用户名: 密码: 验证码:
梨小食心虫嗅觉相关蛋白基因的分子生物学特性及其原核表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
昆虫在漫长的进化过程中形成了复杂的嗅觉系统,并以此来感受环境中的信息化学物质,进而做出有利于自身生存和繁衍的行为反应,如寻找食物、求偶交配、定位寄主、躲避天敌等。利用昆虫这种生命活动过程中的特性采取适当的措施进行害虫防治,已成为害虫综合治理的重要手段。梨小食心虫是一种严重危害桃、梨等多种果树的世界性重要害虫,在包括我国在内的许多国家和地区猖獗发生,对果业生产造成了严重危害。目前,生产上主要依靠果实套袋和化学防治,但前者操作费工、费时,且随劳动力价格的上涨已面临严峻的挑战;化学防治则因该虫钻蛀危害,隐蔽性强而效果较差。鉴于此,研发经济高效的梨小食心虫防治新技术已成为生产中亟待解决的问题。深入研究梨小食心虫成虫嗅觉识别系统,阐明梨小食心虫与寄主植物之间信息联系的本质,必将有助于研发梨小食心虫的新型引诱剂和趋避剂,为防治梨小食心虫提供新的思路与途径。
     本论文从梨小食心虫成虫感受信息化合物的生理基础入手,系统研究了梨小食心虫成虫的行为习性及其日生理节律,触角感受器的形态、结构和分布;在此基础上研究了梨小食心虫成虫嗅觉识别系统的分子基础——普通气味结合蛋白和化学感受蛋白,取得的主要结果如下。
     1、成虫行为节律研究
     在人工气候箱(室温23.5~24.5℃、相对湿度60%~80%、光周期15L:9D)条件下,对梨小食心虫成虫羽化、交配及产卵行为及其日节律进行了系统观测。结果表明,梨小食心虫成虫的羽化、交配和产卵节律均具明显时间特点。成虫的羽化主要集中在05:00-10:00,此时成虫的羽化数量达总羽化数量的90%以上,其中以5:00-6:00成虫羽化率最高,显著高于其它时段;雌雄成虫求偶交配多发生在羽化后第3天,雌雄两性呈“一”字形进行交配,单次交配持续时间的平均值为22.07min,交配活动主要集中在17:00-21:00,交配发生率超过90%;雌成虫的产卵时间与雌雄成虫的交配时间基本一致,也主要集中在17:00-21:00,此时雌成虫产卵量达总产卵量的87.43%,显著高于其它时段。
     2、成虫触角感器研究
     采用扫描电镜对梨小食心虫成虫触角进行观察和研究表明,梨小食心虫成虫触角上共存在7种感器,分别为毛形感器、锥形感器、刺形感器、栓锥形感器、腔锥感器、耳形感器和B hm氏鬃毛。不同触角感器的形态构造和分布特点各异,说明其功能有别。
     3、普通气味结合蛋白基因的克隆和表达特性研究
     采用反转录多聚酶链式反应(RT-PCR)和cDNA末端快速扩增(RACE)技术,从梨小食心虫雌成虫触角组织克隆到2个编码普通气味结合蛋白(GOBP)的cDNA全长序列GmolGOBP1(Genbank登录号:JN857939)和GmolGOBP2(Genbank登录号:JN857940)。序列分析表明,梨小食心虫的2个GOBP的cDNA序列全长分别为1090bp和637bp,开放性阅读框分别为492bp和483bp,编码164和161个氨基酸残基,预测其N-末端均具由20个氨基酸残基组成的信号肽序列。梨小食心虫的2个普通气味结合蛋白基因推导的氨基酸序列与已知鳞翅目其它昆虫普通气味结合蛋白具很高同源性,但GmolGOBP1和GmolGOBP2之间的同源性仅48%,说明它们归于不同的昆虫普通气味结合蛋白类群。
     RT-PCR研究结果显示GmolGOBP1和GmolGOBP2均仅在雌雄成虫触角组织中特异性表达。Real-time PCR研究结果表明,GmolGOBP1在雄成虫触角的表达量较高,而GmolGOBP2在雌成虫触角的表达量较高。另外,研究发现GmolGOBP1在雌雄两性触角及GmolGOBP2在雌虫触角中明显的上调表达均发生在光期的末段及整个暗期,而雄成虫触角中GmolGOBP2在整个光周期各时段表达量相似,据此结果,对GmolGOBP1和GmolGOBP2可能的生理功能进行了探讨。
     4、化学感受蛋白基因的克隆及序列分析
     采用RT-PCR和RACE技术克隆了梨小食心虫化学感受蛋白基因GmolCSP(GenBank登录号:JQ821389)。GmolCSP开放性阅读框全长384bp,编码127个氨基酸,N-末端含18个氨基酸组成的信号肽序列,成熟蛋白预测分子量为12.80kD,等电点为8.33,且GmolCSP具有4个保守半胱氨酸,符合昆虫化学感受蛋白的一般特征。通过序列相似性及系统发育树分析,GmolCSP与云杉卷蛾Choristoneura fumiferana(CfumCSP3)亲缘关系最近,相似性为73%其次是烟芽夜蛾Heliothis virescens(HvirCSP2),相似性为68%,与其他昆虫仅有34~46%的相似性。RT-PCR研究结果显示,GmolCSP不仅在梨小食心虫触角中表达,在去触角的头,胸、腹、足和翅中均有表达。
     5、普通气味结合蛋白2与化学感受蛋白基因的原核表达
     在成功克隆梨小食心虫普通气味结合蛋白(GmolGOBPs)和化学感受蛋白(GmolCSP)基因的基础上,将GmolGOBP2和GmolCSP与原核表达载体pET-32a进行重组,在大肠杆菌BL21(DE3)中表达,Western Blots结果显示,大肠杆菌中表达的蛋白正是pET/GmolGOBP2和pET/GmolCSP重组蛋白,从而实现了GmolGOBP2和GmolCSP在大肠杆菌中的表达。异源表达的实现为今后研究蛋白功能及提示梨小食心虫嗅觉识别系统奠定了良好基础。
Throughout evolution, the olfactory system of insect have become highly sensitive,enabling recognize chemical signal from the environment and triggers insect behavioralresponse, such as locating mates, food source, habitat, and ovipositon. Olfactory-basedcontrol strategy has become more and more important in integrated pest management (IPM).The oriental fruit moth, Grapholita molesta is a severe pest of various fruit crops throughoutworld. Control of G. molesta predominantly relies on chemical pesticides and fruit bagging.However, due to the larvae burrow into fruit and damage only the inner tissues, the chemicalpesticides, which control G. molesta, are not satisfactory. With the increasing prices of laborpower, the fruit bagging is also difficult for orchardists to put it into effect. A strategy forcontrolling adult G. molesta, based on chemical stimuli derived from host plant, is desirableTherefore, it is very important to explore the chemical communication system of G. molesta.With the insights on the chemical communication system, it will be facilitated for design andimplementation of novel monitoring and control strategies against G. molesta.
