gene (MDK), a gene for prenatal differentiation and neuroregulation, maps to band 11p11.2 by fluorescence in situ hybridization. Genomics.1993,17(2):514-515.
    6. Rha SY, Noh SH, Kwak HJ. et al. Comparison of biological phenotypes according to midkine expression in gastric cancer cells and their autocrine activities could be modulated by pentosan polysulfate. Cancer Lett.1997,118(1):37-46
    7. Iwasaki W, Nagata K, Hatanaka H, et al. Solution structure of midkine, a new heparin-binding growth factor. EMBO J.1997,16 (23):6936-6946.
    8. Zhang N, Zhong R, Deuel TF. Domain structure of pleiotrophin required for transformation. J Biol Chem.1999,274(19):12959-12962.
    9. Vanderwinden JM, Mailleux P, Schiffmann SN, Vanderhaeghen JJ. Cellular distribution of the new growth factor pleiotrophin (HB-GAM)mRNA in developing and adult rat tissues. Anat Embryol(Berlin).1992,186(4):387-406.
    10. Nobata S, Shinozawa T, Sakanishi A. Truncated midkine induces transformation of cultured cells and short latency of tumorigenesis in nude mice. Cancer Lett.2005, 219(1):83-89.
    11. Kojima S, Inui T, Muramatsu H, et al. Dimerization of midkine by tissue transglutaminase and its functional implication, J Biol Chem.1997,272(14): 9410-9416.
    12. Stoica GE, Kuo A, Powers C, et al. Midkine binds to anaplastic lymphoma kinase (ALK) and acts as a growth factor for different cell types. J Biol Chem.2002, 277(39):35990-35998.
    13. Maeda N, Ichihara-Tanaka K, Kimura T.et al. A receptor-like protein-tyrosine phosphatase PTPzeta/RPTPbeta binds a heparin-binding growth factor midkine. Involvement of arginine 78 of midkine in the high affinity binding to PTPzeta. J Biol Chem.1999,274 (18):12474-12479.
    14. Meng K, Rodriguez-Pena A, Dimitrov T, et al. Pleiotrophin signals increased tyrosine phosphorylation of beta beta-catenin through inactivation of the intrinsic catalytic activity of the receptor-type protein tyrosine phosphatase beta/zeta. Proc Natl Acad Sci USA.2000,97 (6):2603-2608.
    15. Shlbata Y, MuramatsuT, Hiral M, et al. Nuclear targeting by the growth factor midkine. Mol Cell Biol.2002,22(19):6788-6796
    16. Kadomatsu K, Muramatsu T. Midkine and pleiotrophin in neural development and cancer.Cancer Lett.2004 Feb 20,204(2):127-43.
    17. Li R, Morris SW. Li R, et al. Development of anaplastic lymphoma kinase (ALK) small-molecule inhibitors for cancer therapy. Review. Med Res Rev.2008,28(3): 372-412..
    18. Chiarle R, Voena C, Ambrogio C, et al. The anaplastic lymphoma kinase in the pathogenesis of cancer. Review. Nat Rev Cancer.2008,8(1):11-23
    19. Ratovitski EA, Kotzbauer PT, Milbrandt J, et al. Midkine induces tumor cell proliferation and binds to a high affinity signaling receptor associated with JAK tyrosine kinases. J Biol Chem.1998,273(6):3654-60.
    20. Kinnunen T, Kaksonen M, Saarinen i,et al. Cortactin-Src kinase signaling pathway is involved in N-syndecan-dependent neurite outgrowth. J Biol Chem.1998,273 (17):10702-10708.
    21. Muramatsu H, Zou P, Suzuki H, et al. alpha4betal-and alpha6betal-integrins are functional receptors for midkine, a heparin-binding growth factor. J Cell Sci.2004, 117(Pt 22):5405-5415.
    22. Salama RH, Muramatsu H, Zou K,et al. Midkine binds to 37kDa laminin binding protein precursor, leading to nuclear transport of the complex. Exp Cell Res. 2001;270(1):13-20.
    23. Venturini PL, Semino A, De Cecco L. The biological basis of medical treatment of endometriosis. Gynecol Endoerinol,1995,9(3):259-266.
    24. Sharifi BG, Zeng Z, Wang L, et al. Pleiotrophin induces transdiferentiation of monoeytes into functional endo}helial cells. Arterioseler Thromb Vasc Biol.2006, 26(6):1273-1280.
