用户名: 密码: 验证码:
簸箕柳性别决定基因查找
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虽然性别决定和分化研究在动物中尤其是高等脊椎动物中已经相当明确,但是在植物中并没有确定。相反,植物由全能的分生组织细胞分化形成复杂的生殖器官——花,其变化超过植物体其他任何组织,正因为这种变化,使生物学家从很久以前就对植物的性别分化多样性展开研究。然而,在众多有性繁殖的植物物种中,大多数植物是雌雄混合,即植物个体是雌雄单花同株或雌雄同花。雌雄异株植物,即有单独的雌株和雄株,其拥有与动物相似的性别分化,但在被子植物物种中仅有4%。
     植物性别表型的决定因素是多种多样的,从玉米和黄瓜的激素调节代谢到地钱和麦瓶草的性染色体决定方式到凤尾蕨的费洛蒙串扰决定方式。根据推测性染色体演化可分为四个阶段:第1步:常染色体上出现一个单一的性别决定位点,没有基因重组抑制。第2步:常染色体演化成同态的性染色体X和Y,Y染色体上出现非重组区域。然后,非重组区域的扩大,X和Y染色体开始形态差异,但是仍然保持常染色质。最后,多态性染色体逐渐形成异色质区域,就像有两个不同的Y染色体的酸模,这意味着植物中也有类似哺乳动物SRY基因的演化过程一般发生突变和缺失。其演化进程也许会最终导致Y染色体退化。在哺乳动物的性别决定进化过程的步骤可以在植物中得到很好的诠释。
     然而黄瓜大多是雌雄同株的,但也可以是雌雄异株或雌雄同花,具有多种花性别类型。木瓜有三种性别类型,雌性,雄性和雌雄同花。而其他两种模型虽是雌雄异株的草本植物,但其性别由形态不同的性染色体来决定。
     杨树和柳树同属杨柳科,杨树是木本植物基因组研究的模式物种,其全基因组已完成测序。杨柳科植物比较基因组研究发现,杨属植物和柳属植物的基因组有相同的起源,且具有高度的同线性顺序。杨柳科植物是雌雄异株植物,由于其良好的基因组学研究基础,所以杨柳科植物是研究植物性别分化机制的理想遗传学材料。研究显示杨柳科植物的第19号染色体上存在性别决定位点,但并没有出现形态上有差异的性染色体,正处于性染色体形成的早期阶段。杨柳科的性状特征,填补了性别决定方式演化过程的空缺。杨树一般开花需要4-6年的时间,而原产我国的簸箕柳(Salix suchowensis)是当年开花的小灌木,因此簸箕柳更适合用于植物性别分化机制研究。在本文中,我们以簸箕柳为研究材料开展转录组基因表达差异比较分析,旨在发展控制柳树性别分化的候选基因,为阐明其性别决定机制提供信息基础。
     实验过程中还使用分子标记对簸箕柳家系进行了鉴定。我们筛选出条带清晰,多态性强的19对SSR引物,24条ISSR引物,14条RAPD引物。实验结果证明我们采摘的实验材料其亲缘关系很相近,并且大多数都是扦插材料,并非实生苗木。
     分别以簸箕柳雌、雄花序为材料,利用454焦磷酸测序得到了120多万条高质量的鸟枪序列(shotgun reads),共计467.96Mb,平均长度389bp,其中571,945条来自雄株,629,683条来自雌珠。这些序列拼装得到29,048个基因片段(contig)和132,709个低表达的单一序列(singleton),共计161,757个可能的基因(unigene),测序深度为8.0257。根据毛果杨注释的基因序列,有21365条contig和39482条singleton和毛果杨基因序列高度同源。GO分类分析发现共有16308个基因至少有1个GO分类号。KEGG分析发现有6820个基因涉及291条生化途径。根据unigene定位到杨树基因组预测基因上的结果,我们将unigene融合成29,981条真基因(truegene)。我们对reads进行读数计算来查找在不同性别中的表达程度有差异的基因。找到的差异表达基因数为806个,都是只在单一性别(雌株或者雄株)中有过量表达的基因。根据染色体定位结果,有33条差异表达基因被定位到了第十九号染色体上,其中17条基因在雌性中高表达,16条基因在雄性中高表达。
     从两个不同性别的柳树花序中得到大量的EST序列,通过生物信息分析确定这两个不同性别类型花序中的差异基因和表达差异基因。这些EST序列为进一步了解植物性别决定过程的分子机制提供了非常有价值的信息,是丰富的资源,为将来的功能基因组学分析、分子标记发展和育种工作的开展奠定了基础。
Although in animals, especially in higher vertebrates, the genetic mechanism of sexdetermination has been relatively clear, but the genetic mechanism of sex determination in theplant is not entirely clear. Flowers are the reproductive organs of angiosperms, which morevaried than any other group of organisms, because of this variation, interest in plant sexualdiversity has a long and venerable history in biology. However in many sexually reproducingplant species, the majority of plants are cosexuals. The dioecious system, with separate male andfemale individuals, is of course the rule in animals, but is found in only4%of angiospermspecies. The determinants of sexual phenotype in plants are diverse. The sex determinationevolution progress which has done in mammals is something can be tracing in plants. GenusPopulus and genus Salix are members of the Salicaceae. Populus is considered as a model genusfor genetic and genomic studies in forest trees with available resource of the genome sequence ofPopulus trichocarpa. According to the studies, high degree of synteny was found between willowand poplars. Studies about populous show there is a sex determinate location on the19thchromosome, while there is no such sex chromosome diverges in morphology. Shrub kind willowjust needs2years to finish the vegetative growth and enter the reproductive stage, which is muchfaster than the genus populous which needs several years to flower. All the characteristic ofSalicaceae shows a great model for the missing pieces of sex determinate evolution.
     We used molecular markers to identify the relationship between willows. We developed19pairs of SSR primers,24ISSR primers,14RAPD primers at last. Results showed that theexperimental materials we picked from Xinyi closely related, and most of them were cuttingmaterial.
     Totally,1,201,931high quality reads were obtained, with an average length of389bp and atotal length of467.96Mb. The ESTs were assembled into29,048contigs, and132,709singletons.These unigenes were further functionally annotated by comparing their sequences to differentproteins and functional domain databases and assigned with Gene Ontology (GO) terms. Abiochemical pathway database containing291predicted pathways was also created based on theannotations of the unigenes. Digital expression analysis identified806differentially expressedgenes between the male and female flower buds. And33of them located on the incipient sexchromosome of Salicaceae, among which,12genes might involve in plant sex determinationempirically. These genes were worthy of special notification in future studies.