     In this paper, the physiological basis of G. molesta chemical communication system,including adult behavioral rhythm, the morphology, structure and distribution of antennalsensillae, was firstly studied. And then, the chemical communication system of G.molesta wasfurther studied at molecular level. In later part, we studied two functional proteins in insectchemical communication system, general odorant binding proteins (GOBPs) andchemosensory proteins (CSPs). The main results are as follows:
     1. The behavioral rhythms of adult Grapholita molesta
     In the laboratory, the Behavioral characteristics of G. molesta,including adult emergence,mating and oviposition behaviors, were investigated under a L15:9D regime at24±0.5℃and70±10%r.h. The results revealed that90%of adults emergence occurred between05:00and10:00, the peak of emergence was between05:00and06:00;the calling behavior of adultscommenced in the3rd days after adult emergence. males and females mated with copulatorypose of “一” type. The mean duration of mating was22.07min. and more than90%ofmating occurred between17:00and21:00;Oviposition in most of females occurred between 17:00and21:00amounting to87.43%of total oviposition.
     2. Ultrastructural observation of antennal sensilla of adult Grapholitamolesta
     The antennae of G. molesta were observed by scanning electron microscopy. The resultsindicated that the antennae of G. molesta were threadlike and made up of scape, pedicel andflagellum. There were seven kinds of sensillae, including sensilla trichodea, sensillabasiconica, sensilla chaetica, sensilla styloconica, sensilla coeloconica, sensilla auricillica andB hm bristles.
     3. Cloning and characterization of GOBP genes from Grapholita molesta
     Two new general odorant binding protein (GOBP) genes, GmolGOBP1andGmolGOBP2, were cloned from antennae of female G. molesta by use of RT-PCR and RACE.The GenBank accession numbers are JN857939and JN857940, respectively. The full-lengthcDNA of GmolGOBP1is1090bp with a492bp open reading frame encoding164aminoacids. GmolGOBP2cDNA is637bp in length containing a483bp open reading frameencoding161amino acids. Proteins signature analysis indicated that they contains anN-terminal signal sequence of20amino acids. The two GOBPs from G. molesta show lowsequence identity (48%), but they are similarity to GOBPs of the same group from otherlepidopteran, suggesting that the two GOBPs belong to different classes of lepidopteranGOBPs.
     RT-PCR analysis indicated that GmolGOBP1and GmolGOBP2are only expressed inantennae of both sexes. Real-time PCR analysis further revealed that the transcript level ofGmolGOBP1was higher in males than in females, whereas the transcript level ofGmolGOBP2was higher in females than in males. The high transcript levels of GmolGOBP1in both sex and GmolGOBP2in female were detected at the end of photophase and duringscotophase. The expression of GmolGOBP2in male remained at similar levels during thecomplete photoperiod. Based on these results, the possible physiological functions ofGmolGOBPs are discussed.
     4. Cloning and sequence analysis of CSP gene from Grapholita molesta
     A novel chemosensory protein gene, GmolCSP, was cloned from antennae of adult G.molesta by use of RT-PCR and RACE. The GenBank accession numbers are JQ821389. Theisolated cDNA encoding GmolCSP contains a384bp open reading frame for a polypeptide of127amino acids. The predicted amino acid sequences contain an N-terminal signal sequence of18amino acids. The mature deduced GmolCSP consist of109amino acids with amolecular mass of12.80kD, and an IP of8.33. after analysis of sequence similarity andphylogenetic tree, it was indicated that GmolCSP share high homology with CfumCSP3(73%), and then HvirCSP2(68%), however, GmolCSP share low similarity with otherlepidopteran (34~46%identity). RT-PCR analysis indicated that GmolCSP expressed in allof the test tissues, including antenna, head, head without antennae, thorax, abdomen, leg andwing.
     5. The prokaryotic expression of GOBP2and CSP from Grapholita molesta
     Heterologous expression of genes can provide insights to the gene function. Based oncloned GmolGOBP2and GmolCSP information, the GmolGOBP2and GmolCSP wereconstructed into prodaryotic expression vectors pET-32a, and expressed in BL21(DE3).The results of Western Blot indicated that the recombinant prteins (pET/GmolGOBP2andpET/GmolCSP)were successfully expressed. Our results are not only helpful for the researchof GmolGOBP2and GmolCSP, but also can form a solid basis to explore the chemicalcommunication system of G. molesta.