    25. Kuo AH, Stoica GE, Riegel AT, Wellstein A. Recruitment of insulin receptor substrate-1 and activation of NF-kappaB essential for midkinegrowth signaling through anaplastic lymphoma kinase. Oncogene.2007,26(6):859-869
    26. Westphal JR, Van't Hullenaar R, Peek R. et al. Angiogenic balance in human melanoma:expression of VEGF, bFGF, IL-8, PDGF and angiostatin in relation to vascular density of xenografts in vivo. In J cancer.2000,86(6):768-776
    27.罗祥基,殷正丰,康晓燕等,中期因子转录物及其蛋白在肝细胞癌中的定位与表达研究。中华普通外科杂志,2002,17(4):220-222
    28.姚行,平金良,戴利成等,中期因子蛋白在肝外胆管癌中的表达及其临床意义。中华实验外科杂志,2003,20(5):400-401
    29. Hirota Y, Osuga Y, Koga K, et al. Possible implication of midkine in the development of endometriosis. Hum Reprod.2005,20(4):1084-1089.
    30. Sotogaku N, Tully SE, Gama CI, et al. Activation of phospholipase C pathways by a synthetic chondroitin sulfate-E tetrasaccharide promotes neurite outgrowth of dopaminergic neurons.J Neurochem.2007,103(2):749-760.
    31. Kojima S, Muramatsu H, Amanuma H, Muramatsu T. Midkine enhances fibrinolytic activity of bovine endothelial cells. J Biol Chem.1995,270(16):9590-9596.
    32. Owada K, Sanjo N, Kobayashi T, et al. Midkine inhibits caspase-dependent apoptosis via the activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase in cultured neurons. J Neurochem.1999,73(5): 2084-2092
    33. Ohuchida T, Okamoto K, Akahane K, et al. Midkine protects hepatocellular carcinoma cells against TRAIL-mediated apoptosis through down-regulation of caspase-3 activity. Cancer.2004,100(11):2430-2436
    34. Dai LC, Wang X, Yao X, et al. Antisense oligonucleotides targeting midkine induced apoptosis and increased chemosensitivity in hepatocellular carcinoma cells. Acta Pharmacol Sin.2006,27(12):1630-1636.
    35. Sandra F, Harada H, Nakamura N, et al. Midkine induced growth of ameloblastoma through MAPK and Akt pathways. Oral Oncol.2004,40(3):274-280.
    36. Qi M, Ikematsu S, Maeda N, et al. Haptotactdc migration induced by midkine: Involvement of proteintyrosine phosphatase zeta. mitogen-activated protein kinase and phosphatidylinositol 3-kinase. J Biol Chem.2001,276(19):15868-15875
    37. Mirkin BL, Clark S, Zheng X, et al. Identification of midkine as a mediator for intercellular transfer of drug resistance. Oncogene.2005,24(31):4965-4974
    38. You Z, Dong Y, Kong X, et al. Midkine is a NF-KB-inducible gene that supports prostate cancer cell survival. BMC Med Genomics.2008 Feb 14,1:6.
    39. Uehara K, Matsubara S, Kadomatsu K, et al. Genomic structure of human midkine (MDK), a retinoic acidresponsive growth/differentiation factor. J Biochem (Tokyo) 1992,111(5):563-567.
    40. Tanya Gritsko, Ann Wiliams, James Turkson, et al. Persistent activation of stat3 signaling induces survivin gene expression and confers resistance to apoptosis in human breast cancer cells. Clinical Cancer Research,2006,12(1):11-19.
    41. Niu G, Wright KL, Huang M, et al. Constitutive Stat3 activity up-regnlates VEGF expression and tumor angiogenesis. Oncogenc,2002,21(13):2000-2008.
    42. Ratovitski EA, Kotzbauer PT, Milbrandt J, et al. Midkine induces tumor cell proliferation and binds to a high affinity signaling receptor associated with JAK tyrosine kinases. Biol Chem.1998,273(6):3654-3660.
    43. Cernkovich ER, Deng J, Hua K, et al. Midkine is an autocrine activator of signal transducer and activator of transcription 3 in 3T3-L1 cells. Endocrinology.2007, 148(4):1598-1604.
