用户名: 密码: 验证码:
青藏铁路冻土路基温度场随机有限元分析与变形可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青藏铁路是我国西部开发中的重大工程,具有重大的政治、国防和经济意义。路基是铁路的基础,长期的实践表明青藏铁路的成败在于冻土路基问题,因此加强冻土路基变形可靠性的研究对减少路基病害、保证青藏铁路安全高效运行有重要意义。论文从冻土工程研究现状和冻土路基工程建设需要出发,在冻土路基热状况数值模拟的基础上,对路基变形预测和可靠性评价进行了比较系统的研究,取得了如下成果和创新:
     1、在分析冻土路基工程特点和回顾冻土工程研究成果的基础上,首次建立了冻土路基随机温度场模拟和变形可靠性评价系统,该系统可以综合考虑各种随机因素的影响,对冻土路基的可靠性进行概率评估,为客观和准确的评价青藏铁路冻土路基温度场和变形,指导和改进工程设计、施工和建设提供科学依据。
     2、引入随机场概念,利用数值方法对冻土路基热状况动态特征进行模拟研究,利用摄动随机有限元法,推导出了冻土路基温度场计算的随机有限元方程,并对青藏铁路北麓河试验段冻土路基随机温度场进行了计算。结果表明,外界环境的随机性是影响冻土路基地温波动的主导因素,随着深度的增加,环境温度的主导作用逐渐减弱,路基温度的标准差也逐渐减小,在一定的深度达到平均化。随着铁路运营时间的增长,路基下冻土的热敏感性增加,对热参数波动的反应变得强烈,冻土路基温度标准差明显增大,标准差在冻土路基下的分布范围也进一步扩大,将会严重影响路基可靠性。
     3、针对目前冻土路基变形计算上存在的困难,用BP-人工神经网络建立起了路基变形与地温、路基高度和上限之间的非线性映射,测试结果比较令人满意。对第30年的路基过程进行了预测,结果显示,神经网络可以相对精确的预测较长时间的路基变形量,预测结果能清晰的反映出路基的变形状况,即随着温度的降低路基的冻胀量加大,随着温度的升高路基的融沉量加大。
     4、首次采用可靠度指标和失效概率代替传统的安全系数来评价冻土路基变形的可靠性,根据可靠度指标的几何含义,建立了冻土路基可靠度指标求解的优化模型。可靠度指标的求解是一个约束优化问题,传统的计算方法十分复杂且效率较低,为此本文采用惩罚算子将约束问题转化为无约束问题,并利用遗传算法完成该优化问题的求解,使可靠度指标的求解更加精确和容易。
     5、对于冻土路基变形的功能函数无法明确表达的问题,论文中利用了响应面可靠度分析法,结合BP神经网络,建立了响应面函数以近似代替原来的功能函数,响应面函数在验算点附近可以较好的模拟真实的功能函数,不会降低可靠度分析的精度,从而很好的完成了冻土路基变形可靠度的计算。
     6、利用随机温度场的求解结果,对青藏北麓河段冻土路基运营后第30的变形可靠度进行了预测。结果表明,热参数的变异性越大,温度的标准差越大,路基的破坏概率增大,可靠性显著降低。因此为了提高冻土路基的可靠性,应降低环境随机性对路基温度场的影响,减少对多年冻土的热扰动,从而降低地温的标准差,提高冻土路基的稳定性。
     7、在冻土变形实测资料基础上,提出了冻土路基变形预测和评价模型,弥补了当前冻土路基工程以经验为主的设计原则带来的不足,使冻土路基的改良和加固工作更加定量化和科学化。
Qinghai-Tibet Railway is a great project of the Western Development in China. Researches on frozen soil problems become more and more important because of its fatal effect to the railway. Based on the analysis of thermal regime of the railway roadbed, the deformation and reliability of the roadbed were studied systemically in the thesis according to current situation and demand of frozen soil engineering. The main contents of the thesis are summarized as follows:
     1. Based on the analysis of the characteristics of permafrost engineering and the detailed review of the past research achievements, an evaluation system for thermal regime calculating and deformation evaluating of permafrost roadbed was made for the first time. It can be used as a basis for evaluating the effect of the structure, guiding and ameliorating the design of construction.
