用户名: 密码: 验证码:
机器人多指手抓取规划算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多指灵巧手作为机器人与环境相互作用的执行部件,通过从结构和功能上模仿人类的手以实现不同形状物体的稳定抓取和灵巧操作,在过去的近三十年来引起了国内外学者的极大兴趣。自由度的增加和抓取方式的多样性使得抓取规划变得复杂。本文对机器人多指手抓取规划问题进行了深入的分析和研究,并设计和研制出采用形状记忆合金驱动的新型多指灵巧手样机。
     本文的主要研究成果如下:
     (1)提出了一种多边形物体带摩擦抓取的最优规划算法
     加工工件被限制在工作台平面运动时,可以当二维物体处理。考虑n指抓取多边形物体的情况,提出了一种求解满足力封闭条件的非线性规划算法。在定义各方向上手指能平衡的最大外力螺旋作为优化指标后,详细分析了原始力螺旋集合的特点和优化指标在力螺旋空间中的几何意义和物理意义。最后给出了一种在初始抓取位置不断向最优方向改进抓取性能的迭代算法,该算法能以较少的迭代步骤收敛到较优的抓取位置,减少了优化算法运行时间。
     (2)改进了射线法在抓取性能评价中的应用
     在抓取性能评价中需要采用射线法(ray-shooting)来计算从原点出发沿某方向的射线与接触力螺旋集合凸包边界的交点。这样通过支撑映射(support mapping)来读取抓取力螺旋空间的几何形状,不需要线性化摩擦锥,并可提高计算速度。本文解决了在实际应用中怎样判断原点是否处于接触力螺旋集合凸包内部,迭代过程怎么处理奇异情况等问题。并且提出了采用搜索树结构和短路技术(short-circuiting technique)来进一步加快抓取性能评价算法的计算速度。
     (3)提出了新的抓取性能评价方法并使用到多面体的最优抓取规划上
     在每个接触点的法向分量都小于1的假设下,本文提出了一种基于抗扰动能力的抓取性能评价方法。该评价方法不仅克服了其它方法在力螺旋空间中单位的不一致性且与物体坐标系的选取和与被抓取物体大小相关的缺陷,而且包含了被抓取物体的几何信息,并能在三维物体抓取时可视化显示。然后将其使用到三维多面体的最优抓取位置规划问题上,推导出抓取性能改进的必要条件。在满足单位力封闭的初始抓取位形上,提出了一种在多面体给定接触面上搜索局部最优抓取位置的迭代算法。
     (4)提出了一种最稳定抓取的快速动态力分配算法
     被抓取物体在受到随时间变化的外力螺旋作用时,需要手指在接触点产生相应的作用力抵消外力螺旋以保持平衡。为快速求解分配到各个手指的力以获得最稳定的抓取,本文将动态力分配算法分为离线和在线两个阶段,大部分计算在离线阶段完成以加快在线计算速度。在离线阶段使用区域三角剖分(Zone Triangulation)将原始接触力螺旋集合的凸包内部空间划分为许多个非奇异的单纯形,并记录下每个单纯形的邻接单纯形。于是在在线阶段,只需要寻找到所需合力螺旋所在的单纯形后,通过该单纯形顶点对应的原始接触力即可快速计算出最优分配力。该算法不仅运行速度快,并且得到的解十分接近最优解。
     (5)采用六维力/力矩传感器实现形状未知物体的抓取
     形状未知物体的抓取规划是机器人研究领域的一大挑战。本文在三只机械臂末端安装上六维力/力矩传感器搭建出三指抓取系统,与前人基于机器视觉的抓取规划不同,该抓取系统结构简单,不需要重构被抓取物体的几何模型。当机械臂末端和物体有接触力产生时,通过传感器信息即可估算出接触点的位置及对应的法向量方向。于是机械手不仅可以当作执行器,实现抓取;而且也可作为传感器,通过触觉来探索环境信息,获取被抓取物体的几何信息后搜寻满足力封闭的抓取位置。
     (6)开发出形状记忆合金驱动的三指灵巧手
     采用人工肌肉作为驱动器已成为多指灵巧手发展的潮流。形状记忆合金(SMA)是一种具有形状记忆效应的特殊金属材料,本身体积很小,可以集传感、驱动、传动于一体,是一种很有潜力的人工肌肉材料。本文将形状记忆合金内置到手指和手掌中开发出紧凑的三指9自由度灵巧手ZJUHand.目前国内研制的灵巧手还没有使用SMA作为驱动器的先例,ZJUHand的研究填补了国内在相关领域的空白。相比于国外SMA驱动的灵巧手,ZJUHand具有结构简单紧凑、重量轻、成本低等优点,特别适合安装到机械臂末端实现较轻负载的精细操作。
Being the executive component of interaction between the robot and the environment, multi-fingered dexterous hand is capable of stable grasping and dexterous manipulation of objects in different shapes through mimicking human hand both in structure and functionality, and aroused great interest from scholars at home and abroad in the past three decades. The grasp planning becomes complicated because of the increased degrees of freedom and diversity of grasp mode. In this thesis, in-depth research was performed on the robotic grasp planning issues, and a novel multi-fingered robotic hand driven by shape memory alloy was developed.
