用户名: 密码: 验证码:
华北大黑鳃金龟嗅觉相关蛋白互作机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下害虫是我国农业生产上一类重要的有害物种,具有生活隐蔽,适应性强等特点,是国内外公认的难以防治的害虫。华北大黑鳃金龟Holotrichia oblita Faldermann (Coleoptera: Scarabaeidae)属于地下害虫重要类群之一,对农作物、果树以及林木等可以造成重大经济损失。在控制地下害虫的同时也造成了生态环境破坏等多种潜在威胁。昆虫错综复杂的嗅觉系统能够检测和识别环境中不同的挥发性小分子气味物质,这种特征在昆虫寻找寄主、交配、产卵以及逃避行为中起到了至关重要的作用。因此,对昆虫嗅觉感受机理的研究将有助于揭开昆虫感受和识别环境中的气味物质并引起相关行为反应的秘密,有助于开发新型生物制剂来干扰害虫之间的通讯,最终达到控害保益的目的,为生物防治开辟新的途径。本研究所获得的主要结果如下:
     (1)根据GenBank登录的华北大黑鳃金龟气味结合蛋白OBP3和OBP4的序列,设计特异性引物,获得了OBP3和OBP4基因的开放阅读框序列,并将其成功克隆到原核表达载体pET-30a(+)上,为后续气味结合蛋白功能的研究奠定了分子基础。
     (2)以冈比亚按蚊AgamOBP20晶体结构为模板对HoblOBP3和HoblOBP4蛋白进行同源建模。从模型上可以看出组成蛋白的α螺旋形成一个结合口袋,蛋白的C端伸入到结合口袋内,与冈比亚按蚊AgamOBP1的结构相似。对HoblOBP3和HoblOBP4以及已知的4种嗅觉相关蛋白HoblCSP1、HoblCSP2、HoblOBP1和HoblOBP2成功地进行了原核表达以及蛋白纯化。竞争结合实验分析了华北大黑鳃金龟OBP3和OBP4对植物绿叶气味以及已经鉴定的金龟子性信息素成分等42种气味分子的结合特征,研究发现HoblOBP4展现出了非常广泛的结合亲和性,尤其与6个碳的植物绿叶气味结合亲和性较高,并且能够结合L-异亮氨酸甲酯等金龟子性信息素成分。HoblOBP3只能够专一性的结合α-紫罗兰酮和-紫罗兰酮,从而显示出严谨的分子筛作用。除此之外,我们发现配体化合物官能团的种类、数量和位置,碳链的长短,碳链的开环与闭环结构,以及旋光异构等差异对蛋白结合亲和性的影响非常大。利用荧光结合实验对目前已知的6种华北大黑鳃金龟嗅觉相关蛋白之间的相互关系以及是否存在二聚体进行了探讨,我们推测HoblOBP2能够分别和HoblOBP1、HoblOBP4形成异源二聚体。
     (3)本研究根据免疫组织化学法利用胶体金双标记技术在亚细胞水平上检测了二元蛋白混合物在华北大黑鳃金龟触角感器中的共定位情况。实验结果显示,HoblOBP1/HoblOBP2和HoblOBP2/HoblOBP4均在华北大黑鳃金龟板型感器和锥形感器中共表达,这一实验结果是对OBPs之间能够形成二聚体以感受外界气味分子以及信息素这一理论的验证和支持,为疏水性通道理论提供了强有力的证据。
     (4)本研究利用DUALsystem Biotech公司文库构建试剂盒,构建了华北大黑鳃金龟触角酵母双杂交系统均一化的cDNA文库,并将其克隆到酵母双杂交系统的表达载体pPR3-N上,为下一步利用酵母双杂交技术研究蛋白互作搭建了技术平台。构建好的均一化cDNA文库经质量检测发现,原始文库的库容量为1.1×106,平均插入片段大小约为1.2kb,达到了高质量文库的标准,保证了文库的覆盖性。
     (5)本实验利用DUALsystem Biotech公司DUALhunter starter kits酵母双杂交筛选试剂盒,构建了华北大黑鳃金龟气味结合蛋白OBP1和OBP2诱饵载体,筛选了华北大黑鳃金龟触角酵母双杂交系统均一化的cDNA文库,经鉴定以及在GenBank中进行Blast比对分析,以OBP1为诱饵鉴定出6个互作物,以OBP2为诱饵鉴定出8个互作物。通过-半乳糖苷酶活性检测,以OBP1为诱饵,最终确定的阳性互作物为receptor for activated protein kinase C-like,以OBP2为诱饵最终确定的阳性互作物为proclotting enzyme,我们推测这两种蛋白可能是华北大黑鳃金龟在嗅觉识别过程中的相关蛋白。
Underground pests are a harmful class group in agricultural industry in China, and their coverthabitats and strong adaptability result in difficulties in the prevention and control of pests. The scarabbeetle, Holotrichia oblita Faldermann (Coleoptera: Scarabaeidae), belongs to such a class and hascaused serious economic damage to crops, fruit trees and forest trees in China. The chemical methods ofcontroling underground pests could lead to many potential threats. Therefor, an environmentallyfriendly method for controlling of H. oblita is needed. The sophisticated insect olfactory system candetect and discriminate between different kinds of odorants, which are volatile small organic moleculesin the environment. This characteristic property plays a crucial role in insect behaviors, such as hostseeking, mating, ovipositing, as well as escape behaviors. Therefore, the secret that arousing a series ofinsect behavior reactions by perceiving and distinguishing amounts and kinds of odorants will beunveiled by investigating olfactory receptive mechanism, which contributes to exploit the newbiological agent to mess up communications among pests. This kind of new conception will providenew way for biological control, and gain our ends to protect crops from damage by pests. Ourconclusions are listed as follow.
     (1) According to registered OBP3and OBP4sequences from H. oblita in GenBank, we designedspecific primers and obtained ORF sequences of OBP3and OBP4from H. oblita. These two sequenceswere cloned into expression vector pET-30a respectively, which provided molecular basis for proteinfunctional analysis.
     (2) The crystal structure of Anopholes gambiae OBP20(AgamOBP20) was chosen as a templatefor both HoblOBP3and HoblOBP4to predict three-dimensional structures. The three-dimensionalmodel of HoblOBP3and HoblOBP4presented a large binding pocket, and the C-termini extended intothe binding pocket, which was similar to AgamOBP1. Six olfactory associated proteins of H. oblita,HoblOBP3, HoblOBP4, HoblCSP1, HoblCSP2, HoblOBP1and HoblOBP2, were expressed in E.coliand purified using Ni ion affinity chromatography. We selected42potential organic compounds on thebasis of competitive binding assays with proteins of HoblOBP3and HoblOBP4, which includedcompounds from volatile green plants and putative sex pheromones of some beetle species. The resultsshowed that HoblOBP4exhibited a broader spectrum of activity and well bound aliphatic compoundsconsisting of6carbon atoms, and putative sex pheromone compounds of some beetle species, such asL-isoleucine methyl ester. However, HoblOBP3only appeared high affinity to α-ionone and-ionone.In addition, the differences of position, variety and amount of functional groups, length difference ofcarbon chain, ring-shaped or ring-open structure of carbon chain, and optical isomerism in compoundswere the main impact factors that affected binding affinity. The interrelations and formation of dimerbetween olfactory associated proteins were discussed using competitive binding assays. We speculatedthat HoblOBP2could form dimer with HoblOBP1and HoblOBP4respectively.
     (3) We used the technique of colloidal gold post-embedding immunocytochemistry to detect colocalization of binary OBPs at the subcellsular level. The presented results demonstrated that thebinary mixtures of HoblOBP1/HoblOBP2and HoblOBP2/HoblOBP4were both coexpressed in sensillaplacodea and sensilla basiconica. This conclusion supported one assumption that OBPs could formdimer in order to perceive plant odors and sex pheromones, which provided evidence for thehydrophobic tunnel hypothesis.
     (4) The construction kits of DUALsystem Biotech were used to construct the normalized cDNAlibrary from H. oblita antenna in order to screen by yeast two-hybrid assay. Then, the completed librarywas cloned into vector pPR3-N expressing in yeast, which put up the platform for screening by yeasttwo-hybrid assay. Subsequently, the quality of the normalized cDNA library was tested. The resultsshowed that the number of independent transformants in the original library was1.1×106, and theaverage insert size was greater than1.2kb, which was up to the standard of the high-quality andhigh-spreadability cDNA library.
     (5) DUALhunter starter kits of DUALsystem Biotech were used to construct the bait vector ofHoblOBP1and HoblOBP2respectively. Then, the H. oblita antenna normalized cDNA library wasscreened. The screened results showed that six interactors screened with HoblOBP1bait vector andeight interactors screened by HoblOBP2bait vector were identified using PCR technique and analyzedusing Blast in GenBank. In the end, by assaying for detection of-galactosidase activity, the strongestpositive interactor, receptor for activated protein kinase C-like, was identified by HoblOBP1bait, andthe proclotting enzyme was viewed as the strongest positive interactor identified by HoblOBP2bait.Therefore, we speculated that the two positive interactors might work in the process of olfactoryrecognition.