引文
蔡明飞,沈健,仵均祥.不同杀虫剂对梨小食心虫卵和成虫的室内防效[J].果树学报,2010,27(4):636-640.
    邓培渊,乔惠丽,李丹丹,等.家蚕化学感受蛋白BmCSP4表达谱及结合特性分析.昆虫学报,2011,54(8):869-876.
    董文霞,胡保文,张钟宁,等.中红侧沟茧蜂对烟草挥发物的触角电生理及行为反应.生态学报,2004,24(10):2253-2256.
    杜娟,郭建挺,张亚素,等.温度对梨小食心虫Grapholitha molesta Busck生长发育及繁殖的影响.西北农业学报,2009,18(6):314-318.
    杜娟,王艳蓉,仵均祥.不同饲料配方对梨小食心虫生长发育及繁殖的影响.山西农业大学学报:自然科学版,2010,30(3):229-231.
    付晓伟,郭线茹,罗梅浩,等.烟夜蛾和棉铃虫对高浓度烟草挥发物的电生理和行为反应.昆虫学报,2008,51(9):902-909.
    龚亮,陈永,程功,钟国华.昆虫化学感受蛋白.昆虫知识,2009,46(4):646.
    谷少华.苜蓿盲蝽嗅觉相关基因的发掘及功能分析.中国农业科学院硕士论文,2010.
    韩桂彪,杜家纬.枣粘虫交配行为生态学研究.应用生态学报,2000,11(1):99-102.
    韩伟君,肖春,杨仕生,等.井上蛀果斑螟羽化及交配行为学特征研究.云南大学学报,2008,30(1):120-122.
    韩秀凤,孟建明,魏玉琪,等.冀中南果区梨小食心虫重度发生成因及综防措施.果农之友,2010,(9):31-32.
    何超,秦玉川,周天仓,等.应用性信息素迷向法防治梨小食心虫试验初报.西北农业学报,2008,17(5):107-109.
    蒋金炜,高素霞,安世恒,等.烟实夜蛾触角化学感受蛋白cDNA的克隆、序列分析及在大肠杆菌中的表达.昆虫学报,2006,49:740-746.
    黎彦,杜华,段银昌.2006年黄河故道地区梨小食心虫大发生的原因及防治对策.果农之友,2007,(7):34.
    李红亮,倪翠侠,姚瑞,等.中华蜜蜂化学感受蛋白基因Acer-CSP1克隆与表达特征分析.昆虫学报,2010,53:962-968.
    李建勋,李娟,程伟霞,等.甜菜夜蛾成虫生物学特性研究.中国农学通报,2008,24(5):318-323.
    李月珍,杨军营,蔡海英.苏北地区梨小食心虫的发生与防治.落叶果树,2010,(5):30-31.
    林云光,张宝军,年志伟,等.油桃梨小食心虫防治.北方果树,2007,(4):29.
    马双,王松莹,谷少华,等.苜蓿盲蝽化学感受蛋白Alin-CSP6的气味结合特征.中国农业科学,2011,44:2926-2934.
    万渊,周京华,刘进法,等.赣中地区梨园梨小食心虫的发生规律与防治.中国果树,2010,(1):38-40.
    王桂荣,吴孔明,郭予元.编码棉铃虫化学感爱蛋白cDNA的克隆及序列分析.中国农业科学,2005,38:2233-2239.
    王桂荣,吴孔明,苏宏华,等.棉铃虫嗅觉受体基因的克隆及组织特异性表达.昆虫学报,2005,48:823-828.
    王艳蓉,黄敏,刘喜旺,仵均祥,赵栋.梨小食心虫人工饲料的研究.西北农林科技大学学报,2011,39(5):161-166
    修伟明.甜菜夜蛾和斜纹夜蛾性信息素感受相关蛋白的分子克隆,定量分析及原核表达.南京农业大学博士论文,2007.
    于惠林,张永军,潘文亮,等.田间条件下不同诱导棉花挥发性物质的鉴定.应用生态学报,2007,18(4):859-864.
    张国辉,黄敏,仵均祥,等.迷向处理对梨小食心虫的防治效果.山西农业大学学报:自然科学版,2010,30(3):232-234.
    张仁福,于江南,方斌,等.性诱剂在杏园梨小食心虫防治中的应用.新疆农业科学,2010,47(8):1517-1521.
    张帅,张永军,苏宏华,等.中红侧沟茧蜂化学感受蛋白MmedCSP1的结合特征.昆虫学报,2009,52:838-844.
    张天涛,邹朗云,李科明,等.棉铃虫化学感受蛋白HarmCSP6二聚体的组织表达分析及气味结合特征.昆虫学报,2011,54:615-622.
    张志春,王满囷,张国安.小菜蛾化学感受蛋白基因PxyCSP1的克隆和表达.昆虫学报,2009,52:140-146.
    周天苍,王军.蒲城县梨小食心虫发生与防治[A].中国农业技术推广协会主编.第二十一届全国农药械“双交会”论文集[C].北京:中国农业出版社,2005.84-86.
    Albert PJ, Seabrook WD. Morphology and histology of the antenna of the male eastern spruce budworm,Choristoneura fumiferana (Clem.)(Lepidoptera: Tortricidae). Can. J. Zool.,1973,4:443-448.
    Almaas TJ, Mustapsrta H. Heliothis virescens: response characteristics of receptor neurons in sensillatrichodea type1and type2. Journal of chemical ecology,1991,17:953-972.