    44. Huang Y, Sook-Kim M, Ratovitski E. et al. Midkine promotes tetraspanin-integrin interaction and induces FAK-Statla pathway contributing to migration/invasiveness of human head and neck squamous cell carcinoma cells. Biochem Biophys Res Commun.2008,377(2):474-478.
    45. Gu D, Yu B, Zhao C, et al. The effect of pleiotrophin signaling on adipogenesis. FEBS Letters.2007,581 (3):382-388
    46. Ezquerra L, Herradon G, Nguyen T, et al.Midkine is a potent regulator of the catecholamine biosynthesis pathway in mouse aorta. Life Sciences.2006,79(11): 1049-1055
    47. Reynolds PR, Mucenski ML, Le Cras TD, et al. Midkine is regulated by hypoxia and causes pulmonary vascular remodeling. J Biol Chem.2004,279(35): 37124-37132.
    48. Kaplan F, Comber J, Sladek R, et al. The growth factor midkine is modulated by both glucocorticoid and retinoid in fetal lung development. Am J Respir Cell Mol Biol,2003,28(1):33-41.
    49. Mashima T, Sato S, Sugimoto Y, et al. Promotion of glioma cell survival by acyl-CoA synthetase 5 under extracellular acidosis conditions. Oncogene.2009, 28(1):9-19.
    1. Cortes J, Kantarjian HM. Promising approaches in acute leukemia. Invest. New Drugs.2000,18:57-82
    2. Lechner K, Geissler K, Jager U, Greinix H, Kalhs P. Treatment of acute leukemia. Ann. Oncol.1999,10(Suppl.6):45-51
    3. Takara K, Sakaeda T, Okumura K. An update on overcoming MDR1-mediated muhidrug resistance in cancer chemotherapy. Curr Pham Des.2006,12(3): 273-286.
    4. List AF. Multidrug resistance:clinical relevance in acute leukemia. Oncology.1993, 7(10):23-30.
    5. Dassa E, Bouige P:The ABC of ABCs:a phylogenetic and functional classification of ABC systems in living organisms. Res. Microbiol.2001,152(3-4):211-229
    6. Sheps JA, Ralph S, Zhao Z, Baillie DL, Ling V:The ABC transporter gene family of Caenorhabditis elegans has implications for the evolutionary dynamics of multidrug resistance in eukaryotes. Genome Biol.2004,5(3):R15
    7. Ueda K, Cornwell MM, Gottesman MM. Pastan I, Roninson IB, Ling V, Riordan JR.. The MDR1 gene, responsible for multidrug-resistance, codes for P-glycoprotein. Biochem Biophys Res Commun.1986,141(3):956-962.
    8. Szachowicz-Petelska B, Figaszewski Z, Lewandowski W. Mechanisms of transport across cell membranes of complexes contained in antitumour drugs. International Journal of Pharmaeeulics.2001,222(2):169-182.
    9. Polgar O, Bates SE:ABC transporters in the balance:is there a role in multidrug resistance? Biochem Soc Trans.2005,33(ptl):241-245
    10. Legrand O, Zompi S, Perrot JY, Faussat AM, Benderra Z, Chaoui D, Marie JP. P-glycoprotein and multidrug resistance associated protein-1 activity in 132 acute myeloid leukemias according to FAB subtypes and cytogenetics risk groups Haematologica.2004,89(1):34-41.
    11. Leith Cp, Kopecky KJ, Chen IM, Eijdems L, Slovak ML, et al. Frequency and clinical significance of the expression of the multidrug resistance proteins mdrl/P-glycoprotein mrpl and 1rp in acute myeloid leukemia:a southwest oncology group study. Blood.1999,94(3):1086-1099
    12. van der Kolk DM, de Vries EG, Muller M, Vellenga E. The role of drug efflux pumps in acute myeloid leukemia. Leuk Lymphoma.2002,43(4):685-701
    13. Manciu L, Chang XB, Buyse F,. Hou YX, Gustot A, et al. Intermediate structural states involved in MRP 1-mediated drug transport. Role of glutathione. J Biol Chem. 2003,278(8):3347-3356
    14 Galimberti S, Testi R, Guerrini F, Fazzi R, Petrini M. The clinical relevance of the expression of several multi-drug resistant-related genes in patients with primary acute myeloid leukemia. J. Chemother.2003,15(4):374-379
    15. Filipits M, Stranzl T, Pohl G et al. MRP expression in acute myeloid leukemia. An update. Adv. Exp. Med. Biol.1999,457:141-150.