引文
1.曹雅忠,李克斌,尹姣.浅析我国地下害虫的发生与防治现状.见:成卓敏,编.农业生物灾害预防与控制研究.北京:中国农业出版社,2005,389~393.
    2.陈爱,杨彩,邝乐生,梁惠琼.甲基异柳磷防治蔗田金龟子的研究.甘蔗糖业,1986,(8):27~32.
    3.陈川,唐周怀,郭小侠,石勇强.金龟子绿僵菌对华北大黑鳃金龟幼虫的杀虫活性研究.中国农学通报,2009,25(04):208~211.
    4.陈红印,陈长风,王树英,刘崇林,宋文鹏,姜祖诚,罗益镇, McDonald R.C.建立土蜂资源保护区控制蛴螬为害.植保技术与推广,2003,23:3~7.
    5.陈正州,薛兆银,周靖,徐家忠.球孢白僵菌防治花生田蛴螬药效试验研究.现代农业科技,2011(4):144~146.
    6.戴建青,韩诗畴,杜家纬.植物挥发性信息化学物质在昆虫寄主选择行为中的作用.环境昆虫学报,2010,32(3):407~414.
    7.邓春生,张燕荣,沈宏彬.布氏白僵菌粉剂对大黑蛴螬的毒力测定.见:中国植物保护学会,编.生物入侵分会第四届全国绿色环保农药新技术、新产品交流会暨第三届生物农药研讨会论文集.2006,141~143.
    8.邓思思,尹姣,曹雅忠,罗宗秀,王伟,李克斌.华北大黑鳃金龟对20种植物源挥发物的电生理和行为反应.植物保护,2011,37(5):62~66.
    9.邓思思.华北大黑鳃金龟气味结合蛋白功能分析.[硕士学位论文].北京:中国农业科学院,2011.
    10.丁红建,郭予元.寄主植物他感化合物与害虫行为的关系及其利用.植物保护,1995,5:33~35.
    11.丁锦华,尹楚道,林冠伦,徐冠军,沈允昌.农业昆虫学.苏州:江苏科学技术出版社,1991.
    12.杜家纬.植物—昆虫间的化学通讯及其行为控制.植物生理学报,2001,27(3):193~200.
    13.杜永均,严福顺,韩心丽,张广学.大豆蚜嗅觉在选择寄主植物中的作用.昆虫学报,1994,37(4):385~392.
    14.樊慧,金幼菊,李继泉,陈华君.引诱植食性昆虫的植物挥发性信息化合物的研究进展.北京林业大学学报,2004,26(3):76~81.
    15.葛红梅.云斑天牛触角全长cDNA文库的构建及化学感受蛋白基因的克隆.[硕士学位论文].武汉:华中农业大学,2009.
    16.谷少华.苜蓿盲蝽嗅觉相关基因的发掘及功能分析.[硕士学位论文].北京:中国农业科学院,2010.
    17.关丽.华北大黑鳃金龟化学感受蛋白功能分析.[硕士学位论文].吉林:吉林大学,2012.
    18.郝德君.两种新型药剂对东北大黑鳃金龟的防治研究.林业科技,2002,27(6):20~22.
    19.胡宏云,许春远.华北大黑鳃金龟生物学特性研究.安徽农业科学,1986,30(4):69~70.
    20.胡继武,田家祥,于成本,于迎春.卵孢白僵菌防治大葱田蛴螬试验.见:中国菌物学会虫生真菌专业委员会,编.中国虫生真菌研究与应用(第二卷),北京:中国农业科技出版社,1991,154~155.
    21.胡志成,赵进春,郝红梅.杀虫灯在我国害虫防治中的应用进展.中国植保导刊,2008,28:11~13.
    22.黄应昆.15%乐斯本颗粒剂防治甘蔗害虫田间药效试验.农药,2001,40(10):26~27.
    23.金玉荣,殷宏,罗建勋.生防绿僵菌研究进展.安徽农业科学,2009,37(5):2060~2062,2077.
    24.邝乐生.应用辛硫磷防治蔗田金龟子技术通过鉴定.甘蔗糖业,1984,(9):62.
    25.李霞荣,张兴桃,陈军,刘领,刘小阳.绿僵菌与几种药剂防治花生蛴螬的比较试验.宿州学院学报,2011,26(2):74~75.
    26.李小峰,王国汉.昆虫病原线虫对黄曲条跳甲幼虫防治的初步研究.植物保护学报,1990,17(3):229~231.
    27.李耀发,党志红,高占林,王吉强,申妍妍,杨继冲,潘文亮.三种方法测定几种杀虫剂对华北大黑鳃金龟的毒力.粮食安全与植保科技创新,2009,661~663.
    28.刘爱英.中国虫生真菌研究与应用.见:中国菌物学会虫生真菌专业委员会,编.中国虫生真菌研究与应用(第二卷),北京:中国农业科技出版社,1991:159~164.
    29.刘广瑞,章有为,王瑞.中国北方常见金龟子彩色图鉴.北京:中国林业出版社,1997.
    30.刘树森,李克斌,刘春琴,王庆雷,尹姣,曹雅忠.河北异小杆线虫一品系的分类鉴定及其对蛴螬致病力的测定.昆虫学报,2009,52(9):959~966.
    31.刘志诚,孙姒纫,王志勇,曾妙娥,梁裕芬,曾继初,马永青.甘蔗黑色蔗龟药剂防治试验.广东农业科学,1983,(6):31~34.
    32.刘志诚,王志勇,孙姒纫,刘建峰,梁裕芬,陆洪游,马永青.甘蔗黑色蔗龟药剂防治试验示范.广东农业科学,1985,(2):35~35.
    33.娄永根,程家安.虫害诱导的植物挥发物:基本特性、生态学功能及释放机制.生态学报,2000,20(6):1079~1106.
    34.卢伟,侯茂林,文吉辉,黎家文.植物挥发性次生物质对植食性昆虫的影响.植物保护,2007,33(3):7~11.
    35.陆晴,董建臻,曹伟平,王金耀,冯书亮.球孢白僵菌生长及毒力影响因子的研究进展.华北农学报,2007,22(S2):58~61.
    36.陆宴辉,张永军,吴孔明.植食性昆虫的寄主选择机理及行为调控策略.生态学报,2008,28(10):5113~5122.
    37.罗益镇,崔景岳.土壤昆虫学.北京:中国农业出版社,1995,172~177.
    38.罗宗秀,李克斌,曹雅忠,尹姣,张杰,张静涛,尚光强.河南部分地区花生田地下害虫发生情况调查.植物保护,2009,35(2):104~108.
    39.罗宗秀.金龟甲调查及其优势种性信息素鉴定与应用研究.[硕士学位论文].北京:中国农业科学院,2010.
    40.马平顺.华北大黑鳃金龟生活规律及其防治.山西农业科学,1985,5:22~23.
    41.蒲蛰龙,李增智.昆虫真菌学.合肥:安徽科学技术出版社,1996.
    42.秦玉川.昆虫行为学导论.北京:科学出版社,2009.
    43.任敏,冯之杰.太阳能灭虫器对花生田蛴螬诱杀效果的初步探讨.花生学报,2006,35:37~40.
    44.任顺祥,陈学新.生物防治.北京:中国农业出版社,2012,3~27.
    45.商显坤,黄诚华,王伯辉.我国化学防治甘蔗金龟子研究进展.南方农业学报,2011,42(10):1229~1232.
    46.沈佐锐.昆虫生态学及害虫防治的生态学原理.北京:中国农业大学出版社,2009.
    47.宋协松,宋文武,张吉民,刘元文,葛宝明.花生田金龟防治技术研究.华东昆虫学报,1996,5(l):30~35.
    48.苏宏华,王桂荣,张永军,梁革梅,吴孔明,郭予元.利用酵母双杂交技术筛选棉铃虫触角内与G蛋白q家族α亚基(Gqα)互作的蛋白.昆虫学报,2010,53(12):1339~1344.
    49.苏品,廖晓兰,张亚,薛正杰.白僵菌防治花生地蛴螬研究综述.广西农业科学,2009,40(4):373~377.
    50.孙凡,胡基华,王广利,彭璐.东北大黑鳃金龟嗅感器超微结构.昆虫学报,2007b,50(7):675~681.
    51.孙凡,王广利,赵奎军.金龟子嗅感器及嗅觉机理的研究进展.东北农业大学学报,2007a,38(3):411~415.
    52.王宝升,崔景岳,李仲秀.河北省花生田金龟子生物学习性及在防治上的利用研究.华北农学报(增刊),1989,163~168.
    53.王广利.华北大黑鳃金龟对绿叶气味的反应及嗅感器超微结构的研究.[硕士学位论文].哈尔滨:东北林业大学,2006.
    54.王惠,张兴,米宏彬.华北大黑鳃金龟性信息素组分的分离与鉴定.西北农林科技大学学报(自然科学版),2002,30(2):91~95.
    55.王惠.华北大黑鳃金龟性信息素组分的初步研究.[硕士学位论文].杨凌:西北农林科技大学,1993.