     In this study, a large number of EST sequences were generated from the flower buds of amale and a female shrub willow. We also reported the differentially expressed genes between thetwo sex-type flowers. This work provides valuable information and sequence resources for uncovering the sex determining genes and for future functional genomics analysis of Salicaceaespp.
引文
[1] McClung CE. The accessory chromosome-sex determinant?[J]. The Biological Bulletin,1902,3(1-2):43-84.
    [2] Stevens NM. A study of the germ cells of Aphis rosae and Aphis oenotherae[J]. Journal of ExperimentalZoology,1905,2(3):313-333.
    [3] Wilson EB. The chromosomes in relation to the determination of sex in insects[J]. Science,1905,22(564):500-502.
    [4] Jacobs A. Oral cornification in anaemic patients[J]. Journal of Clinical Pathology,1959,12(3):235-237.
    [5] Ford CE, Polani PE, Briggs JH, et al. A presumptive human XXY/XX mosaic[J].1959:1030-1032.
    [6] Baker TC, Willis MA, Haynes KF, et al. A pulsed cloud of sex pheromone elicits upwind flight in malemoths[J]. Physiological entomology,1985,10(3):257-265.
    [7] Baker J, Liu JP, Robertson EJ, et al. Role of insulin-like growth factors in embryonic and postnatalgrowth[J]. Cell,1993,75(1):73-82.
    [8] Dzierzon J. Bienenzeitung[J]. Papers on fertilization and parthenogenesis in the honey bee. Eichst dtBienen-Zeitung,1845:1-32.
    [9] Leimar O, Van Dooren TJM, Hammerstein P. Adaptation and constraint in the evolution of environmentalsex determination[J]. Journal of Theoretical Biology,2004,227(4):561-570.
    [10] Painter S. Studies in mammalian spermatogenesis.11. The spermatogenesis of man. Jour. Exp. Zool.1923,37:291-336.
    [11] Jacobs PA, Ross A. Structural abnormalities of the Y chromosome in man[J]. Nature,1966,210:352-354.
    [12] Vergnaud G, Page DC, Simmler MC, et al. A deletion map of the human Y chromosome based on DNAhybridization[J]. American journal of human genetics,1986,38(2):109.
    [13] Page DC, Mosher R, Simpson EM, et al. The sex-determining region of the human Y chromosomeencodes a finger protein[J]. Cell,1987,51(6):1091-1104.
    [14] Palmer GH, Etokakpan OU, Igyor MA. Sorghum as brewing material[J]. MIRCEN journal of appliedmicrobiology and biotechnology,1989,5(3):265-275.
    [15] Sinclair A, Berta P, Palmer M, et al. A gene from the human sex-determining region encodes a proteinwith[J]. Nature,1990,346(6281):240-4.
    [16] Koopman P, Gubbay J, Vivian N, et al. Male development of chromosomally female mice transgenic forSry[J]. Nature,1991,351(6322):117-121.
    [17] Nagai K. Molecular evolution of SRY and Sox gene[J]. Gene,2001,270(1-2):161.
    [18] Foster J W, Brennan F E, Hampikian G K, et al. Evolution of sex determination and the Y chromosome:SRY-related sequences in marsupials[J].1992.
    [19] Koopman P, Münsterberg A, Capel B, et al. Expression of a candidate sex-determining gene during mousetestis differentiation[J]. Nature,1990,348(6300):450-452.
    [20] Hanley NA, Hagan DM, Clement-Jones M, et al. SRY, SOX9, and DAX1expression patterns duringhuman sex determination and gonadal development[J]. Mechanisms of development,2000,91(1):403-407.
    [21] Salas‐Cortes L, Jaubert F, Bono M R, et al. Expression of the human SRY protein during development innormal male gonadal and sex‐reversed tissues[J]. Journal of Experimental Zoology,2001,290(6):607-615.
    [22] Bowles J, Schepers G, Koopman P. Phylogeny of the SOX family of developmental transcription factorsbased on sequence and structural indicators[J]. Developmental biology,2000,227(2):239-255.
    [23] Foster J W, Graves J A. An SRY-related sequence on the marsupial X chromosome: implications for theevolution of the mammalian testis-determining gene[J]. Proceedings of the National Academy of Sciences,1994,91(5):1927-1931.
    [24] Wallis M C, Waters P D, Graves J A M. Sex determination in mammals—before and after the evolution ofSRY[J]. Cellular and molecular life sciences,2008,65(20):3182-3195.
    [25] Sekido R, Lovell-Badge R. Sex determination involves synergistic action of SRY and SF1on a specificSox9enhancer[J]. Nature,2008,453(7197):930-934.
    [26] Wilhelm D, Palmer S, Koopman P. Sex determination and gonadal development in mammals[J].Physiological Reviews,2007,87(1):1-28.
    [27] Chaboissier M C, Kobayashi A, Vidal V I P, et al. Functional analysis of Sox8and Sox9during sexdetermination in the mouse[J]. Development,2004,131(9):1891-1901.
    [28] Barrionuevo F, Bagheri-Fam S, Klattig J, et al. Homozygous inactivation of Sox9causes complete XY sexreversal in mice[J]. Biology of reproduction,2006,74(1):195-201.
    [29] Matson C K, Murphy M W, Sarver A L, et al. DMRT1prevents female reprogramming in the postnatalmammalian testis[J]. Nature,2011,476(7358):101-104.
    [30] Takagi N, Sasaki M. A phylogenetic study of bird karyotypes[J]. Chromosoma,1974,46(1):91-120.
    [31] Stiglec R, Ezaz T, Graves JAM. A new look at the evolution of avian sex chromosomes[J]. Cytogeneticand genome research,2007,117(1-4):103-109.
    [32] Shetty S, Griffin DK, Graves JAM. Comparative painting reveals strong chromosome homology over80million years of bird evolution[J]. Chromosome Research,1999,7(4):289-295.
    [33] Nishida-Umehara C, Tsuda Y, Ishijima J, et al. The molecular basis of chromosome orthologies and sexchromosomal differentiation in palaeognathous birds[J]. Chromosome Research,2007,15(6):721-734.
    [34] Lin M, Thorne MH, Martin IC, et al. Development of the gonads in the triploid (ZZW and ZZZ) fowl,Gallus domesticus, and comparison with normal diploid males (ZZ) and females (ZW)[J]. Reproduction,Fertility and Development,1995,7(5):1185-1197.
    [35] Arlt D, Bensch S, Hansson B, et al. Observation of a ZZW female in a natural population:implications for avian sex determination[J]. Proceedings of the Royal Society of London. Series B:Biological Sciences,2004,271(Suppl4): S249-S251.