     2. The conception of random fields was introduced and stochastic finite element formulas were formed by use of perturbation stochastic finite element method. At the same time, random temperature field of frozen soil roadbed in Bailu River of Qinghai-Tibet Railway is calculated as an example. The result shows that the randomicity of environmental temperature is the main factor affecting the random temperature field of the roadbed. The temperature-standard deviation is remarkable at the top of the roadbed and diminishes with the depth, and it increases sharply with the time and the rising of coefficient of variation of thermal parameters.
     3. Aiming at current methods have their disadvantage on deformation calculation of permafrost engineering, the BP neural network was introduced and the non-linear function of deformation and its influence factors were established by BP neural network. The deformation of permafrost roadbed in Bailu River of Qinghai-Tibet Railway was predicted as an example. The result shows the process of the freezing heaving and thawing of the frozen soil roadbed and indicates the accuracy and practicability of BP neural network.
     4. Reliability index was used instead of safety factor to evaluate the stability of permafrost roadbed. An optimal model was built up for the calculation of reliability index according to its geometry meaning. Penalty function and genetic algorithm were given to deal with the problems of complexity and slow convergence in the solution of the model.
     5. Response Surface method was used for the engineering problem that their ultimate condition equation couldn’t be exactly expressed. Adoption of BP-ANN method, the Response Surface Reliability Analysis method was used to form the Response Surface function and get the reliability index.
     6. The evaluation model was used to analysis the reliability of frozen soil roadbed in Bailu River of Qinghai-Tibet and reliability index and failure probability were obtained. The result shows that the reliability of the roadbed is determined mainly by the temperature deviation. With the rising of temperature deviation, the reliability index decreases quickly and the failure probability increases sharply.
     7. Against the deficiency of the traditional design principles based on experience, a prediction and evaluation method for the deformation of permafrost roadbed was established based on the measurement data. Quantitative and scientific design can be achieved by using of this method for the improvement and reinforcement of the roadbed.
引文
[1] 马 巍 , 程 国 栋 , 吴 青 柏 . 青 藏 铁 路 建 设 中 动 态 设 计 思 路 及 应 用 研 究 . 岩 土 工 程 学 报 ,2004,26(4):537-540.
    [2] 费里德曼著,徐学祖,成果栋,丁德文等译. 冻土温度状况计算方法. 北京:科学出版,1982.
    [3] 库德里雅采夫著,郭东信,马世敏,丁德文等译. 工程地质研究中的冻土预报原理.兰州:兰州大学出版社,1992.
    [4]Cannon J.R., Hill C.D. Existence, uniqueness, stability and monotone dependence in a Stefan problem for the heat equation. Journal of Mathematics and Mechanics, 1967, 17:1-20.
    [5] Comini G., Guidice S., Lewis R.W. and Zienkiewicz O.C. Finite element solution of nonlinear heat conduction problems with special reference to phase change. International Journal for Numerical Method in Engineering,1974,8:613-624.
    [6]Coutts R.L.,Konrad J.M. Finite element modeling of transient no-linear heat flow using the node state method. In: Ground Freezing 1994,39-47.
    [7]Jame Y.W.,Norum D.I. Heat and mass transfer in a freezing unsaturated porous medium. Water Resources Research,1980,16(4):811-819.
    [8]Morgan K.,Lewis R.W.,Zienkiewicz O.C. An improve algorithm for heat conduction problems with pahse change.International Journal for Numerical Methods in Engineering,12:1191-1195.
    [9]Kay B.D., Perfect E. State of the art:Heat and mass transfer in freezing soils. Proceedings of 5th International Symposium on Ground Freezing,1988: 3-21.
    [10]Newman G.P.,Wilson G.W. Heat and mass transfer in unsaturated soils during freezing. Canadian Geotechnical Journal,1997,34:63-70.