    56.魏鸿均.中国地下害虫研究概述.昆虫知识,1992,29(2):168~170.
    57.魏鸿钧,张治良,王萌长.中国地下害虫.上海:上海科学技术出版社,1989,1~5,73~90.
    58.魏鸿钧.地下害虫发生动态与防治意见.昆虫知识,1985,22(3):142.
    59.仵均详.农业昆虫学.北京:中国农业出版社,2002.
    60.伍椿年,樊继贵.华北大黑鳃金龟的发生和测报.病虫测报,1991,(1):11~12.
    61.谢宁,王中康,张建伟,陈环,殷幼平.绿僵菌CQMa128乳粉剂对蛴螬时间—剂量—死亡率模型分析.中国生物防治,2010,26(4):436~441.
    62.徐汉虹.杀虫植物与植物性杀虫剂.北京:中国农业出版社,2001.
    63.徐庆丰,洪家保,巫后长,冯玮.布氏白僵菌防治花生蛴螬的研究.中国生物防治,1997,13(1):23~25.
    64.姚庆学,张勇,丁岩.金龟子防治研究的回顾与展望.东北林业大学学报,2003,31(1):64~66.
    65.殷幼平,申剑飞,时玉娟,刘美昌,邵长文,王中康.金龟子绿僵菌CQMa128新制剂对花生蛴螬的田间防控效果.植物保护,2012,38(3):162~167.
    66.曾万秋.甲基异柳磷防治蔗田金龟子通过技术鉴定.甘蔗糖业,1986,(8):49.
    67.张丽芳,朱家颖,杨发忠,赵宁,杨斌.甜菜夜蛾触角全长cDNA文库的构建与分析.生物技术,2012,22(4):11~14.
    68.张润杰,古德祥.对农业害虫防治策略与技术的展望.昆虫天敌,1999,21(4):179~185.
    69.张士美,赵泳祥.中国农林昆虫地理分布.北京:中国农业出版社,1996,132.
    70.张世忠.大田蛴螬的防治技术.农业与技术,2011,31(2):46~47.
    71.张天涛.棉铃虫嗅觉相关蛋白的鉴定及功能研究.[博士学位论文].杨凌:西北农林科技大学,2011.
    72.张艳玲,袁萤华,原国辉,郭线茹,罗梅浩.蓖麻叶对华北大黑鳃金龟引诱作用的研究.河南农业大学学报,2006,40(1):53~57.
    73.张艳玲.蓖麻对华北大黑鳃金龟引诱及毒杀作用的研究.[硕士学位论文].河南:河南农业大学,2005.
    74.张中润,曹莉,刘秀玲,王果红,许再福,韩日畴.昆虫病原线虫Steinernema LongicaudumX-7增效剂的筛选.昆虫知识,2001,43(1):68~73.
    75.赵善欢.植物化学保护(第三版).北京:中国农业出版社.
    76.钟涛.麦长管蚜气味结合蛋白的结合特性及组织定位.[博士学位论文].北京:中国农业科学院,2012.
    77.朱彬彬.家蝇触角cDNA文库的构建及气味结合蛋白基因cDNA的克隆.[硕士学位论文].武汉:华中农业大学,2005.
    78.庄绪静.华北大黑鳃金龟气味结合蛋白特异结合位点探讨.[硕士学位论文].北京:中国农业科学院,2012.
    79. Altner H., Routh C., Loftus R. The structure of bimadal chemo-, thermo-, and hygrorecptivesensilla on the antenna of Locusta migraoria. Cell and Tissue Research,1981,215:289~308.
    80. Andronopoulou E., Labropoulou V., Douris V., Woods D.F., Biessmann H., Iatrou K. Specificinteractions among odorant-binding proteins of the African malaria vector Anopheles gambiae.Insect Molecular Biology,2006,15:797~811.
    81. Angeli S., Ceron F., Scaloni A., Monti M., Monteforti G., Minnocci A., Petacchi R., Pelosi P.Purification, structural characterization, cloning and immunocytochemical localization ofchemoreception proteins from Schistocerca gregaria. European Journal of Biochemistry,1999,262:745~754.
    82. Aronheim A., Engelberg D., Li N., al-Alawi N., Schlessinger J., Karin M. Membrane targeting ofthe nucleotide exchange factor SOS is sufficient for activating the Ras signaling pathway. Cell,1994,78:949~961.
    83. Auerbach D., Thaminy S., Hottiger M.O., Stagljar I. The post-genomic era of interactiveproteomics: facts and perspectives. Proteomics,2002,2:611~623.
    84. Ban L.P., Scaloni A., Brandazza A., Angeli S., Zhang L., Yan Y., Pelosi P. Chemosensory proteinsof Locusta migratoria. Insect Molecular Biology,2003,12:125~134.
    85. Ban L.P., Scaloni A., D‘Ambrosio C., Zhang L., Yan Y.H., Pelosi P. Biochemical characterisationand bacterial expression of an odorant-binding protein from Locusta migratoria. Cellular andMolecular Life Sciences,2003,60:390~400.
    86. Bartel P.L., Roecklein J.A., SenGupta D., Fields S. Protein linkage map of Escherichia colibacteriophage T7. Nature Genetics,1996,12:72~77.
    87. Benton R., Sachase S., Michnick S.W., Vosshall L.B. Atypical membrane topology andheteromeric function of Drosophila odorant receptors in vivo. PLoS Biology,2006,4(2):240~257.
    88. Benton R., Vannice K.S., Gomez-Diaz C., Vosshall L.B. Variant ionotropic glutamate receptors aschemosensory receptors in Drosophila. Cell,2009.136(1):149~162.
    89. Biessmann H., Andronopoulou E., Biessmann M.R., Douris V., Dimitratos S.D., Eliopoulos E.,Guerin P.M., Latrou K., Justice R.W., Kr ber T., Marinotti O., Tsitoura P., Woods D.F., WalterM.F. The Anopheles gambiae odorant binding protein1(AgamOBP1) mediates indole recognitionin the antennae of female mosquitoes. PLoS ONE,2010,5: e9471.
    90. Bignetti E., Cavaggioni A., Pelosi P. An odorant binding protein in cow. In: Discussions inNeurosciences, vol. IV, n.3. Sensory Transduction,(Hudspeth A.J., MacLeish P.R., Margolis F.L.,Wiesel T.N.), Foundation FESN Geneva,1987, pp.37~41.
    91. Boireau W., Rouleau A., Lucchi G., Ducoroy P. Revisited BIA-MS combination: entire "on-achip"processing leading to the proteins identification at low femtomole to sub-femtomole levels.Biosensors and Bioelectronics,2009,24:1121~1127.
    92. Booth S.R., Tanigoshi L., Dewes I. Potential of a dried mycelium formulation of an indigenousstain of Metarhizium anisopliae against subterranean pests of cranberry. Biocontrol Science andTechnology,2000,10(5):659~668.
    93. Briand L., Nespoulous C., Huet J.C., Takahashi M., Pernollet J.C. Ligand binding andphysico-chemical properties of ASP2, a recombinant odorant-binding protein from honeybee (Apismellifera L.). European Journal of Biochemistry,2001,268,752~760.
    94. Broder Y.C., Katz S., Aronheim A. The Ras recruitment system, a novel approach to the study ofprotein-protein interactions. Current Biology,1998,8:1121~1124.
    95. Brown M.M., Williams T.D., Chipman J.K., Katsiadaki I., Sanders M., Craft J.A. Construction ofsubtracted EST and normalized cDNA libraries from liver of chemical-exposed three-spinedstickleback (Gasterosteus aculeatus) containing pollutant responsive genes as a resource fortranscriptome analysis. Marine Environmental Research,2008,66(1):127~130.
    96. Brückner A., Polge C., Lentze N., Auerbach D., Schlattner U. Yeast two-hybrid, a powerful toolfor systems biology. International Journal of Molecular Sciences,2009,10(6):2763~2788.
    97. Butenandt A., Beckmann R., Stamm D., Hecker E. über den sexuallockstoff des seidenspinnersBombyx mort Reindarstellung und Konstitution. Zeitschrift für Naturforsch,1959,14:283~284.
    98. Calvello M., Guerra N., Brandazza A., Ambrosio C.D., Scaloni A., Dani F.R., Turillazzi S.,Pelosi P. Soluble proteins of chemical communication in the social wasp Polistes dominulus.Cellular and Molecular Life Sciences,2003,60:1933~1943.
    99. Campanacci V., Krieger J., Bette S., Sturgis J.N., Lartigue A., Cambillau C., Breer H., Tegoni M.,Revisiting the specificity of Mamestra brassicae and Antheraea polyphemus pheromone-bindingproteins with a fluorescence binding assay. Journal Biological Chemistry,2001,276(23):20078~20084.
    100. Campanacci V., Longhi S., Nagnan-Le Meillour P., Cambillau C., Tegoni M. Recombinantpheromone binding protein1from Mamestra brassicae (MbraPBP1). European Journal ofBiochemistry,1999,264:707~716.