    [36] Nanda I, Shan Z, Schartl M, et al.300million years of conserved synteny between chicken Z and humanchromosome9[J]. Nature Genetics,1999,21(3):258-259.
    [37] Shetty S, Griffin DK, Graves JAM. Comparative painting reveals strong chromosome homology over80million years of bird evolution[J]. Chromosome Research,1999,7(4):289-295.
    [38] Raymond CS, Kettlewell JR, Hirsch B, et al. Expression of Dmrt1in the genital ridge of mouse andchicken embryos suggests a role in vertebrate sexual development[J]. Developmental biology,1999,215(2):208-220.
    [39] Shan Z, Nanda I, Wang Y, et al. Sex-specific expression of an evolutionarily conserved male regulatorygene, DMRT1, in birds[J]. Cytogenetic and Genome Research,2000,89(3-4):252-257.
    [40] Ellegren H. Dosage compensation: do birds do it as well?[J]. Trends in Genetics,2002,18(1):25-28.
    [41] Smith CA, Katz M, Sinclair AH. DMRT1is upregulated in the gonads during female-to-male sex reversalin ZW chicken embryos[J]. Biology of reproduction,2003,68(2):560-570.
    [42]胡锐颖,耿昕,马珺,陈云霜,李仲逵,丁小燕.一种简单通用的鸟类性别分子鉴定技术.实验生物学报,2003,36(5):401~404.
    [43] Zhao D, McBride D, Nandi S, et al. Somatic sex identity is cell autonomous in the chicken[J]. Nature,2010,464(7286):237-242.
    [44] Chue J, Smith CA. Sex determination and sexual differentiation in the avian model[J]. FEBS Journal,2011,278(7):1027-1034.
    [45] Hori T, Asakawa S, Itoh Y, et al. Wpkci, encoding an altered form of PKCI, is conserved widely on theavian W chromosome and expressed in early female embryos: implication of its role in female sexdetermination[J]. Molecular biology of the cell,2000,11(10):3645-3660.
    [46] Smith CA. Sex determination in birds: a review[J]. Emu,2010,110(4):364-377.
    [47] Pace HC, Brenner C. Feminizing chicks: a model for avian sex determination based on titration of Hintenzyme activity and the predicted structure of an Asw-Hint heterodimer[J]. Genome Biol,2003,4(3): R18.
    [48] Smith CA, Roeszler KN, Sinclair A H. Genetic evidence against a role for W-linked histidine triadnucleotide binding protein (HINTW) in avian sex determination[J]. International journal of developmentalbiology,2009,53(1):59-67.
    [49] O’Neill M, Binder M, Smith C, et al. ASW: a gene with conserved avian W-linkage and female specificexpression in chick embryonic gonad[J]. Development genes and evolution,2000,210(5):243-249.
    [50] Séraphin B. The HIT protein family: a new family of proteins present in prokaryotes, yeast andmammals[J]. Mitochondrial DNA,1992,3(3):177-179.
    [51] Fridolfsson AK, Cheng H, Copeland N G, et al. Evolution of the avian sex chromosomes from an ancestralpair of autosomes[J]. Proceedings of the National Academy of Sciences,1998,95(14):8147-8152.
    [52] Ellegren H. Hens, cocks and avian sex determination[J]. EMBO reports,2001,2(3):192-196.
    [53] Griffiths R. The Isolation of Conserved DNA Sequences Related the Human Sex-Determining Region YGene from the Lesser Black-Backed Gull (Larus fuscus)[J]. Proceedings of the Royal Society of London.Series B: Biological Sciences,1991,244(1310):123-128.
    [54] Teranishi M, Shimada Y, Hori T, et al. Transcripts of the MHM region on the chicken Z chromosomeaccumulate as non-coding RNA in the nucleus of female cells adjacent to the DMRT1locus[J].Chromosome Research,2001,9(2):147-165.
    [55] Lahn BT, Page DC. Four evolutionary strata on the human X chromosome[J]. Science,1999,286(5441):964-967.
    [56] Graves JAM. The rise and fall of SRY[J]. TRENDS in Genetics,2002,18(5):259-264.
    [57] Waters PD, Wallis M C, Graves J A M. Mammalian sex—Origin and evolution of the Y chromosome andSRY. Seminars in cell&developmental biology. Academic Press,2007,18(3):389-400.
    [58]常重杰.PCR扩增泥鳅和大鳞副泥鳅SRY盒基因.动物学杂志,1998,33(l):13一17.
    [59]常重杰,周荣家,余其兴.大鳞副泥鳅中Soxg基因保守区的序列分析.遗传学报,2000,27:121一126.
    [60] Stevens L. Sex chromosomes and sex determining mechanisms in birds[J]. Science progress,1997,80:197.
    [61] Shen MM, Hodgkin J. Mab-3, a gene required for sex-specific yolk protein expression and a male-specificlineage in C. elegans[J]. Cell,1988,54(7):1019-1031.
    [62] Burtis KC, Baker BS. Drosophila doublesex gene controls somatic sexual differentiation by producingalternatively spliced mRNAs encoding related sex-specific polypeptides[J]. Cell,1989,56(6):997-1010.
    [63] Ross MT, Grafham DV, Coffey AJ, et al. The DNA sequence of the human X chromosome[J]. Nature,2005,434(7031):325-337.
    [64] Skaletsky H, Kuroda-Kawaguchi T, Minx PJ, et al. The male-specific region of the human Y chromosomeis a mosaic of discrete sequence classes[J]. Nature,2003,423(6942):825-837.
    [65] Bellott DW, Skaletsky H, Pyntikova T, et al. Convergent evolution of chicken Z and human Xchromosomes by expansion and gene acquisition[J]. Nature,2010,466(7306):612-616.
    [66] Moghadam HK, Pointer MA, Wright AE, et al. W chromosome expression responds to female-specificselection[J]. Proceedings of the National Academy of Sciences,2012,109(21):8207-8211.
    [67] Takagi N, Sasaki M. A phylogenetic study of bird karyotypes[J]. Chromosoma,1974,46(1):91-120.
    [68] Shetty S, Griffin DK, Graves JAM. Comparative painting reveals strong chromosome homology over80million years of bird evolution[J]. Chromosome Research,1999,7(4):289-295.
    [69] Ezaz T, Stiglec R, Veyrunes F, et al. Relationships between vertebrate ZW and XY sex chromosomesystems[J]. Current Biology,2006,16(17): R736-R743.