    [11]Hromadka T.V.,Guymon G..L.,Berg R.L. Some approaches to modeling pahse change in freezing soils. Cold Regions Science and Technicalogy 4:137-145.
    [12]Jame Y.W., Norum D.I. Heat and mass transfer in a freezing unsaturated porous medium. Water Resources Research, 1980,Vol.16,No. 4:811-819.
    [13]Kim S. Couple heat and moisture flow analysis in unsaturated soil. Ph.D. Dissertation,Department of Civil Engineering, University of Toledo, Toledo,OH,2002.
    [14]Hartikainen J., Mikkola M. General thermomechanical model of freezing soil with numerical application. Ground Freezing 97,Knutsson(ed.),1997 Balkema,Rotterdam:101-105.
    [15] Raw M.J., Schneider D.E. A new implicit procedure for multidimensional finite difference modeling of Stefen problem. Numerical heat transfer, 1985, 8:559-571.
    [16] Gatmiri B. Fully coupled thermal-hydraulic-mechanical behavior of saturated porous media (soils and fractured rocks),new formulation and num-Erica approach, Final Report CREMES-EDF,1995.
    [17]Arakawa,K. Theoretical studies of ice segregation in soil, J. of Claciology,1966,44(6):255-260.
    [18]Knutson,A. Frost action on roads,OECD Symposium,Paris,1973.
    [19]Takashi T.,Yamamoto H.,Ohrai T. etc. Effect of penetration rate of freezing and confining stress on the frost heave ratio of soil,3rd Int. Permafrost Conf., S.:737-742.
    [20] Kulieshius V. Frost heave problems in geotechnical engineering. Vilnius Technical University, Vilna, 1991.
    [21]Harlan R.L. Analysis of coupled heat-fluid transport in partially frozen soil. Water Resource Research,9(5):1314-1323.
    [22]Taylor G.S.,Luthin J.N. A model for couple heat and moisture transfer during soil freezing. Canadian Geotechnical Journal,1978,15:548-555.
    [23]Sheppard M.T.,Kay B.D.,Loch J.P.G. Development and testing of a computer model for heat and mass flow in freezing soils.Proc. 3rd Int. Conf. On Permasrost, 1978, PP:76-81.
    [24]Jansson P.E.,Halldin S. Model for the annual water and energy flow in a layered soil.IN:Halldin S.(ed.) Comparison of Forest and Energy Exchange Models.Society for Ecological Modelling Copenhagen,1979,S.145-163.
    [25]Fukuda M.,Nakagawa S. Numerical analysis of frost heaving based upon the coupled heat and water flow model. 4th Int.Symposium on Ground Freezing. Sapporo, Japan, 1985, S.:109-117.
    [26]Guymon G.L.,Luthin J.M. A coupled heat and moisture transport model for arctic soils.Water Resources Research,Vol.10,No.5,1974,995-1001.
    [27]Guymon G.L.,Berg R.L.,Johnson T.C.and Hromadka T.V. Results from a mathematical model of frost heave. Transportation Research Report 809,1981,2-6.
    [28]Guymon G.L.,Berg R.L.and Hromadka T.V. Mathematical model of frost heave and thaw settlement in pavements. CRREL Report 93-2,1993.
    [29]Shen Mu,Ladanyi B. Modeling of coupled heat,moisture and stress field in freezing soil. Cold Regions Science and Technology,1987,Vol.14:237-246.
    [30]Konrad J.M.,Morgenstern N.R. A mechanistic theory of ice lens formation in fine-grained soils. Canadian Geotechnical Journal,1980,Vol.17:476-486.
    [31]Gilpin R.R. A model for the prediction of ice lens and frost heave in soils. Water Resources Research,1980,Vol.16:918-930.
    [32]O’Nell K.,Miller R.D. Exploration of a rigid ice model of frost heave. Water Resources Research,1985,Vol.21:281-296.
    [33]Nixon J.F. Discrete ice lens theory for frost heave in soils. Canadian Geotechnical Journal,1991,Vol.28:843-859.