    101. Carey A.F., Wang G., Su C.Y., Zwiebel L.J., Carlson J.R. Odorant reception in the malariamosquito Anopheles gambiae. Nature,2010,464:66~71.
    102. Cavasotto C.N., Phatak S.S. Homology modeling in drug discovery: Current trends andapplications. Drug discovery today,2009,14(13):676~683.
    103. Chenier J.V.R., Philogene B.J.R. Field responses of certain forest coleoptera to conifermonoterpenes and ethanol. Journal of Chemical Ecology,1989,15(6):1729~1746.
    104. Cuperus P.L. A comparative electro microcopical study on antennae of small ermine moths(Lepidoptera: Yponmeutidae).[Ph.D dissertation], Sweden,1983.
    105. Damberger F., Nikonova L., Horst R., Peng G., Leal W.S., Wuthrich K. NMR characterization of apH-dependent equilibrium between two folded solution conformations of the pheromone-bindingprotein from Bombyx mori. Protein Science,2000,9,1038~1041.
    106. Danscher G. Localization of gold in biological tissue: a photochemical method for light andelectronmicroscopy. Histochemistry,1981,71:81~88.
    107. Danty E., Briand L., Michard-Vanhee C., Perez V., Arnold G., Gaudemer O., Huet D., Huet J.C.,Ouali C., Masson C., Pernollet J.C. Cloning and expression of a queen pheromone-binding proteinin the honeybee: an olfactoryspecific, developmentally regulated protein. Journal of Neuroscience,1999,19:7468~7475.
    108. Deng S.S., Yin J., Zhong T., Cao Y.Z., Li K.B. Function and Immunocytochemical Localisation ofTwo Novel Odorant-Binding Proteins in Olfactory Sensilla of the Scarab Beetle Holotrichia oblitaFald (Coleoptera: Scarabaeidae). Chemical Senses,2012,37:141~150.
    109. Dickens J.C. Orientation of colorato potato beetle to natural and synthetic blends of volatilesemmited by potato plants.Agri. Agricultural and Forest Entomology,2000,2(3):167~172.
    110. Dickens J.C., Callahan F.E., Wergin W.P., Murphy C.A., Vogt R.G. Odorant-binding proteins oftrue bugs: generic specificity, sexual dimorphism, and association with subsets of chemosensorysensilla. Annals of the New York Academy of Sciences,1998,855,306~310.
    111. Durand N., Carot-Sans G., Bozzolan F., Rosell G., Siaussat D., Debernard S., Chertemps T.,Ma bèche-Coisne M. Degradation of pheromone and plant volatile components by a sameodorant-degrading enzyme in the cotton leafworm, Spodoptera littoralis. PLoS ONE,2011,6:e29147.
    112. Durfee T., Becherer K., Chen P.L., Yeh S.H., Yang Y., Kilburn A.E., Lee W.H., Elledge S.J. Theretinoblastoma protein associates with the protein phosphatase type1catalytic subunit. Genes&Development,1993,7:555~569.
    113. Falach L., Cojocaru M., Shani A. Evidence for a short-range sex pheromone in female Maladeramatrida beetle. Journal of Chemical Ecology,2003,29(3):603~613.
    114. Felkl M., Leube R.E. Interaction assays in yeast and cultured cells confirm known and identifynovel partners of the synaptic vesicle protein synaptophysin. Neuroscience,2008,156:344~352.
    115. Fetchko M., Auerbach D., Stagljar I. Yeast genetic methods for the detection of membrane proteininteractions: potential use in drug discovery. BioDrugs,2003,17,413~424.
    116. Fields S., Song O.K. A novel genetic system to detect protein-protein interactions. Nature,1989,340:245~246.
    117. Formstecher E., Aresta S., Collura V. Protein interaction mapping: a Drosophila case study.Genome Research,2005,15:376~384.
    118. Fox A.N., Pitts R.J., Robertson H.M., Carlson J.R., Zwiebel L.J. Candidate odorant receptors fromthe malaria vector mosquito Anopheles gambiae and evidence of down-regulation in response toblood feeding. Proceedings of the National Academy of Sciences, USA,2001,98(25):14693~14697.
    119. Fromont-Racine M., Mayes A.E., Brunet-Simon A., Rain J.C., Colley A., Dix I., Decourty L., JolyN., Ricard F., Beggs J.D., Legrain P. Genome-wide protein interaction screens reveal functionalnetworks involving Sm-like proteins. Yeast,2000,17:95~110.
    120. Galindo K., Smith D.P. A large family of divergent Drosophila odorant-binding proteins expressedin gustatory and olfactory sensilla. Genetics,2001,159,1059~1072.
    121. Gonzàlez D., Zhao Q., McMahan C., Velasquez D., Haskins W.E., Sponsel V., Cassill A., RenthalR. The major antennal chemosensory protein of red imported fire ant workers. Insect MolecularBiology,2009,18:395~404.
    122. Grosse-Wilde E., Gohl T., Bouche E., Breer H., Krieger J. Candidate pheromone receptors providethe basis for the response of distinct antennal neurons to pheromonal compounds. EuropeanJournal of Neuroscience,2007,25:2364~2373.
    123. Gu S.H., Wang S.Y., Zhang X.Y., Ji P., Liu J.T., Wang G.R., Wu K.M., Guo Y.Y., Zhou J.J.,Zhang Y.J. Functional characterizations of chemosensory proteins of the Alfalfa Plant BugAdelphocoris lineolatus indicate their involvement in host recognition. PLoS One,2012,7(8):e42871.
    124. Gyorgyi T.K., Roby-Shemkovitz A.J., Lerner M.R. Characterization and cDNA cloning of thepheromone binding protein from the tobacco hornworm, Manduca sexta: a tissue-specificdevelopmentally regulated protein. Proceedings of the National Academy of Sciences, USA,1988,85,9851~9855.
    125. Ha T.S., Smith D.P. Insect odorant receptors: Channeling scent. Cell,2008,133(5):761~763.
    126. Hallem E.A., Carlson J.R. Coding of odors by a receptor repertoire. Cell,2006,125:143~160.
    127. Hallem E.A., Ho M.G., Carlson J.R. The molecular basis of odor coding in the Drosophilaantenna.Cell,2004,117:965~979.
    128. Hekmat-Scafe D.S., Scafe C.R., McKinney A.J., Tanouye M.A. Genome-wide analysis of theodorant-binding protein gene family in Drosophila melanogaster. Genome Research,2002,12:1357~1369.
    129. Hekmat-Scafe D.S., Steinbrecht R.A., Carlson J.R. Coexpression of two odorant-binding proteinhomologs in Drosophila: implications for olfactory coding. Journal of Neuroscience,1997,17:1616~1624.
    130. Henzell R.F., Lowe M.D. Sex attractant of the grass grub beetle.Science,1970,168:1005~1006.
    131. Hill C.A., Fox A.N., Pitts R.J., Kent L.B., Tan P.L., Chrystal M.A., Cravchik A., Collins F.H.,Robertson H.M., Zwiebel L.J. G protein-coupled receptors in Anopheles gambiae. Science,2002,298:176~178.
    132. Hirst M., Ho C., Sabourin L., Rudnicki M., Penn L., Sadowski I. A two-hybrid system fortransactivator bait proteins. Proceedings of the National Academy of Sciences, USA,2001,98:8726~8731.
    133. H fte H., Whiteley H.R. Insecticidal crystal proteins of Bacillus thuringiensis. MicrobiologyReviews,1989,53:242~255.
    134. Hong S., Choi G., Park S., Chung A.S., Hunter E., Rhee1S.S.Type D retrovirus Gag polyproteininteracts with the cytosolic chaperonin. Journal of Virology,2001,75(6):2526~2534.
    135. Honson N., Johnson M.A., Oliver J.E., Prestwich G.D., Plettner E. Structure-activity studies withpheromone binding proteins of the gypsy moth, Lymantria dispar. Chemical Senses,2003,28:479~489.
    136. Horst R.,Damberger F., Luginbühl P.,Güntert P., Peng G., Nikonova L., Leal W.S., Wüthrich K.NMR structure reveals intramolecular regulation mechanism for pheromone binding and release.Proceedings of the National Academy of Sciences, USA,2001.98:14374~14379.
    137. Huang A., Ho C.S., Ponzielli R., Barsyte-Lovejoy D., Bouffet E., Picard D., Hawkins C., Penn L.Z.Identification of a novel c-Myc protein interactor, JPO2, with transforming activity inmedulloblastoma cells. Cancer Research,2005,65:5607~5619.
    138. Huang J., Schreiber S.L., A yeast genetic system for selecting small molecule inhibitors ofprotein-protein interactions in nanodroplets. Proceedings of the National Academy of Sciences,USA,1997,94:13396~13401.
    139. Hughes D.T., Pelletier J., Luetje C.W., Leal W.S. Odorant receptor from the southern housemosquito narrowly tuned to the oviposition attractant skatole. Journal of Chemical Ecology,2010,36:797~800.
    140. Ishida Y., Chen A.M., Tsuruda J.M., Cornel A.J., Debboun M., Leal W.S. Intriguing olfactoryproteins from the yellow fever mosquito, Aedes aegypti. Naturwissenschaften,2004,91:426~431.