    Altner H, Sas H, Altner L. Relationship between structure and function of antennal chemo-, hygro-andthermo-receptive sensilla in Periplaneta Americana. Cell Tissue Res.1977,176:389-405.
    Altner H. Insect sensillum specificity and structure: an approach to a new typology. In: Le Magnen J,MacLeod P (eds), Olfaction and Taste Ⅳ, Information Retrieval, London,1977,6:295-303.
    Angeli S, Ceron F, Scaloni A, et al. Purification, structural characterization, cloning andimmunocytochemical localization of chemoreception proteins from Schistocerca gregaria. Eur. J.Biochem.,1999,262:745-754.
    Ban L, Scaloni A, Brandazza A, et al.. Chemosensory proteins of Locusta migratoria. Insect Molecularbiology,2003,12(2):125-134.
    Ban L, Scaloni A, D′ambrosio C, et al.. Biochemical characterization and bacterial expression of anodorant-binding protein from Locusta migratoria. Cellular and Molecular Life Sciences,2003,60:390–400.
    Biessmann H, Walter MF, Dimitratos S, et al., Isolation of cDNA clones encoding putative odorant bindingproteins from the antennae of the malaria-transmitting mosquito, Anopheles gambiae. InsectMolecular Biology,2002,11:123–132.
    Boeckh J. et al. Neurophysiology and neuroanatomy of the olfactory pathway in the cocktoach. Ann. Ny.Acad. Sci.1987,510:39-43.
    Boekh J, Kaissling KE, Schneider D. Insect olfactory recepors. Cold Spring Harbor Symp. Quant. Biol.1965,30:263-280.
    Bohbot J, Pitt RJ, Kwon HW, et al. Molecular characterization of the Aedes aegypti odorant receptor genefamily. Insect Mol. Bio.,2007,16:525-537.
    Briand L, Swasdipan N, Nespoulous C, et al.. Characterization of a chemosensory protein from honeybee(Apis mellifera L.) as a brood pheromone carrier. European journal of Biochemistry,2002,269(18):4586-4596.
    Buck L, Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odorrecognition. Cell,1991,65:175-187.
    Callahan FE, Vogt RG, Tucker ML, et al. High level expression of “male specific” pheromone bindingproteins (PBPs) in the antennae of female noctuiid moths. Insect Biochem. Mol. Biol.2000,30:507-514.
    Calvello M, Brandazzaa A, Navarrinia A, et al.. Expression of odorant-binding proteins and chemosensoryproteins in some Hymenoptera. Insect Biochemistry and Molecular Biology,2005,35:297–307.
    Calvello M, Guerra N, Brandazza A, et al.. Soluble proteins of chemical communication in the social waspPolistes dominulus. Cellular and Molecular Life Sciences,2003,60:1933–1943.
    Clyne PJ, Warr GG, Freeman MR, et al.. A novel family of divergent seven transmembrane proteins:Candidate odorant receptors in Drosophila. Neuron,1999,22:327-338.
    Damberger F, Ishida Y, Leal WS, et al. Structural basis of ligand binding and release in insectpheromone-binding proteins: NMR structure of Antheraea polyphemus PBP1at pH4.5. Journal ofMolecular Biology,2007,373:811-819.
    Damberger F, Nikonova L, Horst R, et al. NMR characterization of a pH-dependent equilibrium betweentwo folded solution conformations of the pheromone-binding protein from Bombyx mori. Protein Sci.,2000,9:1038-1041.
    Davis EE, Sokolove PG. Temperature responses of antennal receptor of the mosquito Aedes aegypti. J.Comp. Physiol.,1975,6:223-236.
    Dorn S, Hughes J, Molinari F, Cravedi P. Cydia molesta and Cydia pomonella: comparison of adultbehavior. IOBC-WPRS Bulletin,2001,24:133–137.
    Emmaunelle J, Jonathan B, Marie-Christine F. Characterization of the general odorant-binding protein2inthe molecular coding of odorants in Manetea brassicae. European Journal of Biochemistry,2000,267:6708–6714.
    Feng I, Prestwich GD. Expression and characterization of the lepidopteran general odorant binding protein.Insect Biochemistry and Molecular Biology,1997,27:405–412.
    Freitag J, Ludwig G, Andreini I, et al. Olfactory receptors in aquatic and terrestrial vertebrates. J. Comp.Physiol.,1998,183:635-650.
    Gaillard I, Rouquier S, Giorgi D. Olfactory receptors. Cell. Mol. Life Sci.,2004,61:46-469.
    Gao Q, Chess A. Identification of candidate Drosophila olfactory receptors from genomic DNA sequence.Genomic,1999,60:31-39.
    Gentry C R, Beroza M, Blythe J L. Pecan bud moth: captures in Georgia in traps baited with thepheromone of the oriental fruit moth. Environ. Entomol.,1975,4:227-231.
    George J A. Sex pheromone of the oriental fruit moth, Grapholitha molesta (Busck)(Lepidoptera:Tortricidae). Can. Entamol.,1965,97:1002-1007.
    Gómez VRC, Nieto G, Valdes J, et al. The antennal sensilla of Zamagiria dixolophella Dyar (Lepidoptera:Pyralidae). Ann. Entomol., Soc. Am.2003,96:672-678.
    Gong ZJ, Zhou WW, Yu HZ, et al. Cloning, expression and functional analysis of a generalodorant-binding protein2gene of the rice striped stem borer, Chilo suppressalis (Walker)(Lepidoptera: Pyralidae). Insect Molecular Biology,2009,18:405–417.
    Gu SH, Wang SP, Zhang XY, et al. Identification and tissue distribution of odorant binding protein genes inthe Lucerne plant bug Adelphocoris lineolatus (Goeze). Insect Biochemistry and Molecular Biology,2011,41:254–263.