    [70] Lynch M, Katju V. The altered evolutionary trajectories of gene duplicates[J]. TRENDS in Genetics,2004,20(11):544-549.
    [71] Bellott DW, Skaletsky H, Pyntikova T, et al. Convergent evolution of chicken Z and human Xchromosomes by expansion and gene acquisition[J]. Nature,2010,466(7306):612-616.
    [72] Ellegren H. Sex-chromosome evolution: recent progress and the influence of male and femaleheterogamety[J]. Nature reviews genetics,2011,12(3):157-166.
    [73] Devlin R H, Nagahama Y. Sex determination and sex differentiation in fish: an overview of genetic,physiological, and environmental influences[J]. Aquaculture,2002,208(3):191-364.
    [74] Walbot V, Evans MMS. Unique features of the plant life cycle and their consequences[J]. Nature ReviewsGenetics,2003,4(5):369-379.
    [75] Barrett SCH. The evolution of plant sexual diversity[J]. Nature Reviews Genetics,2002,3(4):274-284.
    [76] Tanurdzic M, Banks JA. Sex-determining mechanisms in land plants[J]. The Plant Cell Online,2004,16(suppl1): S61-S71.
    [77] Guo S, Zheng Y, Joung JG, et al. Transcriptome sequencing and comparative analysis of cucumber flowerswith different sex types[J]. BMC genomics,2010,11(1):384.
    [78] Yu Q, Hou S, Hobza R, et al. Chromosomal location and gene paucity of the male specific region onpapaya Y chromosome[J]. Molecular Genetics and Genomics,2007,278(2):177-185.
    [79] Lloyd D G. Gender allocations in outcrossing cosexual plants[J].1984..
    [80] Charlesworth D. Plant sex determination and sex chromosomes[J]. Heredity,2002,88(2):94-101.
    [81] Farbos I, Veuskens J, Vyskot B, et al. Sexual dimorphism in white campion: deletion on the Y chromosomeresults in a floral asexual phenotype[J]. Genetics,1999,151(3):1187-1196.
    [82] Lardon A, Georgiev S, Aghmir A, et al. Sexual dimorphism in white campion: complex control of carpelnumber is revealed by Y chromosome deletions[J]. Genetics,1999,151(3):1173-1185.
    [83]孟金陵.植物生殖遗传学[M].科学出版社,1995.
    [84] Charlesworth D, Charlesworth B, Marais G (2005) Steps in the evolution of heteromorphic sexchromosomes. Heredity95:118–128.
    [85] Grant V. Modes and origins of mechanical and ethological isolation in angiosperms[J]. Proceedings of theNational Academy of Sciences,1994,91(1):3-10.
    [86] Lardon A, Georgiev S, Aghmir A, et al. Sexual dimorphism in white campion: complex control of carpelnumber is revealed by Y chromosome deletions[J]. Genetics,1999,151(3):1173-1185.
    [87] Farbos I, Veuskens J, Vyskot B, et al. Sexual dimorphism in white campion: deletion on the Y chromosomeresults in a floral asexual phenotype[J]. Genetics,1999,151(3):1187-1196.
    [88]任吉君,王艳,刘洪家,等.高等植物性别分化的研究概述[J].生物学杂志,1993,53(3):4-7.
    [89] Yin TM, DiFazio SP, Gunter LE, et al. Genome structure and emerging evidence of an incipient sexchromosome in Populus. Genome Research,2008,18:422–430.
    [90]吴世斌,李正理.中国产酸模性染色体的初步研究[J].植物学报,1983,25(1):17-23.
    [91] Allen CE. The genotypic basis of sex-expression in angiosperms[J]. The Botanical Review,1940,6(6):227-300.
    [92] Wilby AS, Parker JS. Recurrent patterns of chromosome variation in a species group[J]. Heredity,1988,61(1):55-62.
    [93] Kihara H, Ono T. Chromosomenzahlen und systematische Gruppierung der Rumex-Arten[J]. Cell andTissue Research,1926,4(3):475-481.
    [94] Armstrong SJ, Filatov DA. A cytogenetic view of sex chromosome evolution in plants[J]. Cytogenetic andgenome research,2008,120(3-4):241-246.
    [95] Smith BW. The mechanism of sex determination in Rumex hastatulus[J]. Genetics,1963,48(10):1265.
    [96] Ono T (1935) Chromosomen und Sexualit t von Rumex acetosa. Sci Rep Tohoku Imp Univ IV10:41–210.
    [97] Kuroki Y. Cytological characteristics of sex chromosomes of Rumex acetosa. Plant Chromosome Research1992. International Academic Publishers, Beijing, China, pp279–287.
    [98] Mosio ek M, Pasierbek P, Malarz J, et al. Rumex acetosa Y chromosomes: constitutive or facultativeheterochromatin?[J]. Folia Histochemica et Cytobiologica,2005,43(3):161-167.
    [99] Shibata F, Hizume M, Kuroki Y. Chromosome painting of Y chromosomes and isolation of a Ychromosome-specific repetitive sequence in the dioecious plant Rumex acetosa[J]. Chromosoma,1999,108(4):266-270.
    [100] Shibata F, Hizume M, Kuroki Y. Differentiation and the polymorphic nature of the Y chromosomesrevealed by repetitive sequences in the dioecious plant, Rumex acetosa[J]. Chromosome research,2000,8(3):229-236.
    [101] Mariotti B, Navajas-Pérez R, Lozano R, et al. Cloning and characterization of dispersed repetitive DNAderived from microdissected sex chromosomes of Rumex acetosa[J]. Genome,2006,49(2):114-121.
    [102] Mariotti B, Manzano S, Kejnovsky E, et al. Accumulation of Y-specific satellite DNAs during theevolution of Rumex acetosa sex chromosomes[J]. Molecular Genetics and Genomics,2009,281(3):249-259.
    [103] Dellaporta SL, Calderon-Urrea A. Sex determination in flowering plants[J]. The Plant Cell Online,1993,5(10):1241-1251.
    [104] Vyskot B, Barbacar N, Georgiev S, et al. Dioecious plants. A key to the early events of sex chromosomeevolution[J]. Plant Physiology,2001,127(4):1418-1424.
    [105] Parker JS, Clark MS. Dosage sex-chromosome systems in plants[J]. Plant Science,1991,80(1):79-92.
    [106] Loptien D. Identification of the sex chromosome pair in asparagus (Asparagus officinalis L.)[J]. Zeitschr.fur. Pflanzenzuchtung,1979,82:162-173.