    141. Ishida Y., Leal W.S. Rapid inactivation of a moth pheromone. Proceedings of the NationalAcademy of Sciences, USA,2005,102:14075~14079.
    142. Ishida Y., Leal W.S. Chiral discrimination of the Japanese beetle sex pheromone and a behavioralantagonist by a pheromone-degrading enzyme. Proceedings of the National Academy of Sciences,USA,2008,105:9076~9080.
    143. Ito T., Chiba T., Ozawa R., Yoshida M., Hattori M., Sakaki Y. A comprehensive two-hybridanalysis to explore the yeast protein interactome. Proceedings of the National Academy ofSciences, USA,2001,98:4569~4574.
    144. Jin X., Brandazza A., Navarrini A., Ban L.P., Zhang S., Steinbrecht R.A., Zhang L., Pelosi P.Expression and immunolocalisation of odorant-binding and chemosensory proteins in locusts.Cellular and Molecular Life Sciences,2005,62,1156~1166.
    145. Johnsson N., Varshavsky A. Split ubiquitin as a sensor of protein interactions in vivo. Proceedingsof the National Academy of Sciences, USA,1994,91:10340~10344.
    146. Jones W.D., Nguyen T.A., Kloss B., Lee K.L., Vosshall L.B. Functional conservation of an insectodorant receptor gene across250million years of evolution. Current Biology,2005,15(4):119~121.
    147. Ju Q., Qu M.J., Wang Y., Jiang X.J., Li X., Dong S.L., Han Z.J. Molecular and biochemicalcharacterization of two odorant-binding proteins from dark black chafer, Holotrichiaparallela.Genome,2012,55:537~546.
    148. Kaissling K.E., Leal W.S. Biologische Nanokapseln für Duftstoffe. Naturwiss Rundsch,2004,57:66~71.
    149. Kaissling K.E. Olfactory perireceptor and receptor events in moths: a kinetic model. ChemicalSenses,2001,26:125~150.
    150. Kaissling K.E. Olfactory perireceptor and receptor events in moths: a kinetic model revised.Journal of Comparative Physiology A,2009,195:895~922.
    151. Keegan L., Gill G., Ptashne M. Separation of DNA binding from the transcription-activatingfunction of a eukaryotic regulatory protein. Science,1986,231:699~704.
    152. Keller S., Keller E., Anden J.A.L. A larger scale study of the control of the cockchafer (Melolonthamelolontha) with the fungus Beauveria brongniartii. Mitteilungen der SchwizerischenEntomologischen Gesellschaft,1986,59(12):47~56.
    153. Kelly W., Stumpf M. Protein-protein interactions: from global to local analyses. Current Opinionin Biotechnology,2008,19:396~403.
    154. Kiemer L., Cesareni G. Comparative interactomics: comparing apples and pears? Trends inBiotechnology,2007,25:448~454.
    155. Kim J.Y., Leal W.S. Ultrastructure of pheromone detecting sensillum placodeum of the Japanesebeetle, Popillia japonica Newmann (Coleoptera: Scarabaeidae). Arthropod Structure Development,2000,29:121~128.
    156. Kitabayashi A.N., Arai T., Kubo T., Natori S. Molecular cloning of cDNA for p10, a novel proteinthat increases in the regenerating legs of Periplaneta americana (American cockroach). InsectBiochemistry and Molecular Biology,1998,28:785~790.
    157. Krieger J., Grosse-Wilde E., Gohl T., Dewer Y.M.E., Raming K., Breer H. Gene encodingcandidate pheromone receptors in a moth (Heliothis virescens). Proceedings of the NationalAcademy of Sciences, USA,2004,101(32):11845~11850.
    158. Krieger J., Raming K., Dewer Y M E, Bette S., Conzelmann S., Breer H. A divergent gene familyencoding candidate olfactory receptors of the moth Heliothis virescens. European Journal ofNeuroscience,2002,16:619~628.
    159. Krieger J., Von Nickisch E., Mameli M., Pelosi P., Breer H. Binding proteins from the antennae ofBombyx mori. Insect Biochemistry and Molecular Biology,1996,26:297~307.
    160. Kruse S.W., Zhao R., Smith D.P., Jones D.N. Structure of a specific alcohol-binding site definedby the odorant binding protein LUSH from Drosophila melanogaster. Nature Structure andmolecular Biology,2003,10,694~700.
    161. Landolt P.J., Tumlinson J.H., Alborn D.H. Attraction of Colorado potato beetle (Coleoptera:Chrysomelidae) to damaged and chemically induced potato plants. Environmental Entomology,1999,28(6):973~978.
    162. Larsson M.C., Leal W.S., Hansson B.S. Olfactory receptor neurons specific to chiral sexpheromone components in male and female Anomala cuprea beetle (Coleoptera; Scarabaeidae).Journal of Comparative Physiology,1999,184:353~359.
    163. Larsson M.C., Domingos A.I., JonesW.D., Chiappe M.E., Amrein H., Vosshall L.B. Or83bencodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron,2004,43:703~714.
    164. Lartigue A., Gruez A., Briand L., Blon F., Bezirard V., Walsh M., Pernollet J.C., Tegoni M.,Cambillau C. Sulfur single-wavelength anomalous diffraction crystal structure of apheromone-binding protein from the honeybee Apis mellifera L, Journal of Biological Chemistry,2004,279:4459~4464.
    165. Laue M., Steinbrecht R.A., Ziegelberger G. Immunocytochemical localization of generalodorant-binding protein in olfactory sensilla of the silkmoth Antheraea polyphemus.Naturwissenschaften,1994,81:178~180.
    166. Laughlin J.D., Ha T.S., Jones D.N.M., Smith D.P. Activation of pheromone-sensitive neurons ismediated by conformational activation of pheromone-binding protein. Cell,2008,133:1255~1265.
    167. Leal W.S. Odorant Reception in Insects: Roles of Receptors, Binding Proteins, and DegradingEnzymes. Annual Review of Entomology,2013,58:373~91.
    168. Leal W.S. An amino acid derivative as the sex pheromone of a scarab beetle. Naturwissenschafte1992,79:184~185.
    169. Leal W.S., Chemical ecology of phytophagous scarab beetles. Annual Review of Entomology,1998,43:39~61.
    170. Leal W.S., Chen A.M., Erickson M.L. Selective and pH-dependent binding of a moth pheromoneto a pheromone-binding protein. Journal of Chemical Ecology,2005a,31:2493~2499.
    171. Leal W.S., Chen A.M., Ishida Y., Chiang V.P., Erickson M.L., Morgan T.I., Tsuruda J.M. Kineticsand molecular properties of pheromone binding and release. Proceedings of the National Academyof Sciences, USA,2005b,102:5386~5391.
    172. Leal W.S., Hasegawa M., Sawada M., Ono M. Sex pheromone of oriental beetle, Exomalaorientalis: identification and field evaluation. Journal of Chemical Ecology,1994a,20(7):1705~1718.
    173. Leal W.S., Hasegawa M., Sawada M, Ono M., Tada S. Scarab beetle Anomala albopilosa utilizes amore complex sex pheromone system than a similar speciesA.cuprea. Journal of Chemical Ecology,1996a,22(11):2001~2010.
    174. Leal W.S., Hasegawa M., Sawada M., Ono M., Ueda Y., Identification and field evaluation ofAnomala octiescostata (Coleoptera: Scarabaeidae) sex pheromone. Journal of Chemical Ecology,1994b,20(7):1643~1655.
    175. Leal W.S., Hasegawa M., Sawada M. Identification of Anomala schonfeldti sex pheromone byhigh-resolution GC-behavior bioassay.Naturwissenschaften,1992,79:518~519·
    176. Leal W.S., Ishida Y., Pelletier J., Xu W., Rayo J., Xu X.Z., Ames J.B. Olfactory proteins mediatingchemical communication in the navel orangeworm moth, Amyelois transitella. PLoS ONE,2009,4:e7235.
    177. Leal W.S., Kuwahara S., Ono M., Kubota S.(R, Z)-7,15-Hexadecadien-4-olide, sex pheromone ofthe yellowish elongate chafer, Heptophylla picea. Bioorganic and Medicinal Chemistry,1996b,4:315~321.
    178. Leal W.S., Oehlschlager A.C., Zarbin P.H.G., Hidalgo E., Shannon P.J., Murata Y., Gonzalez L.,Andrade R., Ono M., Sex pheromone of the scarab beetle Phyllophaga elenans and someintriguing minor components. Journal of Chemical Ecology,2003,29(1):15~25.
    179. Leal W.S., Sawada M., Hasegawa M. The scarab beetle Anomala cuprea utilizes the sexpheromone of Popillia japonicaas a minor component. Journal of Chemical Ecology,1993,19(7):1303~1313.
    180. Leal W.S. Pheromone reception. Topics in Current Chemistry,2005,240:1~36.
    181. Leal W.S., Nikonova L., Peng G. Disulfide structure of the pheromone binding protein from thesilkworm moth, Bombyx mori. FEBS Letter,1999,464:85~90.