    Hallberg E, Hansson BS, Steinbrecht RA. Morphological characteristics of antennal sensilla in theEuropean corn borer Ostrinia nubilalis (Lepidoptera: Pyralidae). Tissue Cell,1994,26:489-502.
    Han K S, Jung J K, Choi K H, et al. Sex pheromone composition and male trapping of the oriental fruitmoth, Grapholitha molesta (Lepidoptera: Tortricidae) in Korea. J. Asia-Pacific Entomol.,4(1):31-35.
    Hansson BS. Olfaction in Lepidoptera. Experientia,1995,51:1003-1027.
    Hildebrand JG, Shepherd GM. Mechanisms of olfactory discrimination: converging evidence for commonprinciples across phyla. Annu. Rev. Neurosci.,1997,20:595-631.
    Hildebrand JG. Olfactory control of behavior in moths: central processing of odor information and thefunctional significance of olfactory glomeruli. J. Comp. Physio. A.,1996,178:5-19.
    Hildebrand JG. Olfactory control of behaviour in moths: central processing of odor information and thefunctional significance of olfactory glomeruli. J. Comp. Physio. A.,1996,178:5-9.
    Hill CA, Fox AN, Pitts RJ, et al. G protein-coupled receptors in Anopheles gambiae. Science,2002,298:176-178.
    Horst R, Damberger F, Luginbuhl P, et al. NMR structure reveals intramolecular regulation mechanism forpheromone binding and release. Proceedings of the National Academy of Sciences of the United Statesof America,2001,98:14374-14379.
    Howse PE, Stevens LDR, Jones OT. Insect pheromones and their use in pest management. Chepman andHall,1998.
    Hughes J, Dorn S. Sexual differences in the flight performance of the oriental fruit moth, Cydia molesta.Entomologia Experimentalis et Applicata,2002,103:171–182.
    Ishida Y, Chiang VP, Haverty MI, et al.. Odorant-binding proteins from a primitive termite. Journal ofChemical Ecology,2002,28:1887–1893.
    Jacobs SP, Liggins AP, Zhou JJ. OS-D like genes and their expression in aphids. Insect Molecualr Biology,2005,14(4):423-432.
    Jacquin-Joly E, Merlin C. Insect olfactory receptors: contributions of molecular biology to chemicalecology. Journal of chemical ecology,2004,30:2359-2397.
    Jacquin-Joly E, Vogt RG, Francois MC, et al. Functional and expression pattern analysis of chemosensoryproteins expressed in antennae and pheromonal gland of Mamestra brassicae. Chem. Senses,2001,26:833-844.
    Jefferson RN, Rubin RE, McFarland SU, et al.. Sex pheromones of noctuid moths, XXII. The externalmorphology of the antennae of Trichoplusia ni, Heliothis zea, Prodenia ornithogally, and Spodopteraexigua. Ann. Entomol. Soc. Am.,1970,63:1227-1238.
    Jin X, Brandazza A, Navarrini A, et al. Expression and immunolocalisation of odorant-binding andchemosensory proteins in locusts. Cell Mol. Life. Sci.,2005,62:1156-1166.
    Kaissling KE. Chemoelectrical transduction in insect olfactory receptors. Annual Reiew of Neuroscience,1986,9:121-145
    Kaissling KE. Olfactory perireceptor and receptor events in moths: a kinetic model. Chem. Senses,2001,26:125-150.
    Kitabayashi AN, Arai T, Kubo T, et al. Molecular cloning of cDNA for p10, a novel protein that increasesin the regenerating legs of Periplaneta americana (American cockroach). Insect Biochem. Mol. Biol.,1998,28:785-790.
    Klusák V, Havlas Z, Rulisek L, et al. Sexual attraction in the silkworm moth: Nature of binding ofbombykol in pheromone binding protein—An Ab Initio study. Chemistry and Biology,2003,10:331-340.
    Konstantopoulou MA, Pratsinis H, Kletsas D, et al. Pheromone-binding protein and generalodorant-binding protein of Sesamia nonagrioides: sex-and diel-dependent expression. EntomologiaExperimentalis et Applicata,2006,119:129-136.
    Kovanci OB, Walgenbach JF, Kennedy GG, et al. Effects of application rate and interval on the efficacy ofsprayable pheromone for mating disruption of the oriental fruit moth, Grapholita molesta.Phytoparasitica,2005,33:334-342
    Krieger J, Breer H. Olfactory reception in invertebrates. Science,1999,286:720-728.
    Krieger J, Klink O, Mohl C, et al. A candidate olfactory receptor subtype highly conserved across differentinsect orders. J. Comp. Physiol.,2003,189:519-526.
    Lartigue A, Campanacci V, Roussel A. X-ray structure and ligand binding study of a moth chemosensoryprotein. Journal of Biological chemistry,2002,277(35):32094-32098.
    Laue M, Steinbrecht RA. Topochemistry of moth olfacoty sensilla. Int. J. Insect Morph. Embryol.,1997,26:217-228.
    Laue, M, Steinbrecht RA, Ziegelberger G. Immunocytochemical localization of general odorant-bindingprotein in olfactory sensilla of the silkmoth Antheraea polyphemus. Naturwissenschaften,1994,81:178-180.
    Leal WS, Chen AM, Ishida Y, et al. Kinetics and molecular properties of pheromone binding and release.Proceedings of the National Academy of Sciences of the United States of America,2005,102:5386-5391.
    Leal WS, Nikonova L, Peng G. Disulfibe structure of the pheromone binding protein from the silkwormmoth, Bombyx mori. FEBS Letters,1999,468:85-90.