    [107] Telgmann-Rauber A, Jamsari A, Kinney MS, et al. Genetic and physical maps around thesex-determining M-locus of the dioecious plant asparagus[J]. Molecular Genetics and Genomics,2007,278(3):221-234.
    [108] Caporali E, Carboni A, Galli MG, et al. Development of male and female flower in Asparagus officinalis.Search for point of transition from hermaphroditic to unisexual developmental pathway[J]. Sexual plantreproduction,1994,7(4):239-249.
    [109] Rick CM, Hanna GC. Determination of sex in Asparagus officinalis L[J]. American Journal of Botany,1943:711-714.
    [110] UnoY. HaPloid produetion from polyembryonie seeds of Asparagus offieinalis L[J]. Aeta Hort (ISHS)(2002)589:217一221.
    [111]周劲松,汤泳萍,罗绍春,等. DNA分子标记早期快速鉴别芦笋雌雄株[J].分子植物育种,2007,5(3):363-366.
    [112] Hofmoyr IDI. Genetical studies of carica papaya[J].1938.
    [113] Storey WB. Segregation of sex types in Solo papaya and their application to the selection of seed[C]. Am.Soc. Hortic. Sci.1938,35:83-85.
    [114] Storey WB. Genetics of the papaya[J]. Journal of Heredity,1953,44(2):70-78.
    [115] Horovitz S, Jiménez H. Cruzamientos interespecíficos e intergenéricos en Caricaceas y sus implicacionesfitotécnicas[J]. Agron Trop,1967,17:323-344.
    [116] Liu Z, Moore PH, Ma H, et al. A primitive Y chromosome in papaya marks incipient sex chromosomeevolution[J]. Nature,2004,427(6972):348-352.
    [117] Bonnett OT. Ear and tassel development in maize[J]. Annals of the Missouri Botanical Garden,1948,35(4):269-287.
    [118] Cheng PC, Greyson RI, Walden DB. Organ initiation and the development of unisexual flowers in thetassel and ear of Zea mays[J]. American Journal of Botany,1983:450-462.
    [119] Wu H, Cheung AY. Programmed cell death in plant reproduction[M]. Programmed Cell Death in HigherPlants. Springer Netherlands,2000:23-37.
    [120] Bensen RJ, Johal GS, Crane VC, et al. Cloning and characterization of the maize An1gene[J]. The PlantCell Online,1995,7(1):75-84.
    [121] Winkler RG, Helentjaris T. The maize Dwarf3gene encodes a cytochrome P450-mediated early step inGibberellin biosynthesis[J]. The Plant Cell Online,1995,7(8):1307-1317.
    [122] Spray CR, Kobayashi M, Suzuki Y, et al. The dwarf-1(dt) mutant of Zea mays blocks three steps in thegibberellin-biosynthetic pathway[J]. Proceedings of the National Academy of Sciences,1996,93(19):10515-10518.
    [123] Richards DE, King KE, Ait-ali T, et al. How gibberellin regulates plant growth and development: amolecular genetic analysis of gibberellin signaling[J]. Annual review of plant biology,2001,52(1):67-88.
    [124] Olszewski N, Sun T, Gubler F. Gibberellin signaling biosynthesis, catabolism, and response pathways[J].The Plant Cell Online,2002,14(suppl1): S61-S80.
    [125] Phinney BO. Growth response of single-gene dwarf mutants in maize to gibberellic acid[J]. Proceedingsof the National Academy of Sciences of the United States of America,1956,42(4):185.
    [126] Jones DF. Heritable characters of maize[J]. Journal of Heredity,1925,16(9):339-342.
    [127] Emerson FV. Agricultural geology[M]. John Wiley&sons, inc.,1920.
    [128] Irish EE. Experimental analysis of tassel development in the maize mutant tassel seed6[J]. Plantphysiology,1997,114(3):817-825.
    [129] Irish EE, Langdale J A, Nelson T M. Interactions between tassel seed genes and other sex determininggenes in maize[J]. Developmental genetics,1994,15(2):155-171.
    [130] DeLong EF, Franks DG, Alldredge A L. Phylogenetic diversity of aggregate-attached vs. free-livingmarine bacterial assemblages[J]. Limnology and Oceanography,1993,38(5):924-934.
    [131] Calderon-Urrea A, Dellaporta SL. Cell death and cell protection genes determine the fate of pistils inmaize[J]. Development,1999,126(3):435-441.
    [132] Rood SB, Pharis RP, Major DJ. Changes of endogenous gibberellin-like substances with sex reversal ofthe apical inflorescence of corn[J]. Plant Physiology,1980,66(5):793-796.
    [133] Malepszy S, Niemirowicz-Szczytt K. Sex determination in cucumber (Cucumis sativus) as a modelsystem for molecular biology[J]. Plant Science,1991,80(1):39-47.
    [134] Yin TJ, Quinn JA. Tests of a mechanistic model of one hormone regulating both sexes in Cucumis sativus(Cucurbitaceae)[J].American Journal of Botany,1995,82(12):1537~1546.
    [135]陈学好,曾广文,曹碚生.黄瓜花性别分化和内源激素的关系[J].植物生理学通讯,2002,38(4):317~320.
    [136] Papadopoulou E, Grumet R. Brassinosteriod-induced femaleness in cucumber and relationship toethylene production[J]. Hortscience,2005,40(6):1763~1767.
    [137] Pierce LK, Wehner TC. Review of genes and linkage groups in cucumber[J]. HortScience,1990,25(6):605-615.
    [138] Tanurdzic M, Banks J A. Sex-determining mechanisms in land plants[J]. Plant Cell,2004,16Suppl:S61~71.
    [139]陈惠明,卢向阳,许亮,等.黄瓜性别决定相关基因和性别表达机制[J].植物生理学通讯,2005,41(1):7~13.
    [140] Perl-Treves R. Male to female conversion along the cucumber shoot: approaches to studying sex genesand floral development in Cucumis sativus[J]. Sex determination in plants,1999:189-215.
    [141] Knopf RR, Trebitsh T. The female-specific Cs-ACS1G gene of cucumber. A case of gene duplication andrecombination between the non-sex-specific1-aminocyclopropane-1-carboxylate synthase gene and abranched-chain amino acid transaminase gene[J]. Plant Cell Physiol,2006,47(9):1217~28.
    [142] Trebitsh T, ONeill SD. Isolation of an ACC synthase gene from cucumber and its role in sexdetermination[J]. Plant Physiol,1996,111Suppl. S(2):673~673.