    182. Leite N.R., Krogh R., Xu W., Ishida Y., Iulek J., Leal W.S., Oliva G. Structure of anodorant-binding protein from the mosquito Aedes aegypti suggests a binding pocket covered by apH-sensitive―Lid‖. PLoS ONE,2009,4: e8006.
    183. Licitra E.J., Liu J.O. A three-hybrid system for detecting small ligand-protein receptor interactions.Proceedings of the National Academy of Sciences, USA,1996,93:12817~12821.
    184. Liu R., He X., Lehane S., Lehane M., Hertz-Fowler C., Berriman M., Field L.M., Zhou J.J.Expression of chemosensory proteins in the tsetse fly Glossina morsitans is related to femalehost-seeking behavior. Insect Molecular Biology,2012,21:41~48.
    185. Loughrin J.H., Potter D.A., Hamilton-Kemp R.T., Byers M.E. Response of Japanese beetles(Coleoptera: Scerarabeidae) to leaf volatiles of susceptible and resistant maple species.Environment Entomology,1997,26(2):334~372.
    186. Maekawa M., Imai T., Tsuchiya S., Leal W.S. Behavioral and electrophysiological responses ofthe soybean beetle, Anomala rufocuprea Motschulsky (Coleoptera: Scarabaeidae) tomethlanthranilate and its related compounds. Journal of Applied Entomology Zoology,1999,34:99~103.
    187. Maida R., Steinbrecht R. A., Ziegelberger G., Pelosi P. The pheromone-binding protein of Bombyxmori: purification, characterisation and immunocytochemical localisation. Insect Biochemistry andMolecular Biology,1993,23,243~253.
    188. Maleszka R., Stange G. Molecular cloning, by a novel approach, of a cDNA encoding a putativeolfactory protein in the labial palps of the moth Cactoblastis cactorum. Gene,1997,202:39~43.
    189. Mao Y., Xu X., Xu W., Ishida Y., Leal W.S., Amesb J.B., Clardy J. Crystal and solution structuresof an odorant-binding protein from the southern house mosquito complexed with an ovipositionpheromone. Proceedings of the National Academy of Sciences, USA,2010,107:19102~19107.
    190. Marsolier M.C., Prioleau M.N., Sentenac A.A. RNA polymerase III-based two-hybrid system tostudy RNA polymerase II transcriptional regulators. Journal Molecular Biology,1997,268:243~249.
    191. Martynenko V.V. Application of Beauveria tenella (Del.) Siem control of the oriental May-beetle inthe Mari ASSR. Mikologiya and Fitopatologiya,1975,9(4):333~337.
    192. Matsuda S., Giliberto L., Matsuda Y., Davies P., McGowan E., Pickford F., Ghiso J., Frangione B.,D'Adamio L. The familial dementia BRI2gene binds the Alzheimer gene amyloid-beta precursorprotein and inhibits amyloid-beta production. Jouranl of Biological Chemistry,2005,280:28912~28916.
    193. McKenna M.P., Hekmat-Scafe D.S., Gaines P., Carlson J.R. Putative Drosophilapheromone-binding proteins expressed in a subregion of the olfactory system. Jouranl ofBiological Chemistry,1994,269:16340~16347.
    194. Miller J.P., Lo R.S., Ben-Hur A., Desmarais C., Stagljar I., Noble W.S., Fields S. Large-scaleidentification of yeast integral membrane protein interactions. Proceedings of the NationalAcademy of Sciences, USA,2005,102:12123~12128.
    195. Milner R.J., Samon P., Morton R. Persistence of conidia of Metarhizium anisopliae in sugar canefield: effect of isolate and formulation on persistence over3-5years. Biocontrol Science andTechnology,2003,13:507~516.
    196. Mitsuno H., Sakurai T., Murai M., Yasuda T., Kugimiya S., Ozawa R., Toyohara H., TakabayashiJ., Miyoshi H., Nishioka T. Identification of receptors of main sex-pheromone components of threelepidopteran species. European Journal of Neuroscience,2008,28:893~902.
    197. Miura N., Nakagawa T., Tatsuki S., Touhara K., Ishikawa Y. A male-specific odorant receptorconserved through the evolution of sex pheromones in Ostrinia moth species. International Journalof Biological Sciences,2009,5:319~330.
    198. Miura N., Nakagawa T., Touhara K., Ishikawa Y. Broadly and narrowly tuned odorant receptorsare involved in female sex pheromone reception in Ostrinia moths. Insect Biochemistry andMolecular Biolology,2010,40:64~73.
    199. Monika S. Pheromone transduction in moths. Frontiers Cell Neuroscience,2010,4:1~15.
    200. Nakagawa T., Sakurai T., Nishioka T., Touhara K. Insect sex-pheromone signals mediated byspecific combinations of olfactory receptors. Science,2005,307:1638~1642.
    201. Natsume T., Nakayama H., Jansson O., Isobe T., Takio K., Mikoshiba K. Combination ofbiomolecular interaction analysis and mass spectrometric amino acid sequencing. AnalyticalChemistry,2000,72:4193~4198.
    202. Nojima S., Robbins P.S., Salsbury G.A., Morris B., Roelofs W.L., Villani M.G.·L-leucinemethylester: the female-produced sex pheromone of the scarab beetle, Phyllophaga lanceolata. Journal ofChemical Ecology,2003,29(11):2439~2447.
    203. Nomura A., Kawasaki K., Kubo T., Natori S. Purification and localization of p10, a novel proteinthat increases in nymphal regenerating legs of Periplaneta americana (American cockroach).International Journal of Developmental Biology,1992,36:391~398.
    204. Obrdlik P., El-Bakkoury M., Hamacher T., Cappellaro C., Vilarino C., Fleischer C., Ellerbrok H.,Kamuzinzi R., Ledent V. Blaudez D., Sanders D., Revuelta J.L., Boles E., AndréB., FrommerW.B. A channel interactions detected by a genetic system optimized for systematic studies ofmembrane protein interactions. Proceedings of the National Academy of Sciences, USA,2004,101:12242~12247.
    205. Osborne M.A., Zenner G., Lubinus M., Zhang X.L., Zhou S.Y., Cantley L.C., Majerus P., Burn P.,Kochan J.P. The inositol5'-phosphatase SHIP binds to immunoreceptor signaling motifs andresponds to high affinity IgE receptor aggregation. Journal of Biological Chemistry,1996,271:29271~29278.
    206. Park S.K., Shanbhag S.R., Wang Q., Hasan G., Steinbrecht R.A., Pikielny C.W. Expressionpatterns of two putative odorant-binding proteins in the olfactory organs of Drosophilamelanogaster have different implications for their functions. Cell and Tissue Research,2000,300:181~192.
    207. Pasch J.C., Nickelsen J., Schunemann D. The yeast split-ubiquitin system to study chloroplastmembrane protein interactions. Applied Microbiology Biotechnology,2005,69:440~447.
    208. Pelletier J., Guidolin A., Syed Z., Cornel A.J., Leal W.S. Knockdown of a mosquito odorantbinding protein involved in the sensitive detection of oviposition attractants. Journal of ChemicalEcology,2010a,36:245~248.
    209. Pelletier J., Hughes D.T., Luetje C.W., Leal W.S. An odorant receptor from the southern housemosquito Culex pipiens quinquefasciatus sensitive to oviposition attractants. PLoS ONE,2010b,5:e10090.
    210. Pelosi P., Zhou J.J., Ban L.P., Calvello M. Soluble proteins in insect chemical communication.Cellular and Molecular Life Sciences,2006,63:1658~1676.
    211. Pennisi E. Fruit fly odor receptors found. Science,1999,283(5406):1239.
    212. Petrascheck M., Castagna F., Barberis A. Two-hybrid selection assay to identify proteinsinteracting with polymerase II transcription factors and regulators. Biotechniques,2001,30:296~298,300,302.
    213. Phizicky E.M., Fields S. Protein-protein interactions: methods for detection and analysis.Microbiological Reviews,1995,59:94~123.
    214. Picimbon J.F., Dietrich K., Krieger J., Breer H. Identity and expression pattern of chemosensoryproteins in Heliothis virescens (Lepidoptera, Noctuidae). Insect Biochemistry and MolecularBiology,2001,31:1173~1181.
    215. Plettner E., Lazar J., Prestwich E.G., Prestwich G.D. Discrimination of pheromone enantiomers bytwo pheromone binding proteins from the gypsy moth Lymantria dispar. Biochemistry,2000,39:8953~8962.
    216. Pollock S., Kozlov G., Pelletier M.F., Trempe J.F., Jansen G., Sitnikov D., Bergeron J.J.M.,Gehring K., Ekiel I., Thomas D.I. Specific interaction of ERp57and calnexin determined by NMRspectroscopy and an ER two-hybrid system. EMBO Journal,2004,23:1020~1029.
    217. Prestwich G.D., Bomquict G.J. Pheromone Biochemistry. New York: Academic Press.1987,353~384.
    218. Prestwich G.D. Bacterial expression and photoaffinity labeling of a pheromone binding protein.Protein Science,1993,2:420~428.