     The main innovative work of this thesis is summarized as follows:
     (1) Proposes a optimal planning algorithm for polygonal object grasping with frictional contacts
     Workpiece can be treated as2D object when it is restricted to move on the workbench. Considering a polygonal object grasped by n fingers, a planning algorithm is proposed to calculate the initial positions satisfying force-closure condition. After defining the maximum external wrench in all directions a grasp can balance as a criterion, we analyzed the features of the primitive wrench set and both the geometrical and the physical significances of the grasping planning criterion in wrench space. Starting at the initial arrangement, an iterative algorithm is proposed to continuously improve grasp performance towards the optimal direction. It converges to the near-optimal grasp arrangement in less iteration and reduces the running time dramatically.
     (2) Enhances the ray-shooting approach to grasp evaluation
     Calculation of the intersection point on the boundary of convex hull of the contact wrench set with a ray emitting from the origin along a certain direction is required in the grasp evaluation problem. The geometry of the grasp wrench space can be read by the support mapping in the ray-shooting approach. Without linearization of the friction cones, the efficiency of the grasp evaluation is improved. In this thesis, we discuss some issues such as how to determine whether the origin is contained in the convex hull of the contact wrench set, how to treat the singular cases in the iteration, etc. In the same time, an enhanced algorithm with searching tree and short-circuiting technique is put forward to further accelerate the grasp evaluation algorithm.
     (3) Presents a novel grasp evaluation method and implements it to polyhedral objects grasp planning
     A novel grasp evaluation method is presented based on disturbance force rejection under the assumption that the normal component of each individual contact force is less than one. It overcomes the drawbacks of other grasp quality indices such as non-uniformity of the wrench space and a dependence on scale and choice of reference frame, besides, it incorporates the object geometry, can be visualized easily for3-D grasps. Next, we implement it to optimal grasp planning for polyhedral objects in3-D space and deduce a necessary condition for grasp quality improvement. Starting from an initial force-closure unit grasp configuration, an iterative algorithm is proposed to find the locally optimum contact points on the assigned faces of a polyhedral object.
     (4) Proposes a fast maximum stable grasping algorithm in dynamic force distribution
     When the grasped object endures time-varying external wrench, it requires proper contact forces to offset the external wrench and maintain balance. In order to calculate the maximum stable grasping force for each finger quickly, we divide the dynamic force distribution algorithm into two phases and speed up the on-line computation by shifting as much computation as possible from an on-line phase to an off-line phase. In the off-line phase, a nonsingular simplex set is obtained by the zone triangulation of the convex hull of the contact primitive wrench set, and the adjacent simplexes of each resultant simplex are recorded. Therefore, in the on-line phase, once the specific simplex which contains the required resultant wrench is found, the optimal contact forces can be calculated quickly by the combination of the primitive forces corresponding to the vertices of this simplex. The proposed two-phase runs very fast and the obtained contact forces are very close to the optimal solution.
     (5) Presents a method for unknown objects grasping using six-axis force/torque sensors
     Geometrically unknown objects grasping is a challenging problem in robotic grasping. Mounting a six-axis force/torque sensor on the end of each robotic arm, we design a three-fingered robotic hand grasping system. Compared to previous work based on computer vision, our system is simpler and model reconstruction is not necessary. The position of the contact point and corresponding normal direction on the object can be calculated from the sensor information once contact occurs. Therefore, beside as an actuator to grasp the object, the robotic hand is a touching sensor and capable of "exploration" the shape of unknown objects through continual contact to find suitable force-closure grasp configurations.
     (6) Develops a novel three-fingered detours hand driven by shape memory alloy
     The artificial muscle is the development trend of actuator for multi-fingered dexterous hand. Shape memory alloy is a special metal material with shape memory effect. It is a promising artificial muscle material because of its small size. It is also capable of integrating sensing, driving and transmission. In this thesis, a three-fingered dexterous hand named ZJUHand is developed. It is a compact hand with9-DOFs and the shape memory alloy is built into the fingers and palm. ZJUHand is the first SMA-driven dexterous hand in China, and filled related blank in domestic. Compared to the foreign SMA-driven dexterous hands, ZJUHand possess many advantages such as simple structure, compact size, light weight, low cost, etc. It is particularly suitable to install on the end of manipulator for fine operation with light load.