    [143] Trebitsh T, Staub JE, ONeill SD. Identification of a1-aminocyclopropane-1-carboxylic acid synthasegene linked to the female (F) locus that enhances female sex expression in cucumber[J]. Plant Physiology,1997,113(3):987~995
    [144] Li Z, Huang S, Liu S, et al. Molecular isolation of the M gene suggests that a conserved-residueconversion induces the formation of bisexual flowers in cucumber plants[J]. Genetics,2009,182(4):1381~1385.
    [145] Gu HT, Wang DH, Li X, et al. Characterization of an ethylene-inducible, calcium-dependent nucleasethat is differentially expressed in cucumber flower development[J]. New Phytol,2011,192(3):590~600.
    [146]曾英,胡金勇,李志坚.植物MADS盒基因与花器官的进化发育[J].植物生理学通讯,2001,37(4):281~287.
    [147] Ando S, Sato Y, Kamachi S, et al. Isolation of a MADS-box gene (ERAF17) and correlation of itsexpression with the induction of formation of female flowers by ethylene in cucumber plants (Cucumissativus L.)[J]. PLANTA,2001,213(6):943~952.
    [148] Wu T, Qin Z, Zhou X, et al. Transcriptome profile analysis of floral sex determination in cucumber[J].Plant Physiol,2010,167(11):905~913.
    [149] Pawelkowicz M, Siedlecka E, Przybecki Z. The Differences Between Products Of Gene Expression InMale, Female And Hermaphrodite Cucumber Floral Buds (Cucumis Sativus L.)[J].2011.
    [150] Darwin C. The different forms of flowers on plants of the same species[M]. John Murray,1877.
    [151] Charlesworth D. Distribution of dioecy and self-incompatibility in angiosperms[J]. Evolution—essays inhonour of John Maynard Smith,1985:237-268.
    [152] Renner SS, Ricklefs RE. Dioecy and its correlates in the flowering plants[J]. American Journal of Botany,1995:596-606.
    [153] Tanurdzic M, Banks J A. Sex-determining mechanisms in land plants[J]. The Plant Cell Online,2004,16(suppl1): S61-S71.
    [154] Doris B. A dynamic view of sex chromosome evolution [J]. Current Opinion in Genetics&Development,2006,16:578-585.
    [155] Eckenwalder JE. Systematics and evolution of Populus[J]. Biology of Populus and its implications formanagement and conservation,1996,7:32.
    [156] Graf J, Beitrage zur Kenntnis der Gattung Populus. Berichte der Deutschen Botanischen Gesellschaft,1921,38:405–434
    [157] Blackburn KB, Harrison JWH. A preliminary account of the chromosomes and chromosome behaviour inthe Salicaceae[J]. Annals of Botany,1924(2):361-378.
    [158] Smith EC. A Study of Cytology and Speciation in the Genus Populus L[D]. Harvard University,1942.
    [159] Einspahr DW, Van Buijtenen JP, Peckham JR. Natural variation and heritability in triploid aspen[J].Silvae Genet,1963,12(2):51-58.
    [160] Bradshaw Jr HD, Stettler RF. Molecular genetics of growth and development in Populus. I. Triploidy inhybrid poplars[J]. Theoretical and Applied Genetics,1993,86(2-3):301-307.
    [161] Tuskan GA, Difazio S, Jansson S, et al. The genome of black cottonwood, Populus trichocarpa (Torr.&Gray)[J]. Science,2006,313(5793):1596-1604.
    [162] Cervera MT, Storme V, Ivens B, et al. Dense genetic linkage maps of three Populus species (Populusdeltoides, P. nigra and P. trichocarpa) based on AFLP and microsatellite markers[J]. Genetics,2001,158(2):787-809.
    [163] Hanley SJ, Mallott MD, Karp A. Alignment of a Salix linkage map to the Populus genomic sequencereveals macrosynteny between willow and poplar genomes[J]. Tree Genetics&Genomes,2006,3(1):35-48.
    [164] Yin TM, DiFazio SP, Gunter LE, et al. Large-scale heterospecific segregation distortion in Populusrevealed by a dense genetic map[J]. Theoretical and Applied Genetics,2004,109(3):451-463.
    [165] Berlin S, Lagercrantz U, von Arnold S, et al. High-density linkage mapping and evolution of paralogs andorthologs in Salix and Populus[J]. Bmc Genomics,2010,11(1):129.
    [166] Meurman O. The chromosome behaviour of some dioecious plants and their relatives with specialreference to the sex chromosomes[D]. Helsingfors centraltryckeri och bokbinderi aktiebolag,1925.
    [167] Erlanson EW, Hermann FJ. The morphology and cytology of perfect flowers in Populus tremuloidesMichx[J]. Mich Acad Sci Arts Lett,1927,8:97-110.
    [168] Nakajima G. Cytological studies in some dioecious plants[J]. Cytologia,1937(1):282-292.
    [169] Peto FH. Cytology of poplar species and natural hybrids[J]. Canadian Journal of Research,1938,16(11):445-455.
    [170] van Buijtenen JP, Einspahr DW. Note on the presence of sex chromosomes in Populus tremuloides[J].Botanical Gazette,1959,121(1).
    [171] Ainsworth C. Boys and girls come out to play: the molecular biology of dioecious plants[J]. Annals ofBotany,2000,86(2):211-221.
    [172] Ming R, Wang J, Moore PH, et al. Sex chromosomes in flowering plants[J]. American Journal of Botany,2007,94(2):141-150.
    [173] Muller HJ. A gene for the fourth chromosome of Drosophila[J]. Journal of Experimental Zoology,1914,17(3):325-336.
    [174] Gaudet M, Jorge V, Paolucci I, et al. Genetic linkage maps of Populus nigra L. including AFLPs, SSRs,SNPs, and sex trait[J]. Tree Genetics&Genomes,2008,4(1):25-36.
    [175] Pakull B, Groppe K, Meyer M, et al. Genetic linkage mapping in aspen (Populus tremula L. and Populustremuloides Michx.)[J]. Tree Genetics&Genomes,2009,5(3):505-515.
    [176] Paolucci I, Gaudet M, Jorge V, et al. Genetic linkage maps of Populus alba L. and comparative mappinganalysis of sex determination across Populus species[J]. Tree Genetics&Genomes,2010,6(6):863-875.
    [177] Pakull B, Groppe K, Mecucci F, et al. Genetic mapping of linkage group XIX and identification ofsex-linked SSR markers in a Populus tremula×Populus tremuloides cross[J]. Canadian Journal of ForestResearch,2011,41(2):245-253.
    [178] Stettler R F. Variation in sex expression of black cottonwood and related hybrids[J]. Silvae Genet,1971,20:42-46.