    219. Priesner E. Receptors for di-unsaturated pheromone analogues in the male summerfruit tortrixmoth. Zeitschrift fur Naturforschung,1987,38:874~877.
    220. Qiao H.L., He X.L., Schymura D., Ban L.P., Field L., Dani F.R., Michelucci E., Caputo B., TorreA., Iatrou K., Zhou J.J., Krieger J., Pelosi P. Cooperative interactions between odorant-bindingproteins of Anopheles gambiae. Cellular and Molecular Life Sciences,2011,68:1799~1813.
    221. Renou M., Tauban D., Morin J.P. Structure and function of antennal pore plate sensilla of Oryctesrhinoceros (L.)(Coleoptera: Dynastidae). International Journal of Insect Morphology andEmbryology,1998,27(3):227~233.
    222. Robertson H.M., Wanner K.W. The chemoreceptor superfamily in the honey bee, Apis mellifera:expansion of the odorant, but not gustatory, receptor family. Genome Research,2006,16(11):1395~1403.
    223. Rual J.F., Venkatesan K., Hao T., Hirozane-Kishikawa T., Dricot A., Li N. Towards aproteome-scale map of the human protein-protein interaction network. Nature,2005,437:1173~1178.
    224. Ruther J. Male-biassed response of garden chafer, Phyllopertha horticola L., to leaf alcohol andattraction of both sexes to floral plant volatiles. Chemoecology,2004,14:187~192.
    225. Rützler M., Zwiebel L.J. Molecular biology of insect olfaction: recent progress and conceptualmodels. Journal of Comparative Physiology A,2005,191:777~790.
    226. Sakurai T., Nakagawa T., Mitsuno H., Mori H., Endo Y., Tanoue S., Yasukochi Y., Touhara K.,Nishioka T. Identification and functional characterization of a sex pheromone receptor in thesilkmoth Bombyx mori. Proceedings of the National Academy of Sciences, USA,2004,101:16653~16658.
    227. Sánchez-Gracia A., Vieira F.G., Rozas J. Molecular evolution of the major chemosensory genefamilies in insects. Heredity,2009,103:208~216.
    228. Sandler B.H., Nikonova L., Leal W.S., Clardy J. Sexual attraction in the silkworm moth: structureof the pheromone-binding-protein-bombykol complex. Chemistry and Biology,2000,7:143~151.
    229. Sato K., Pellegrino M., Nakagawa T., Nakagawa T., Vosshall L.B., Touhara K. Insect olfactoryreceptors are heteromeric ligand-gated ion channels. Nature,2008,452:1002~1006.
    230. Scaloni A., Monti M., Angeli S., Pelosi P. Structural analyses and disulfide-bridge pairing of twoodorant binding proteins from Bombyx mori. Biochemical and Biophysical ResearchCommunications,1999,266:386~391.
    231. Schneider D., Hecker E. Zur elecktrophysiologie der antenne des seidenspinners Bombyx mmoribei mit angereicherten extrakten des sexuallockstoffed. Zritschrift fur Naturforschung PartB-Chemie Biophysik Biologie und Verwandten Gebiete,1956,11:121~124.
    232. Schoohoven L.M., Jermy T., van Loon J.J.A. Insect-plant Biology: from Physiology to Evolution.Cambridge: University Press,1998,136~138.
    233. Schoonhoven L.M., van Loon J.J.A., Dicke M. Insect-Plant Biology (2nd Edition).OxfordUniversity Press,2005.
    234. Serebriiskii I., Khazak V., Golemis E.A. A two-hybrid dual bait system to discriminate specificityof protein interactions. Journal of Biological Chemistry,1999,274:17080~17087.
    235. Shanbhag S.R., Smith D.P., Steinbrecht R.A. Three odorant-binding proteins are co-expressed insensilla trichodea of Drosophila melanogaster. Arthropod Structure and Development,2005,34:153~165.
    236. Shanbhag S.R., Hekmat-Scafe D., Kim M.S., Park S.K., Carlson J.R., Pikielny C., Smith D.P.,Steinbrecht R.A. Expression mosaic of odorant-binding proteins in Drosophila olfactory organs.Microscopy Research and Technique,2001,55,297~306.
    237. Shields V.D.C. Ultrastructure of insect Sensilla. Encyclopedia of Entomology,2005,2408~2420.
    238. Shu C., Yan G., Wang R., Zhang J., Feng S.L., Huang D.F., Song F.P. Characterization of a novelcry8gene specific to Melolonthidae pests: Holotrichia oblita and Holotrichia parallela. AppliedMicrobiology and Biotechnology,2009,84(4):701~707.
    239. Silbering A.F., Rytz R., Grosjean Y., Abuin L., Ramdya P., Jefferis G.S.X.E., Benton R.Complementary function and integrated wiring of the evolutionarily distinct Drosophila olfactorysubsystems. Journal of Neuroscience,2011,31:13357~13375.
    240. Silverstein R.M. Pheromone: background and potential for use in insect pest control. Science,1981,213:1326~1332.
    241. Slifer E.H. The structure of arthropod chemoreceptors. Annual Review of Entomology,1970,15:12l~142.
    242. Smart R., Kiely A., Beale M., Vargas E., Carraher C., Kralicek A.V., Christie D.L., Chen C.,Newcomb R.D., Warr C.G. Drosophila odorant receptors are novel seven transmembrane domainproteins that can signal independently of heterotrimeric G proteins. Insect Biochemistry andMolecular Biology,2008,38(8):770~780.
    243. Steinbrecht R.A. Functional morphology of pheromone-sensitive sensilla. In: PheromoneBiochemistry (Prestwich G.D. and Blomquist G.J., Eds.) Academic Press Inc. New York, PP.1987,353~384.
    244. Steinbrecht R.A., Laue M., Ziegelberger G. Immunolocalization of pheromone-binding protein andgeneral odorant-binding protein in olfactory sensilla of the silk moths Antheraea and Bombyx. Celland Tissue Research,1995,282(2):203~217.
    245. Steinbrecht R.A., Ozaki M., Ziegelberger G. Immunocytochemical localization ofpheromone-binding protein in moth antennae. Cell and Tissue Research,1992,270:287~302.
    246. Stelzl U., Worm U., Lalowski M., Haenig C., Brembeck F.H., Goehler H. A human protein-proteininteraction network: a resource for annotating the proteome. Cell,2005,122:957~968.
    247. Suter B., Kittanakom S., Stagljar I. Two-hybrid technologies in proteomics research. CurrentOpinion in Biotechnology,2008,19:316~323.
    248. Thaminy S., Auerbach D., Arnoldo A., Stagljar I. Identification of novel ErbB3-interacting factorsusing the split-ubiquitin membrane yeast two-hybrid system. Genome Research,2003,13:1744~1753.
    249. Tolasch T., S lter S., Tóth M., Ruther J., Francke W.(R)-Acetoin-female sex pheromone of thesummer chafer Amphimallon solstitiale (L.). Journal of Chemical Ecology,2003,29(4):1045~1050.
    250. Tsitsanou K.E., Thireou T., Drakou C.E., Koussis K., Keramioti M.V., Leonidas D.D., EliopoulosE., Iatrou K., Zographos S. E., Anopheles gambiae odorant binding protein crystal complex withthe synthetic repellent DEET: implications for structure-based design of novel mosquito repellents.Cellular and Molecular Life Sciences,2012,69(2):283~297.
    251. Twyman R.M. Principles of proteomics. BIOS Scientific Publishers, New York,2004.
    252. Uetz P., Dong Y.A., Zeretzke C., Atzler C., Baiker A., Berger B., Rajagopala1S.V., Roupelieva M.,Rose D., Fossum E., Haas J. Herpesviral protein networks and their interaction with the humanproteome. Science,2006,311:239~242.
    253. Uetz P., Giot L., Cagney G., Mansfield T.A., Judson R.S., Knight J.R., Lockshon D., Narayan V.,Srinivasan M., Pochart P., Qureshi-Emili A., Li Y., Godwin B., Conover D., Kalbfleisch T.,Vijayadamodar G., Yang M.J., Johnston M., Fields S., Rothberg J.M. A comprehensive analysis ofprotein-protein interactions in Saccharomyces cerevisiae. Nature,2000,403:623~627.
    254. Urech D.M., Lichtlen P., Barberis A. Cell growth selection system to detect extracellular andtransmembrane protein interactions. Biochimica et Biophysica Acta (BBA)-General Subjects,2003,1622:117~127.
    255. Vandermoten S., Francis F., Haubruge E., Leal W.S. Conserved odorant-binding proteins fromaphids and eavesdropping predators. PLoS ONE,2011,6(8): e23608.
    256. Vogt R.G. Molecular basis of pheromone detection in insects. In: Gilbert L.I., Iatro K., Gill S. Eds.Comprehensive Insect Physiology, Biochemistry, Pharmacology and Molecular BiologyEndocrinology. London: Elsevier Academic Press,2005,753~804.