    [34]Duquennoi C.,Fremond M. Modeling of thermal soil behavior. VTT Symposium 94,1989,Vol.2:895-915.
    [35]Fremond M.,Mikkola M. Thermomechanical model of freezing soil,Proceedings of the 6th Internation Symposium on Ground Freezing, Rotterdam. A.A.Balkema, 1991, 17-24.
    [36]Panner E. Aspects of the ice lens growth in soils. Cold Regions Science and Technology, Vol.13:91-100.
    [37]Cary J.W. A new method for calculating frost heave including solute effects. Water Resources Research,1987,23:1620-16214.
    [38]Dennis E.,Pufahl. Frost action(section 3 of roads and airfields in cold regions. Edited by Teds Vinson).ASCE,1996,51-85.
    [39]Nixon J.F. The role of convective heat transport in the thawing of frozen soil. Canadian Geotechnical Journal,34:63-71.
    [40] Hildebrand E.E. Thaw settlement and ground temperature model for highway design in Permafrost areas. Proceedings of the 4th International Conference on Permafrost. Washington DC:USA Natl Acad Press,1983.492-497.
    [41] Nelson R.A., Luscher U.,Rooney J,W.,et al. Thaw strain data and thaw settlementPredictions for Alaskan soils. Proceedings of the 4th International Conference on Permafrost. Washington,DC:USA Natl Acad Press,1983,912-917.
    [42]Ponomarev V.D.,Sorokin V.A.,Fedoseev Y.G. Compressibility of sandy Permafrost during thawing . Soil Mechanics and Foundation Engineering,1988,25(3):124-128.
    [43]Osterkamp T.E. Freezing and thawing of the soils and permafrost containing unfrozen water or brine. Water Resources Research,1987,23:2279-2285.
    [44] Panday S., CoraPcioglu M Y. Solution and evaluation of permafrost thaw- subsidence model. Journal of Engineering Mechanics, 1995, 121(3):460-469.
    [45]徐学祖,陶兆祥,傅素兰.典型融冻土的热学性质.见:中国科学院兰州冰川冻土研究所集刊(第2 号),北京:科学出版社,1981.
    [46]Xu Xiaozu, Wang Jiacheng, Zhang Lixin, et al. Mechanisms of frost heave and salt expasion of soil.Science Press,Beijing,1999.
    [47]程国栋.厚层地下冰的形成过程.中国科学(D 辑),1982,(3):281-228.
    [48]程国栋,童伯良,罗学波.路堤填土对冻土上限的影响.见:青藏冻土研究论文集.北京:科学出版社,1983.
    [49]吴青柏,童长江.冻土变化与青藏公路的稳定性问题.冰川冻土,1995,17(4):350-355.
    [50]吴青柏,童长江,米海珍.青藏公路沥青路面下季节活动层的变化特征.西安公路交通大学学报,1995,15(4):1-5.
    [51]李东庆.青海省 214 国道(青康公路)多年冻土退化与路基稳定性分析研究[中国科学院博士学位论文].兰州:中国科学院兰州冰川冻土研究所,1999.
    [52]刘永智,吴青柏,张建明,盛煜.多年冻土地区公路路基变形.中国科学院寒区旱区环境与工程研究所冻土工程国家重点实验室年报,Vol.10:101-109.
    [53]李述训,高兴旺,王清逸.一维相变温度场数值计算的参数选取与误差分析.见:中国地理学会冰川冻土学术会议论文选集(冻土学).北京:科学出版社,1982.
    [54]李述训,程国栋.冻融土中的水热输运问题.兰州:兰州大学出版社,1995.
    [55]李述训,程国栋,郭东信.气候持续变暖条件下青藏高原多年冻土变化趋势数值模拟.中国科学,1996,26(4):342-347.
    [56]李述训,吴紫汪.青藏高原多年冻土区沥青路面下融化盘形成变化特征.冰川冻土,1997,19(2):133-140.
    [57]沈沐.路堤相变温度场的有限元数值模拟.见:冻土的温度水分应力及其相互作用.兰州:兰州大学出版社,1990,46-53.