    16. Van der Kolk DM, de Vries EG, Koning JA, et al. Activity and expression of the multidrug resistance proteins MRP1 and MRP2 in acute myeloid leukemia cells, tumor cell lines, and normal hematopoietic CD34+peripheral blood cells. Clin Cancer Res,1998,4(7):1727-1736
    17. Kakihara T, Tanaka A, Watanabe A, Yamamoto K, Kanto K, et al. Expression of multidrug resistance-related genes does not contribute to risk factors in newly diagnosed childhood acute lymphoblastic leukemia. Pediatr Int,1999,41(6): 641-647.
    18. Ross DD. Novel mechanisms of drug resistance in leukemia. Leukemia.2000,14(3): 467-473
    19. Laupeze B, Amiot L, Drenou B, Bernard M, Branger B, et al. High multi-drug resistance protein activity in acute myeloid leukaemias is associated with poor response to chemotherapy and reduced patient survival. Br. J. Haematol.2002, 116(4):834-838
    20. Doyle LA., Yang W., Abruzzo LV., Krogmann T., Gao Y., Rishi AK, Ross DD. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci. USA,1998,95(26):15665-15670.
    21. Sargent JM, Williamson CJ, Maliepaard M, Elgie AW, Scheper RJ, Taylor CG. Breast cancer resistance protein expression and resistance to daunorubicin in blast cells from patients with acute myeloid leukaemia. Br. J. Haematol.2001,115(2): 257-262.
    22. Ross DD, Karp JE, Chen T'F, Doyle LA. Expression of breast cancer resistance protein in blast cells from patients with acute leukemia. Blood.2000, 96(1):365-368.
    23. van den Heuvel-Eibrink MM, Wiemer EA, Prins A, Meijerink JP, et al. Increased expression of the breast cancer resistance protein (BCRP) in relapsed or refractory acute myeloid leukemia(AML). Leukemia.2002,16(5):833-839.
    24. van der Kolk DM, Vellenga E, Scheffer GL, Muller M, Bates SE, et al. Expression and activity of breast cancer resistance protein (BCRP) in de novo and relapsed acute myeloid leukemia. Blood.2002,99(10):3763-3770.
    25. Steinbach D, Sell W, Voigt A, Hermann J, Zintl F, Sauerbrey A. BCRP gene expression is associated with a poor response to remission induction therapy in childhood acute myeloid leukemia. Leukemia.2002,16(8):1443-1447
    26. Abbott BL, Colapietro AM, Barnes Y, Marini F, Andreeff M, Sorrentino BR. Low levels of ABCG2 expression in adult AML blast samples. Blood.2002,100(3): 4594-4601.
    27. Scheper RJ, Scheffer GL, Flens MJ, van der Valk P, Broxterman HJ, Izquierdo MA. Transporter molecules in multidrug resistance. Cytotechnology.1996,19(3): 187-190.
    28. Scheffer GL, Wijngaard PL, Flens MJ, Izquierdo MA, Slovak ML. et al. The drug resistance-related protein LRP is the human major vault protein. Nat Med.1995, 1(6):578-582.
    29.张剑白,孙媛,董娟,刘丽晓,宁芳。临床急性白血病初治患者LRP和MRP的表达及其意义,癌症,2005,24(8):1015-1017
    30. Styczynski J, Wysocki M, Debski R, et al. Predictive value of muhidrug resistance proteins and cellular drug resistance in childhood relapsed acute lymphoblastic leukemia. J Cancer Res Clin Oncol.2007,133(11):875-893.
    31.迟作华,刘振,孙晨,赵洪国,刘金兰。肺耐药蛋白基因和多药耐药相关蛋白基因在急性白血病骨髓细胞中的表达及临床意义,中国实验血液学杂志,2003,11(5):1472-475.
    32. Slapak CA, Fracasso PM, Martell RL. Toppmeyer DL, Lecerf JM, Levy SB. Overexpression of the multidrug resistance-associated protein (MRP) gene in vincristine but not doxorubicin-selected multidrug-resistant murine erythroleukemia cells.Cancer Res.1994,54(21):5607-5613.
    33. List AF, Spier CS, Grogan TM, et al. Overexpression of the major vault transporter protein lung-resistance protein predicts treatment outcome in acute myeloid leukemia. Blood.1996,87(6):2464-2469.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700