    [179] Rowland D L, Garner E R, Jespersen M. A rare occurrence of seed formation on male branches of thedioecious tree, Populus deltoides[J]. The American midland naturalist,2002,147(1):185-187.
    [180] Alstrom-Rapaport C, Lascoux M, Wang Y C, et al. Identification of a RAPD marker linked to sexdetermination in the basket willow (Salix viminalis L.)[J]. Journal of Heredity,1998,89(1):44-49.
    [181] Ohno S. Sex chromosomes and sex-linked genes.(Monographs on endocrinology, Vol.1.)[J]. Sexchromosomes and sex-linked genes.(Monographs on endocrinology, Vol.1.),1967.
    [182] Nei M. Linkage modification and sex difference in recombination[J]. Genetics,1969,63(3):681.
    [183] Tuskan GA, DiFazio S, Faivre-Rampant P, et al. The obscure events contributing to the evolution of anincipient sex chromosome in Populus: a retrospective working hypothesis[J]. Tree Genetics&Genomes,2012,8(3):559-571.
    [184] Slavov G T, Leonardi S, Adams W T, et al. Population substructure in continuous and fragmented standsof Populus trichocarpa[J]. Heredity,2010,105(4):348-357.
    [185] Hughes FMR, Barsoum N, Richards KS, et al. The response of male and female black poplar(Populusnigra L. subspecies betulifolia(Pursh) W. Wettst.) cuttings to different water table depths and sedimenttypes: implications for flow management and river corridor biodiversity[J]. Hydrological Processes,2000,14(16-17):3075-3098.
    [186] McLetchie DN, Tuskan GA. Gender determination in Populus[R]. Oak Ridge National Lab., TN (UnitedStates),1994.
    [187] Karrenberg S, Edwards PJ, Kollmann J. The life history of Salicaceae living in the active zone offloodplains[J]. Freshwater Biology,2002,47(4):733-748.
    [188] Eckenwalder JE. Systematics and evolution of Populus[J]. Biology of Populus and its implications formanagement and conservation,1996,7:32.
    [189] Jaillon O, Aury JM, Noel B, et al. The grapevine genome sequence suggests ancestral hexaploidization inmajor angiosperm phyla[J]. Nature,2007,449(7161):463-467.
    [190] Kohler A, Rinaldi C, Duplessis S, et al. Genome-wide identification of NBS resistance genes in Populustrichocarpa[J]. Plant molecular biology,2008,66(6):619-636.
    [191] Duplessis S, Major I, Martin F, et al. Poplar and pathogen interactions: insights from Populusgenome-wide analyses of resistance and defense gene families and gene expression profiling[J]. CriticalReviews in Plant Science,2009,28(5):309-334.
    [192] Sánchez-Rodríguez C, Estévez JM, Llorente F, et al. The ERECTA receptor-like kinase regulates cellwall-mediated resistance to pathogens in Arabidopsis thaliana[J]. Molecular plant-microbe interactions,2009,22(8):953-963.
    [193] McHale L, Tan X, Koehl P, et al. Plant NBS-LRR proteins: adaptable guards[J]. Genome Biol,2006,7(4):212.
    [194] Meyers BC, Dickerman AW, Michelmore RW, et al. Plant disease resistance genes encode members of anancient and diverse protein family within the nucleotide‐binding superfamily[J]. The Plant Journal,1999,20(3):317-332.
    [195] McDowell JM, Woffenden BJ. Plant disease resistance genes: recent insights and potential applications[J].TRENDS in Biotechnology,2003,21(4):178-183.
    [196] Meyers BC, Kozik A, Griego A, et al. Genome-wide analysis of NBS-LRR–encoding genes inArabidopsis[J]. The Plant Cell Online,2003,15(4):809-834.
    [197] Jones-Rhoades M W, Bartel D P, Bartel B. MicroRNAs and their regulatory roles in plants[J]. Annu. Rev.Plant Biol.,2006,57:19-53.
    [198] Shukla LI, Chinnusamy V, Sunkar R. The role of microRNAs and other endogenous small RNAs in plantstress responses[J]. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms,2008,1779(11):743-748.
    [199] Henderson I R, Zhang X, Lu C, et al. Dissecting Arabidopsis thaliana DICER function in small RNAprocessing, gene silencing and DNA methylation patterning[J]. Nature genetics,2006,38(6):721-725.
    [200] Chan SWL, Henderson IR, Jacobsen SE. Gardening the genome: DNA methylation in Arabidopsisthaliana[J]. Nature Reviews Genetics,2005,6(5):351-360.
    [201] Mallory A C, Vaucheret H. Functions of microRNAs and related small RNAs in plants[J]. NatureGenetics,2006,38: S31-S36.
    [202] Aukerman M J, Sakai H. Regulation of flowering time and floral organ identity by a microRNA and itsAPETALA2-like target genes[J]. The Plant Cell Online,2003,15(11):2730-2741.
    [203] Chen X. A microRNA as a translational repressor of APETALA2in Arabidopsis flower development[J].Science Signaling,2004,303(5666):2022.
    [204] Banks JA. MicroRNA, sex determination and floral meristem determinacy in maize[J]. Genome Biol,2008,9(1):204.
    [205] Chuck G, Meeley R, Irish E, et al. The maize tasselseed4microRNA controls sex determination andmeristem cell fate by targeting Tasselseed6/indeterminate spikelet1[J]. Nature genetics,2007,39(12):1517-1521.
    [206] Barakat A, Wall PK, DiLoreto S, et al. Conservation and divergence of microRNAs in Populus[J]. BMCgenomics,2007,8(1):481.
    [207] Barakat A, Wall K, Leebens‐M ack J, et al. Large‐scale identification of microRNAs froma basaleudicot (Eschscholzia californica) and conservation in flowering plants[J]. The Plant Journal,2007,51(6):991-1003.
    [208] Yang X, Kalluri UC, Jawdy S, et al. The F-box gene family is expanded in herbaceous annual plantsrelative to woody perennial plants[J]. Plant physiology,2008,148(3):1189-1200.
    [209] Tavares LS, Santos MO, Viccini LF, et al. Biotechnological potential of antimicrobial peptides fromflowers[J]. Peptides,2008,29(10):1842-1851.
    [210] Jones JDG, Dangl JL. The plant immune system[J]. Nature,2006,444(7117):323-329.
    [211] Lokvam J, Braddock JF. Anti-bacterial function in the sexually dimorphic pollinator rewards of Clusiagrandiflora (Clusiaceae)[J]. Oecologia,1999,119(4):534-540.