    [58]令锋.冻土路基热状况动态特征的数值模拟与预报研究.中科院兰州冻土所博士学位论文,1999.
    [59]Lai Y.M.,Wu Z.,Zhu L. Nonlinear analysis for the coupled problem of temperature and seepage fields in cold regions tunnels. Cold Regions Science and Technology,Vol.29:89-96.
    [60]Liu Jiankun. Coupled problem of unsteady seepage of water and thermal transfer in roadbed on permafrost regions. In: Proceedings of International Symposium on Cold Regions Engineering, Harbin, China. Harbin: University of Harbin Industry Technology Press,107-110.
    [61]吴紫汪,张家懿,王雅卿等.冻土融化下沉性的初步研究[A].中国科学院兰州冻土研究所集刊[C],(2).北京:科学出版社,1981,104-112.
    [62] 何 平,程国栋,杨成松等. 冻土融沉系数的评价方法. 冰川冻土,2003,25(6):608-613.
    [63] 陈肖柏.祁连山木里地区冻土融化时的下沉与压缩特性.中国科学院兰州冰川冻土研究所集刊,2 期.北京:科学出版社,1981,97-103.
    [64] 朱元林,张家懿.冻土的融化下沉.中国地理学会冰川冻土学术会议论文集.北京:科学出版社,1982,145-150.
    [65] 朱元林,张家懿,吴紫汪.冻土地基的融化压缩沉降计算.青藏冻土研究论文集.北京:科学出版社,1983,134-138.
    [66] 崔成汗,周开炯.冻结砂粘土融沉压缩系数的经验公式.中国地理学会冰川冻土学术会议论文集.北京:科学出版社,1982,151-152.
    [67] 王文宝.大兴安岭牙林线 323Km 多年冻土地区路基下沉的整治[A].中国地理学会冰川冻土学术会议论文选集(冻土学).北京:科学出版社,1982,167-170.
    [68] 吴紫汪, 刘永智. 青藏公路沥青路面多年冻土路基变形预报. 第三届全国冻土学术会议论文集. 北京: 科学出版社,1989, 333-338.
    [69] 吴紫汪, 程国栋, 朱林楠. 冻土路基工程. 兰州: 兰州大学出版社, 1988.
    [70] 吴青柏,朱元林,刘永智. 人类工程活动下多年冻土热融蚀敏感性评价模型.岩土工程学报,2001,23(6):731-735.
    [71] 李 宁,陈 波,陈飞熊.寒区复台地基的温度场、水分场与变形场三场耦合模型. 土木工程学报,2003,36(10):66-71.
    [72]王铁行,胡长顺.多年冻土地区路基温度场和水分迁移场锅台问题研究.土木工程学报,2003,36(12).
    [73] 王铁行,胡长顺,李宁.冻土路基应力变形数值模型.岩土工程学报,2002,24(2):193-197.
    [74]苏联科学院西伯利亚分院冻土研究所,郭东信,刘铁良,张维信等译.普通冻土学.北京:科学出版社,1988.
    [75]周幼吾,郭东信,邱国庆等.中国冻土.北京:科学出版社,2000.
    [76]姚檀栋等.青藏高原中部冰冻圈动态特征.北京:地质出版社,2002.
    [77] 崔托维奇著.张长庆,朱元林译. 冻土力学.北京:科学出版社,1985.
    [78]吴青柏,童长江.冻土变化与青藏公路的稳定性问题.冰川冻,1995,17(4):350-355.
    [79]张建明. 青藏铁路冻土试验工程科研项目阶段成果报告,2003.
    [80]丁一汇.中国西部环境演变评估第二卷之中国西部环境变化预测.北京:科学出版社,2002.
    [81]刘宁. 可靠度随机有限元法及其工程应用.北京:水利水电出版社.
    [82]Heller R.A. Temperature response of an infinitely thick slab to random surface temperature. Mechanics Research Communication,1976,3(2):379-385.