    Leal WS. Pheromone reception. Topics in Current Chemistry,2005,240:1–36.
    Leite NR, Krogh R, Xu W, et al. Structure of an odorant-binding protein from the mosquito Aedes aegyptisuggests a binding pocket covered by a pH-sensitive “Lid”. PLoS One,2009,4: e8006.
    Li HL, Lou BG, Cheng JA, et al.. The chemosensory protein of Chinese honeybee, Apis cerana cerana:Molecular cloning of cDNA, immunocytochemical localization and expression. Chinses ScienceBulletin,2007,52(10):903-909.
    Li HL, Zhang YL, Gao QK, et al.. Molecular identification of cDNA, immunolocalization, and expressionof a putative odorant-biding protein from an Asian Honey Bee, Apis cerana cerana. Journal ofChemical Ecology,2008,34:1593-1601.
    Li Z, Pickett J, Field L, et al. Identification and expression of odorant-binding proteins of themalaria-carrying mosquitoes Anopheles gambiae and Anopheles arabiensis. Archives of InsectBiochemistry and Physiology,2005,58:175-189.
    Liu AH, Zhang X, Stolovitzky GA, et al. Motif-based construction of a functional map for mammalianolfactory receptors. Genomics2003,81:443-456.
    Liu R, Lehane S, He X, et al. Characterisations of odorant-binding proteins in the tsetse fly Glossinamorsitans morsitans. Cell. Mol. Life Sci.,2010,67:919-929.
    Liu Z, Vidal DM, Syed Z, Ishida Y, et al.. Pheromone binding to general odorant-binding proteins from thenavel orangeworm. Journal of Chemical Ecology,2010,36:787–794.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR andthe2-△△CTmethod. Methods,2001,25:402–408.
    Ljungberg H, Anderson P, Hansson BS. Physiology and morphology of pheromone specific sensilla on theantennae of male and female Spodoptera littoralis (Lepidoptera: Noctuidae). Journal of Insectphysiology,1993,39:253–260.
    Lu DG, Li XR, Liu XX, et al.. Identification and molecular cloning of putative odorant-binding proteinsand chemosensory protein from the bethylid wasp, Scleroderma guani Xiao et Wu. Journal ofChemical Ecology,2007,33:1359–1375.
    Maibeche-Coisne M, Jacquin-Joly E, Francois MC, et al. Molecular cloning of two pheromone bindingproteins in the cabbage armyworm Mamestra brassicae. Insect Biochem. Mol. Biol.,1998,28:815-818.
    Maíbèche-Coisnè M, Longhi S, Jacquin-Joly E, et al.. Molecular cloning and bacterial expression of ageneral odorant-binding protein from the cabbage armyworm, Mamestra brassicae. European Journalof Biochemistry,1998,258:768–774.
    Mameli M, Tuccini A, Mazza M, et al. Soluble proteins in chemosensory organs of phasmids. InsectBiochem. Mol. Biol.,1996,26:875-882.
    Marchese S, Angeli S, Andolfo A, et al. Soluble proteins from chemosensory organs of Eurycanthacalcarata (Insect, Phasmatodea). Insect Biochem. Molec. Biol.,2000,30:1091-1098.
    Matsumoto Y. An aseptic rearing of the oriental fruit moth, Grapholitha molesta Busck on synthetic foodmedia. Ber Ohara Inst. Landwirtsch Biol. Okayama Univ.,1954,10:66-71
    McDonald MJ, Rosbash M. Microarray analysis and organization of circadian gene expression inDrosophila. Cell,2001,107:567-578.
    Mckenna MP, Hekmat-Scafe DS, Gaines P. Putative Drosophila pheromone-binding proteins expressed ina subregion of the olfactory system. J. Biol. Chem.,1994,269:16340-16347.
    Mohanty S, Zubkov S, Gronenborn A. The solution NMR structure of Antheraea polyphemus PBPprovides new insight into pheromone recognition by pheromone-binding proteins. Journal of MolecularBiology,2004,337:443-451.
    Mombaerts P. Molecular biology of odorant receptors in vertebrates. Annu. Rev. Neurosci.,1999,22:487-509.
    Monaco HL, Zanotti G. Three-dimensional structure and active site of three hydrophobic molecule-bindingproteins with significant amino acid sequence similarly. Biopolymers,1992,32:457-465.
    Monteforti G, Angeli S, Petacchi R, et al. Ultrastructural characterization of antennal sensilla andimmunocytochemical localization of a chemosensory protein in Carausius morosus Brünner (Phasmida:Phasmatidae). Arthropod Struct. Dev.,2002,30:195-205.
    Mori K, Yoshihara Y. Molecular recognition and olfactory processing in the mammalian olfactory system.Prog. Neurobiol.,1995,45:585-619.
    Nagnan-Le Meillour P, Francois MC, Jacquin-Joly E. Identification and molecular cloning of putativeodorant-binding proteins from the American palm weevil, Rhynchophorus palmarum L.. Journal ofChemical Ecology,2004,30:1213–1223.
    Nagnan-Le P, Cain AH, Jacquin-joly E, et al.. Chemosensory proteins from the proboscis of Mamestrabrassicae. Chemical Senses,2000,25:541-553.
    Ngai J, Dowling MM, Buck L, et al. The family of genes encoding odorant receptors in the channel catfish.Cell,1993,12:657-666.
    Ochieng SA, Hallberg E, Hasson BS. Fine structure and distribution of antennal sensilla of the desertlocust Schistocerca gregaria (Orthoptera: Acrididae). Cell Tissue Res.,1998,291:525-536.