    [212] Carlson HJ, Douglas HG, Robertson J. Antibacterial substances separated from plants[J]. Journal ofbacteriology,1948,55(2):241-248.
    [213] Theis N, Kesler K, Adler L S. Leaf herbivory increases floral fragrance in male but not female Cucurbitapepo subsp. texana (Cucurbitaceae) flowers[J]. American Journal of Botany,2009,96(5):897-903.
    [214] Thadeo M, Cassino MF, Vitarelli NC, et al. Anatomical and histochemical characterization of extrafloralnectaries of Prockia crucis (Salicaceae)[J]. American journal of botany,2008,95(12):1515-1522.
    [215] Vamosi JC, Otto SP. When looks can kill: the evolution of sexually dimorphic floral display and theextinction of dioecious plants[J]. Proceedings of the Royal Society of London. Series B: BiologicalSciences,2002,269(1496):1187-1194.
    [216] Kaltz O, Shykoff JA. Male and female Silene latifolia plants differ in per‐contact risk of infection by asexually transmitted disease[J]. Journal of Ecology,2001,89(1):99-109.
    [217] Strauss SY. Floral characters link herbivores, pollinators, and plant fitness[J]. Ecology,1997,78(6):1640-1645.
    [218] Giles BE, Pettersson TM, Carlsson‐Granér U, et al. Natural selection on floral traits of female Silenedioica by a sexually transmitted disease[J]. New Phytologist,2006,169(4):729-739.
    [219] Pusey PL, Curry EA. Temperature and pomaceous flower age related to colonization by Erwiniaamylovora and antagonists[J]. Phytopathology,2004,94(8):901-911.
    [220] Stretch AW, Ehlenfeldt MK. Resistance to the fruit infection phase of mummy berry disease in highbushblueberry cultivars[J]. HortScience,2000,35(7):1271-1273.
    [221] Shykoff JA, Bucheli E, Kaltz O. Anther smut disease in Dianthus silvester (Caryophyllaceae): naturalselection on floral traits[J]. Evolution,1997:383-392.
    [222] Birzele F, Schaub J, Rust W, et al. Into the unknown: expression profiling without genome sequenceinformation in CHO by next generation sequencing[J]. Nucleic Acids Research,2010,38(12):3999-4010.
    [223] Kaur S, Cogan N, Pembleton L, et al. Transcriptome sequencing of lentil based on second-generationtechnology permits large-scale unigene assembly and SSR marker discovery[J]. BMC genomics,2011,12(1):265.
    [224] Namroud MC, Beaulieu J, Juge N, et al. Scanning the genome for gene single nucleotide polymorphismsinvolved in adaptive population differentiation in white spruce[J]. Molecular Ecology,2008,17(16):3599-3613.
    [225] Parchman T, Geist K, Grahnen J, et al. Transcriptome sequencing in an ecologically important treespecies: assembly, annotation, and marker discovery[J]. BMC genomics,2010,11(1):180.
    [226] Brummer EC, Kochert G, Bouton JH. RFLP variation in diploid and tetraploid alfalfa[J]. Theoretical andApplied Genetics,1991,83(1):89-96.
    [227] Chang S, Puryear J, Cairney J. A simple and efficient method for isolating RNA from pine trees[J]. PlantMolecular Biology Reporter,1993,11(2):113-116.
    [228] Chou HH, Holmes MH. DNA sequence quality trimming and vector removal[J]. Bioinformatics,2001,17(12):1093-1104.
    [229] Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool[J]. Journal of molecular biology,1990,215(3):403-410.
    [230] Camon E, Magrane M, Barrell D, et al. The Gene Ontology annotation (GOA) database: sharingknowledge in Uniprot with Gene Ontology[J]. Nucleic acids research,2004,32(suppl1): D262-D266.
    [231] Ye J, Fang L, Zheng H, et al. WEGO: a web tool for plotting GO annotations[J]. Nucleic acids research,2006,34(suppl2): W293-W297.
    [232] Moriya Y, Itoh M, Okuda S, et al. KAAS: an automatic genome annotation and pathway reconstructionserver[J]. Nucleic acids research,2007,35(suppl2): W182-W185.
    [233] Romualdi C, Bortoluzzi S, d’Alessi F, et al. IDEG6: a web tool for detection of differentially expressedgenes in multiple tag sampling experiments[J]. Physiological genomics,2003,12(2):159-162.
    [234] Stekel DJ, Git Y, Falciani F. The comparison of gene expression from multiple cDNA libraries[J].Genome research,2000,10(12):2055-2061.
    [235] Kofler R, Schl tterer C, Lelley T. SciRoKo: a new tool for whole genome microsatellite search andinvestigation[J]. Bioinformatics,2007,23(13):1683-1685.
    [236] Zhang Z, Wang Y, Wang S, et al. Transcriptome analysis of female and male Xiphophorus maculatus Jp163A[J]. PLoS One,2011,6(4): e18379.
    [237] Kent WJ. BLAT—the BLAST-like alignment tool[J]. Genome research,2002,12(4):656-664.
    [238] Par enicová L, de Folter S, Kieffer M, et al. Molecular and phylogenetic analyses of the completeMADS-box transcription factor family in Arabidopsis new openings to the MADS world[J]. The PlantCell Online,2003,15(7):1538-1551.
    [239] Van Der Meer IM, Stam ME, van Tunen AJ, et al. Antisense inhibition of flavonoid biosynthesis inpetunia anthers results in male sterility[J]. The Plant Cell Online,1992,4(3):253-262.
    [240] Temnykh S, DeClerck G, Lukashova A, et al. Computational and experimental analysis of microsatellitesin rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic markerpotential[J]. Genome research,2001,11(8):1441-1452.
    [241] Weber JL. Informativeness of human (dC-dA)n (dG-dT)n polymorphisms[J]. Genomics,1990,7(4):524-530.
    [242] Katti MV, Ranjekar PK, Gupta VS. Differential distribution of simple sequence repeats in eukaryoticgenome sequences[J]. Molecular Biology and Evolution,2001,18(7):1161-1167.
    [243] Morgante M, Hanafey M, Powell W. Microsatellites are preferentially associated with nonrepetitive DNAin plant genomes[J]. Nature genetics,2002,30(2):194-200.
    [244] Schmid M, Davison TS, Henz SR, et al. A gene expression map of Arabidopsis thaliana development[J].Nature genetics,2005,37(5):501-506.
    [245] Ramsk ld D, Wang E T, Burge C B, et al. An abundance of ubiquitously expressed genes revealed bytissue transcriptome sequence data[J]. PLoS computational biology,2009,5(12): e1000598.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700