    [83]Heller R.A. Thermal stress as an narrow-band random load. Journal of Engineering Mechanics,1976,102(5):787-805.
    [84] Tsubaki T.,Bazant Z.P. Random shrinkage stresses in aging viscoelastic vessel. Journal of Engineering Mechanics,1982,108(3):527-545.
    [85] 王同生.混凝土结构的随机温度应力 水利学报,1985,1:23-31.
    [86] 姚磊华. 地下水水流模型的摄动待定系数随机有限元法. 水利学报,1999(7):60-64.
    [87]Handa K.,Anderson K. Application of finite element methods in statistical analysis of structures. Proceedings of 3rd International Conference on Structural Safety and Reliability. Trondheim, Norway,1981,409-417.
    [88] Hisada T.,Nakagiri S. Stochastic finite element analysis of uncertain structures system. Proceedings of 4th International Conference on FEM. Australia, 1982,133-138.
    [89]Chapuis R. New stability method for embankments on clay foundation. Canadian Geotechnical Journal,1982(19):44-48.
    [90]高大钊.地基基础工程标准化与概率极限状态设计原则.岩土工程学报,1993(4):8-14.
    [91] Vanmarcke E. Random fields: Analysis and synthesis. Cambridge:MIT press,1983.
    [92]Vanmarcke E.,Shinozuka M.,Nakagiri S.,et al. Random fields and stochastic finite element. Structural Safety,1986(3):143-166.
    [93]Bai Bing. Preliminary study on nonlinear stochastic finite element method for soil mass. Proceedings of 9th LACMAG. Netherlands: Balkema Publishers,1997.
    [94] 秦权.随机有限元及其进展.工程力学,1994,11(4).
    [95]Liu P.L. Reliability of geometrically non-linear uncertain srtrcture. Journal of Engineering Mechanics,1993.
    [96]Liu P.L. Multivariate distribution models with prescribed marginal and covariance. Probabilistic Engineering Mechanics,1986.
    [97]Takada T. Local integration method in stochastic finite element analysis.Proc. of ICOSSAR89.
    [98] Der Kiureghian A. Recent developments in stochastic finite element. Proc. Of Reliability and Optimization of structural system,1991.
    [99]Spanos P.D. Finite element Stochastic: Expansion for random media. Journal of Engineering Mechanics,1989115(5).
    [100]Ghanem R.G. Spanos P.D. Finite element stochastic:A special approach , Springer -verlag,1991.
    [101]陈虬,刘先斌.随机有限元法及其工程应用.西南交通大学出版社,1993.
    [102]钱家欢,殷宗泽.土工原理与计算(第二版).中国水利电力出版社,1996.
    [103]Daryl L.L.著,伍义生,吴永礼等译. 有限元方法基础教程(第三版).北京:电子工业出版社,2003.
    [104]Bonacina C.,Comini G. Numerical solution of phase-change problems. International Journal of Heat and Mass Transfer,1973,16:1825-1832.
    [105]朱林楠.高原冻土区不同下垫面的附面层研究.冰川冻土,1988,10(1):35-39.
    [106] 青藏铁路建设总指挥部专家咨询组.路基变形实体勘察和变形计算问题,2003 年 5 月.
    [107]何平.青藏铁路厚层地下冰段—北麓河试验段抛片石及碎石护坡试验沉降变形分析,2003.
    [108]陈飞熊,李 宁.非饱和正冻土的三场耦合理论框架.中国科学(D 辑),2002,32(12).
    [109] 陈飞熊,李宁,程国栋.饱和正冻土多孔多相介质的理论构架.岩土工程学报,2002,24(2):213~217.
    [110]徐学祖,邓友生.冻土中水分迁移的实验研究.北京:科学出版社,1991.
    [111]李述训,程国栋.冻融土中的水热输运问题.兰州:兰州大学出版社.
    [112]Iwata S. Driving force for water migration in frozen clayed soil. Soil Science andPlant Nutrition,1980,26:215-227.
    [113]徐学祖,王家进,张立新等.我国冻土物理学近十年研究进展.见:第五届全国冰川冻土学大会论文集(下).兰州:甘肃文化出版社,946-955.