    Ozaki M, Morisaki K, Idei W, et al.. A putative lipophilic stimulant carrier protein commonly found in thetaste and olfactory systems. A unique member of the pheromone-binding protein superfamily.European Journal of Biochemistry,1995,230:298–308.
    Pelletier J, Leal WS. Genome analysis and expression patterns of odorant-binding proteins from thesouthern house mosquito Culex pipiens quinquefasciatus. PLoS One,2009,4: e6237.
    Pelosi P, Maida R. Odorant-binding proteins in insects. Comp. Biocchem. Physiol. B Biochem. Mol. Biol.,1995,111(3):503-514.
    Pelosi P, Zhou JJ, Ban LP, et al. Soluble proteins in insect chemical communication. Cell Mol. Life Sci.,2006,63:1658-1676.
    Pelosi P. Odorant-binding proteins. Crit. Rev. Biochem. Mol. Biol.,1994,29:199-228.
    Picimbon JF, Dietrich K, Breer H, et al. Chemosensory proteins of Locusta migratoria (Orthoptera:Acrididae). Insect Biochem. Mol. Biol.,2000,30:233-241.
    Picimbon JF, Dietrich K, Krieger J, et al.. Identity and expression pattern of chemosensory proteins inHeliothis virescens (Lepidoptera, Noctuidae). Insect Biochemistry and Molecular Biology,2001,31:1173-1181.
    Picimbon JF, Leal WS. Olfactory soluble proteins of cockroaches. Insect Biochem. Mol. Biol.,1999,29:973-978.
    Pikielny CW, Hasan G, Rouyer F. Members of a family of Drosophila putative odorant-binding proteins areexpressed in different subsets of olfactory hairs. Neuron,1994,12:35-39.
    Priesner E. Progress in the analysis of pheromone receptor systems. Annales de Zoologie EcologieAnimale,1979,11:533–546.
    Probst WC, Snyde LA, Schuster DI, et al. Sequence alignment of the G-protein coupled receptorsuperfamily. DNA Cell. Biol.,1992,11:1-20.
    Raming K, Krieger J, Strotmann J, et al. Cloning and expression of odorant receptors, Nature,1993,361:353-356.
    Robertson HM, Wanner KW. The chemoreceptor superfamily in the honey bee, Apis mellifera: expansionof the odorant, but not gustatory, receptor family. Genome Res.,16:1395-1403.
    Robertson HM, Warr CG, Carlson JR. Molecular evolution of the insect chemoreceptor gene superfamilyin Drosophila melanogaster. Proc. Nati. Acad. Sci. USA,2003,100:14537-14542.
    Rogers ME, Sun M, Lerner MR, et al. Snmp-1, a novel membrane protein of olfactory neurons of the silkmoth Antheraea polyphemus with homology to the CD36family of membrane proteins. J. Biol. Chem.,1997,72:14792-14799.
    Rothschild GHI, Vickers RA. Biology, ecology and control of the oriental fruit moth. In: Geest LPS,Evenhuis HH.(eds). Tortricid pests their biology, natural enemies and control world crop pests.Elsevier, Amsterdam,1991,5:389-412.
    Russel D A, Bouzouane R. The effect of diet, temperature and diapauses on the number and identificationof larval instars in the oriental fruit moth Grapholitha molesta (Busck)(Lepidoptera: Tortricidae).Agronomie,1989,9(9):919-926.
    Sandoz JC, Galizia CG, Menzel R. Side-specific olfactory conditioning leads to more specific odorrepresentation between sides but not within sides in the honeybee antennal lobes. Neuroscience,2003,120:1137-1148.
    Scaloni A, Monti M, Angeli S, et al.. Structural analysis and disulfide bridge pairing of twoodorant-binding proteins from Bombyx mori. Biochemical and Biophysical Research Communications,1999,266:386–391.
    Schneider D, Schulz S, Priesner E, et al.. Autodetection and chemistry of female and male pheromone inboth sexes of the tiger moth Panaxia quadripunctaria. Journal of Comparative Physiology,1998,182:153–161.
    Schneider D. Insect antennae. Annu. Rev. Entomol.,1964,9:103-122.
    Schneider D. Insect olfaction: deciphering system for chemical messages. Science,1969,163:1031-1037.
    Shepherd GM. Discrimination of molecular signals by the olfactory receptor neuron. Neuron,1994,13:771-779.
    Shepherd GM. Modules for molecules. Nature,1992,358:457-458.
    Steinbrecht RA, Laue M, Ziegelberger G. Immunocytochemical of pheromone-binding protein and generalodorant-binding protein in olfactory sensilla of the silk moth Antheraea and Bombyx. Cell and TissueResearch,1995,282:203–217.
    Steinbrecht RA, Ozaki M, Ziegelberger G. Immunocytochemical localization of pheromone-bindingprotein in moth antennae. Cell Tissue Res.,1992,270:287-302.
    Steinbrecht RA. Are odorant-binding proteins involved in odorant discrimination? Chem. Senses,1996,21:719-727.
    Steinbrecht RA. Freeze-substitution for morphological and immunocytochemical studies in insects.Microscopical Research and Technology,1993,24:488–504.
    Steinbrecht RA. Odorant-binding proteins: expression and function. Ann N Y Acad Sci.,1998,855:323-332.
    Tarumingkeng RC, Coppel HC, Matsumura F. Morphology and ultrastructure of the antennalchemoreceptors and mechanoreceptors of worker Coptotermes formosanus Shiraki. Cell Tis. Res.,1976,173:173-178.
    Troemel ER, Chou JH, Dwyer ND, et al. Divergent seven transmembrane receptors are candidatechemosensory receptors in C. elegans. Cell,1995,83:207-218.