    257. Vogt R.G., Riddiford L.M., Prestwich G.D. Kinetic properties of a sex pheromone-degradingenzyme: The sensillar esterase of Antheraea polyphemus. Proceedings of the National Academy ofSciences, USA,1985,82:8827~8831.
    258. Vogt R.G., Rogers M.E., Franco M.D., Sun M. A comparative study of odorant binding proteingenes: differential expression of the PBP1-GOBP2gene cluster in Manduca sexta (Lepidoptera)and the organization of OBP genes in Drosophila melanogaster (Diptera). Journal of ExperimentalBiology,2002,205:719~744.
    259. Vogt R.G., Riddiford L.M. Pheromone binding and inactivation by moth antennae. Nature,1981,293:161~163.
    260. Vogt R.G. Molecular basis of pheromone detection in insects. In Comprehensive Insect Physiology,Biochemistry, Pharmacology, and Molecular Biology, Gilbert L., Iatro K., Gill S., ed.2005, pp.753~804. London: Elsevier.
    261. Vogt R.G., Lerner M.R. Two groups of odorant binding proteins in insects suggest specific andgeneral olfactory pathways. Neuroscience Abstract,1989,15:1290.
    262. Vogt R.G., Riddiford L.M. Pheromone binding and inactivation by moth antennae. Nature,1981,293:161~163.
    263. Vogt R.G., K ehne A.C., Dubnau J.T., Prestwich G.D. Expression of pheromone binding proteinsduring antennal development in the gypsy moth Lymantria dispar. Journal of Neuroscience,1989,9:3332~3346.
    264. Vogt R.G., Prestwich G.D., Lerner M. Odorantbinding-protein subfamilies associate with distinctclasses of olfactory receptor neurons in insects. Journal of neurobiology,1991a,22:74~84.
    265. Vogt R.G., Prestwich G.D., Lerner M.R. Molecular cloning and sequencing of general-odorantbinding proteins GOBP1and GOBP2from tobacco hawk moth Manduca sexta: comparisons withother insect OBPs and their signal peptides. Journal of Neuroscience,1991b,11:2972~2984.
    266. Vogt R.G., Riddiford L.M., Prestwich G.D. Kinetic properties of a sex pheromone-degradingenzyme: the sensillar esterase of Antheraea polyphemus. Proceedings of the National Academy ofSciences, USA,1985,82:8827~8831.
    267. Vosshall L.B., Hansson B.S. A unified nomenclature system for the insect olfactory coreceptor.Chemical Senses,2011,36:497~498.
    268. Wafa L.A., Cheng H., Rao M.A., Nelson C.C, Cox M., Hirst M., Sadowski I., Rennie P.S. Isolationand identification of L-dopa decarboxylase as a protein that binds to and enhances transcriptionalactivity of the androgen receptor using the repressed transactivator yeast two hybrid system.Biochemical Journal,2003,375:373~383.
    269. Wang B., Pelletier J., Massaad M.J., Herscovics A., Shore G.C. The yeast split-ubiquitinmembrane protein two-hybrid screen identifies BAP31as a regulator of the turnover ofendoplasmic reticulum-associated protein tyrosine phosphatase-like B. Molecular and Cell Biology,2004,24:2767~2778.
    270. Wang G., Carey A.F., Carlson J.R., Zwiebel L.J. Molecular basis of odor coding in the malariavector mosquito Anopheles gambiae. Proceedings of the National Academy of Sciences, USA,2010,107:4418~4423.
    271. Wang G., Vasquez G.M., Schal C., Zwiebel L.J., Gould F. Functional characterization ofpheromone receptors in the tobacco budworm Heliothis virescens. Insect Molecular Biology,2011,20:125~133.
    272. Wanner K.W., Anderson A.R., Trowell S.C., Theilmann D.A., Robertson H.M., Newcomb R.D.Female-biased expression of odourant receptor genes in the adult antennae of the silkworm,Bombyx mori. Insect Molecular Biology,2007,16(1):107~119.
    273. Wanner K.W., Nichols A.S., Allen J.E., Bunger P.L., Garczynski S.F., Linn Jr C.E., RobertsonH.M., Luetje C.W. Sex pheromone receptor specificity in the European corn borer moth, Ostrinianubilalis. PLoS ONE,2010,5: e8685.
    274. Wanner K.W., Nichols A.S., Walden K.K.O., Brockmann A., Luetje C.W., Robertson H.M. Ahoneybee odorant receptor for the queen substance9-oxo-2-decenoic acid. Proceedings of theNational Academy of Sciences, USA,2007,104:14383~14388.
    275. Wetzel C.H., Behrendt H.J., Gisselmann G., St rtkuhl K.F., Hovemann B., Hatt H. Functionalexpression and characterization of a Drosophila odorant receptor in a heterologous cell system.Proceedings of the National Academy of Sciences, USA,2001,98(16):9377~9380.
    276. Wicher D., Schafer R., Bauernfeind R., Stensmyr M.C., Heller R., Heinemann S.H., Hansson B.S.Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels.Nature,2008,452:1007~1011.
    277. Wogulis M., Morgan T., Ishida Y., Leal W.S., Wilson D.K. The crystal structure of an odorantbinding protein from Anopheles gambiae: Evidence for a common ligand release mechanism.Biochemical and Biophysical Research Communications,2006,339:157~164.
    278. Wojtasek H., Leal W.S. Conformational change in the pheromone-binding protein from Bombyxmori induced by pH and by interaction with membranes. Journal of Biological Chemistry,1999,274:30950~30956.
    279. Wojtasek H., Picimbon J.F., Leal W.S. Identification and Cloning of Odorant Binding Proteinsfrom the Scarab Beetle Phyllopertha diversa. Biochemical and Biophysical ResearchCommunications,1999,263:832~837.
    280. Xu W., Leal W.S. Molecular switches for pheromone release from a moth pheromone-bindingprotein. Biochemical and Biophysical Research Communications,2008,372:559~564.
    281. Xu W., Xu X., Leal W.S., Ames J.B. Extrusion of the C-terminal helix in navel orangeworm mothpheromone-binding protein (AtraPBP1) controls pheromone binding. Biochemical and BiophysicalResearch Communications,2011,404:335~338.
    282. Xu X., Xu W., Rayo J., Ishida Y., Leal W.S., Ames J.B. NMR structure of navel orangeworm mothpheromone-binding protein (AtraPBP1): implications for pH-sensitive pheromone detection.Biochemistry,2010,49:1469~1476.
    283. Xu P.X., Zwiebel L.J., Smith D.P. Identification of a distinct family of genes encoding atypicalodorant-binding proteins in the malaria vector mosquito, Anopheles gambiae. Insect MolecularBiology,2003,12:549~560.
    284. Yin J., Feng H.L., Sun H.Y., Xi J.H., Cao Y.Z., Li K.B. Functional Analysis of General OdorantBinding Protein2from the Meadow Moth, Loxostege sticticalis L.(Lepidoptera: Pyralidae). PLoSONE,2012,7(3): e33589.
    285. Zacharuk R.Y., Shields V.D. Sensilla of immature insects. Annual Review of Entomology,1991,36:331~354.
    286. Zhang A., Robbins P.S., Leal W.S., Linn C.E.J., Villani M.G., Roelofs W.L.·Essential amino acidmethyl esters: major sex pheromone components of the cranberry white grub, Phyllophaga anxia(Coleoptera: Scarabaeidae). Journal of Chemical Ecology,1997,23(1):231~245·
    287. Zhang S.G., Maida R., Steinbrecht A. Immunolocalization of odorant-binding proteins in noctuidmoths (Insecta, Lepidoptera). Chemical Senses,2001,26:885~896.
    288. Zhong T., Yin J., Deng S.S., Li K.B., Cao Y.Z. Fluorescence competition assay for the assessmentof green leaf volatiles and trans--farnesene bound to three odorant-binding proteins in the wheataphid Sitobion avenae (Fabricius). Journal of Insect Physiology,2012,58:771~778.
    289. Zhou J.J., Chapter ten. Odorant-binding protein in insect. Vitamins&Hormones,2010,83:241~272.
    290. Zhou L.M., Ju Q., Qu M.J., Zhao Z.Q., Dong S.L., Han Z.J., Yu S.L.EAG and behavioralresponses of the large black chafer, Holotrichia Parallela (Coleoptera:Scarabaeidae) to its sexpheromone. Acta Entomologica Sinica,2009,52(2):121~125.
    291. Zhou S.H., Zhang J., Zhang S.G., Zhang L. Expression of chemosensory proteins in hairs on wingsof Locusta migratoria (Orthoptera: Acrididae). Journal of Applied Entomology,2008,132:439~450.
    292. Zhou J.J., Huang W., Zhang G.A., Pickett J.A., Field L.M. Plus-C‘odorant-binding protein genesin two Drosophila species and the malaria mosquito Anopheles gambiae. Gene,2004,327:117~129.
    293. Ziemba B.P., Murphy E.J., Edlin H.T., Jones D.N. A novel mechanism of ligand binding andrelease in the odorant binding protein20from the malaria mosquito Anopheles gambiae. ProteinScience,2013,22(1):11~2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700