    [114]徐学祖,王家澄,张立新著.冻土物理学.北京:科学出版社,2001.
    [115]Konrad J.M.,Duquennoi C. A model for water transport and ice lensing in freezing soils. Water Resources Research, 1993,Vol. 29,No.9:3109-3124
    [116]邱国庆等.莫玲砂土冻结过程中的离子迁移,水分迁移和冻胀.冰川冻土,1986,8(1):1-13.
    [117]王永庆.人工智能原理与方法.西安:西安交通大学出版社,1998.
    [118]Simon Haykin 著,叶世伟,史忠植译.神经网络原理.北京:机械工业出版社,2004.
    [119] 蒋宗礼.人工神经网络导论.北京:高等教育出版社,2001.
    [120]王伟.人工神经网络原理(入门与应用).北京:北京航空航天大学出版社,1995.
    [121]杨建刚.人工神经网绍实用教程.浙江:浙江大学出版社,2001.
    [122]Geogre D M, Michael N V, Geogre S A. Effective backpropagation training with variable stepsize[J]. Neural Networks,1997,10(1):69-82.
    [123] Charles W L. Training feedforward neural networks: an algorithm giving improved generalization[J]. Neural Networks,1997, 10(1): 61-68.
    [124] 祝玉学. 边坡可靠性分析.北京:冶金工业出版社,1993.
    [125] 中华人民共和国建设部.建筑结构可靠度设计统一标准 GB 50068 2001
    [126] 冷伍明著.基础工程可靠度分析与设计理论.长沙:中南大学出版社,2000.
    [127] 包承纲.可靠度分析方法在岩土工程中的应用.人民长江,1999,27(5),1-5.
    [128]E.E.刘易斯著,冯允成夏国平译.实用性工程.北京:航空航天出版社,1991.
    [129] Freudenthal A M. Safety and probability of structural failure. Proc. ASCE,1954.
    [130] Cornell C A. A normative second-moment reliability theory for structural design. Solid Mechanics Division, University of Waterloo, Canada, 1969.
    [131] Ang A H-S Tang W T. Probability concepts in engineering planning and design. Tohn Wiley&Sons,Inc.,New York, V. 1,1975.
    [132] 谢康和,周健. 岩土工程有限元分析理论与应用.北京:科学出版社,2002.
    [133]Wu T.H.,Kraft L.M. The probability of foundation safety.ASCE,Vol.93,SM5,1967.
    [134] Wu T.H.,Kraft L.M. Safety analysis of slope. ASCE,Vol.96,SM2,1970.
    [135] Wu T.H. Uncertainty, safety and decision in soil engineering. ASCE,Vol.100,GT3,1974.
    [136] Wu T.H.,Thayer W.B.,Lin S.S. Stability of embankment on clay.ASCE,Vol.101.GT9,1975.
    [137]Lumb P. Application of statistics in soil mechanics.Soil Mechanics:New Horizons I. K.Lee. Newnes-Butterworth,1974.
    [138]Lumb P. Variability of natural soil. Canadian Geotechnical Journal,1996,Vol.3,No.2.
    [139]Lumb P. Safety factors and the probability distribution of soil strength. Canadian Geotechnical Journal,1970,Vol.7,No.3.
    [140]Vanmarcke E.E. Probabilistic Modeling of soil profiles. ASCE,1977,Vol.103,GT11.
    [141]Vanmarcke E.E. Probabilistic stability analysis of earth slopes. Engineering Geology,1980,Vol.16.
    [142]Ingles.O.G. Statistics,probability and trends. Myers medal lecture in design and construction of flexible parements, Unisearch 2,AI-30,1978.
    [143] Ingles O.G. Human factors and error in civil engineering. Proceedings of 3rd International Conference on Applications of Statistic and Probability in Soil and Structure Engineering Geology,Vol.3.
    [144]Harr M.E. Mechanics of particulate media: a probabilistic approach. McGraw Hill New York,1977.