    Tuccini A, Maida R, Rovero P. Putative odorant-binding protein in antennae and legs of Carausiusmorosus. Insect Biochemstry and Molecular Biology,1996,26:19-24.
    Tzanakakis M. E., Phillips J. H. H. Artificial diets for larvae of oriental fruit moth. J. Econ. Entomol.,1969,62:879-882
    Vogt RG, Callahan FE, Rogers ME, et al.. Odorant binding protein diversity and distribution among theinsect orders, as indicated by LAP, an OBP-related protein of the true bug Lygus lineolaris (Hemiptera,heteroptera). Chemical Senses,1999,24:481–495.
    Vogt RG, Prestwich GD, Lerner MR. Odorant-binding protein subfamilies associate with distinct classes ofolfactory receptor neurons in insects. Journal of Neurobiology,1991a,22:74–84.
    Vogt RG, Riddiford LM, Prestwich GD. Kinetic properties of a sex pheromone-degrading enzyme: thesensillar esterase of Antheraea polyphemus. Proc. Natl. Acad. Sci. USA,1985,82:8827-8831.
    Vogt RG, Riddiford LM. Pheromone binding and inactivation by moth antennae. Nature,1981,293,161-613.
    Vogt RG, Robert R, Lerner MR. Molecular cloning and sequencing of general odorant-binding proteinsGOBP1and GOBP2from the tobacco hawk moth Manduca sexta: Comparisons with other insectOBPs and their signal peptides. Journal of Neurobiology,1991b,17:2972–2984.
    Vogt RG, Rogers ME, Franco MD, et al. A comparative study of odorant binding protein genes: differentialexpression of the PBP1-GOBP2gene cluster in Manduca sexta (Lepidoptera) and the organization ofOBP genes in Drosophila melanogaster (Diptera). Journal of Experimental Biology,2002,205:719–744.
    Vogt RG, Rybczynski R, Lerner, MR. Molecular cloning and sequencing of general odorant-bindingproteins GOBP1and GOBP2from the tobacco hawk moth Manduca sexta: comparisons with otherinsect OBPs and their signal peptides. J. Neurosci.,1991,11:2972-2984.
    Vosshall LB, Amrein H, Morozov PS, et al. A spatial map of olfactory receptor expression in theDrosophila antenna. Cell,1999,96:725-736.
    Vosshall LB, Wong AM, Axel R, et al. An olfactory map in the fly brain. Cell,2000,102:147-159.
    Wang GR, Wu KM, Guo YY. Cloning, expression and immunocytochemical localization of a generalodorant-binding protein gene from Helicoverpa armigera (Hübner). Insect Biochemistry andMolecular Biology,2003,33:115–124.
    Wanner KW, Willis LG, Theilmann DA. Analysis of the insect os-d-like gene family. Journal of ChemicalEcology,2004,30:889-911.
    White PR, Reginald F, Chapman T. Chemoreception in the polyphagous grasshopper SchistocercaAmericana: behavioral assays, sensilla distributions and electrophysiology. Physilo Entomol.,1990,15:105-121.
    Wogulis M, Morgan T, Ishida Y, et al. the crystal structure of an odorant binding protein from Anophelesgambiae: Evidence for a common ligand release mechanism. Biochemical and Biophysical ResearchCommunication,2006,339:157-164.
    Xia Y, Zwiebel L. Identification and characterization of an odorant receptor from the West Nile Virusmosquito, Culex quinquefasciatus. Insect BIochem. Mol. Biol.2006,36:169-176.
    Xiu WM, Dong SL. Molecular characterization of two pheromone binding proteins and quantitativeanalysis of their expression in the beet armyworm, Spodoptera exigua Hübner. Journal of ChemicalEcology,2007,33:947–961.
    Xiu WM, Zhou YZ, Dong SL. Molecular characterization and expression pattern of twopheromone-binding proteins from Spodoptera litura (Fabricius). Journal of chemical ecology,2008,34:487-498.
    Xu P, Atkinson R, Jones DN, et al.. Drosophila OBP LUSH is required for activity of pheromone-sensitiveneurons. Neurons,2005,45:193–200.
    Xu YL, He P, Zhang L, et al.. Large-scale identification of odorant-binding proteins and chemosensoryproteins from expressed sequence tags in insects. BMC Genomics,2009,10(1):632.
    Yokoyama VY, Miller GT, Harvey JM. Development of oriental fruit moth (Lepidoptera: Tortricidae) on alaboratory diet. Journal of Economic Entomology,1987,80:272-276.
    Zacharuk RY. Antenna and sensilla. In: Kerkut GA, Gibert LI.(eds). Comprehensive insect physiologybiochemistry and pharmacology.1985,6:1-69.
    Zhang TT, Gu SH, Wu KM, et al.. Construction and analysis of cDNA libraries from the antennae of maleand female cotton bollworms Helicoverpa armigera (Hübner) and expression analysis of putativeodorant-binding protein genes. mori. Biochemical and Biophysical Research Communications,2011,407:393–399.
    Zhang ZC, Wang MQ, Lu BL, Zhang GA. Molecular characterization and expression pattern of twogeneral odorant binding proteins from the Diamondback moth, Plutella xylostella. Journal of chemicalecology,2009,35:1188-1196.
    Zhou JJ, Huang W, Zhang GA, et al.“Plus-C” odorant-binding protein genes in two Drosophila speciesand malaria mosquito Anopheles gambiae. Gene,2004,327:117-129.
    Ziegelberger G. Redox-shift of pheromone binding protein in the silk moth Antheraea polyphemus. Eur. J.Biochem.,1995,232:706-711.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700