    [145]刘宏梅. 关于可靠性方法的现状及其可行性. 概率论与统计学在岩土工程中的应用专题学术座谈会专辑,1983.
    [146]高大钊,魏道垛. 试论概率方法在岩土工程中的作用与地位.概率论与统计学在岩土工程中的应用专题学术座谈会专辑,1983.
    [147]高大钊.岩土工程的可靠性分析.岩土工程学报,1983,(4).
    [148]包承纲.土工中的可靠性设计问题.人民长江,1984(1).
    [149]盛崇文. 用概率方法预报砂性土地基的沉降.岩土工程学报,1982(1).
    [150]包承纲. 多层地基沉降的概率分析.第四届土力学及基础工程学术会议论文选集.北京:中国建筑工业出版社,1986.
    [151] 郭志川,刘 宁,余登飞. 地基沉降的随机有限元法和可靠度计算. 土木工程学报,2001,34(5):62-67.
    [152] 傅旭东,茜平一,刘祖德.浅基础沉降可靠性的 Neumann 随机有限元分析.岩土力学,2001,22(3):285-290.
    [153]祁长青,吴青柏,施 斌,唐朝生.基于遗传算法的冻土路基融沉可靠性分析.岩土力学,待发.
    [154]高大钊. 地基土力学性质指标的可靠性分析与取值.同济大学学报,1985(4).
    [155]高大钊.岩土参数的变异性及分布拟合. 岩土力学参数的分析与解释讨论会文集,1986.
    [156]何信芳,熊兴邦,陈林.运用统计数学研究膨胀土含水量的最小值. 岩土力学参数的分析与解释讨论会文集,1986.
    [157]林秉俊.散粒体中颗粒移动概率及渗透破坏概率分析. 概率论与统计学在岩土工程中的应用专题学术座谈会专辑,1983.
    [158]高大钊.静力触探试验结果的可靠性分析.工程勘察,1981(2).
    [159]熊兴邦.摩尔圆包线参数的计算与奇误差分析.工程勘察,1981(6).
    [160]包承纲.贝叶斯定理及其在三峡工程中的应用.人民长江,1985(1).
    [161]高大钊.土的抗剪指标的统计方法.工程勘察,1986(4).
    [162]陈忠汉,高大钊.用多参数最优解法求桩侧分层土极限摩阻力.工程勘察,1988(5).
    [163]黄炎生,韩大建. Neumann 法在大坝可靠性分析中的应用. 华南理工大学学报(自然科学版),1995, 23(1):106-111.
    [164] 徐 军,张利民,郑颖人. 基于数值模拟和 BP 网络的可靠度计算方法. 岩石力学与工程学报,2003,22(3):395-399.
    [165] 徐建平,白 冰,周 健. 摄动随机有限元法在土坡可靠性分析中的应用. 武汉交通科技大学学报,2000,24(4):346-350.
    [166] 叶军,吴世伟.蒙特卡罗法在结构可靠性分析中的应用.河海大学学报,l988 16(5):65-74.
    [167] 吴世伟.结构可靠度分析.北京:交通出版社,1988.
    [168]宋晓燕,王铁成,管海梅,唐军务.工程结构可靠度计算的几何法.工程力学增刊,2001,437-441.
    [169] Madsen H O, Krenk S , Lind N C.Methods of Structural Safety[M]. New York: Springer Verlag, 1986.
    [170] Melchers R E. Structural Reliability Analysis and Prediction[M]. New York: John Wiley and Sons, 1987.
    [171] 苏水华,方祖烈,高谦.用响应面法分析特殊地下岩体空间的可靠性.岩石力学与工程学报,2000,19(1):55-58.
    [172]Rajashekhar M.R.,Ellingwood B.R. A new look at the response surface approach for reliability analysis. Struct Safety,1993:205-220.
    [173]Wong F.S. Slope reliability and response surface method. Journal of Geotechnical Engineering,1985,111(1),32-53.
    [174]赵国藩.工程结构可靠性理论及应用[M].大连:大连理工大学出版社,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700