引文
[1]MURRAY R M. LI Z. SASTRY S S. A mathematical introduction to robotic manipulation[M].Boca Raton, FL, USA:CRC Press,1994.
    [2]张玉茹,李继婷,李剑锋,机器人灵巧手--建模规划与仿真[M].北京:机械工业出版社,2007.
    [3]刘宏,姜力,仿人多指灵巧手及其操作控制[M].北京:科学出版社,2010.
    [4]刘庆运.机器人多指手抓取运动学研究[D].南京:东南大学,2007.
    [5]XIONG C, DING H, XIONG Y-L, Fundamentals of robotic grasping and fixturing[M].Singapore; Hackensack, NJ:World Scientific,2007.
    [6]MASON M T, SALISBURY J K, Robot hands and the mechanics of manipulation[M]:The MIT Press,1985.
    [7]郑宇.多指抓取的封闭性、最优规划与动态力分配研究[D].上海:上海交通大学,2007.
    [8]TOMOVIC R, BONI G. An adaptive artificial hand[J]. IRE Transactions on Automatic Control,1962,7(3):3-10.
    [9]OKADA T. An artificial finger equipped with adaptability to an object[J]. Bull. electrotech. lab(in Japanese),1974,37(2):1078-1090.
    [10]OKADA T. Object-handling system for manual industry[J]. IEEE Transactions on Systems, Man and Cybernetics,1979,9(2):79-89.
    [11]OKADA T. Computer control of multijointed finger system for precise object-handling[J]. IEEE Transactions on Systems, Man and Cybernetics, 1982,12(3):289-299.
    [12]SALISBURY K, ROTH B. Kinematics and force analysis of articulated mechanical hands[J]. Journal of Mechanisms, Transmissions and Actuation in Design,1983,105(1):35-41.
    [13]SICILIANO B, KHATIB O, Springer handbook of robotics[M]: Springer-Verlag New York Inc,2008.
    [14]BEKEY G A. Biologically inspired control of autonomous robots[J]. Robotics and Autonomous Systems,1996,18(1):21-31.
    [15]ALBA D, ARMADA M, PONTICELLI R. An introductory revision to humanoid robot hands[J]. Climbing and Walking Robots,2005:701-712.
    [16]TOWNSEND W. The barretthand grasper-programmably flexible part handling and assembly[J]. Industrial Robot:An International Journal.2000, 27(3):181-188.
    [17]MELCHIORRI C, VASSURA G. Mechanical and control features of the university of bologna hand version 2[C]//Proceedings of the 1992 IEEE/RSJ International Conference on Intelligent Robots and Systems, Raleigh, NC, USA,1992:IEEE:187-193.
    [18]BIAGIOTTI L, LOTTI F, MELCHIORRI C, VASSURA G. How far is the human hand? A review on anthropomorphic robotic end-effectors[R].Bologna, Italy:University of Bologna,2004.
    [19]LOTTI F, VASSURA G. A novel approach to mechanical design of articulated fingers for robotic hands[C]//2002 IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland,2002:IEEE: 1687-1692 vol.2.
    [20]LOTTI F, TIEZZI P, VASSURA G, BIAGIOTTI L, MELCHIORRI C. Ubh 3: An anthropomorphic hand with simplified endo-skeletal structure and soft continuous fingerpads[C]// Proceedings of 2004 IEEE International Conference on Robotics and Automation, New Orleans, LA, USA,2004:IEEE: 4736-4741 Vol.5.
    [21]LOTTI F, TIEZZI P. VASSURA G, BIAGIOTTI L, PALLI G, MELCHIORRI C. Development of ub hand 3:Early results[C]//Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain,2005: Ieee:4488-4493.
    [22]LIN L R, HUANG H P. Mechanism design of a new multifingered robot hand[C]//Proceedings of the 1996 13th IEEE International Conference on Robotics and Automation, Minneapolis, MN, USA,1996:IEEE:1471-1476 vol.2.
    [23]LIN L R, HUANG H P. Ntu hand:A new design of dexterous hands[J]. Journal of Mechanical Design,1998,120:282-292.
    [24]LIN L R, HUANG H P. Integrating fuzzy control of the dexterous national taiwan university (ntu) hand[J]. IEEE/ASME Transactions on Mechatronics, 1996,1(3):216-229.
    [25]CAFFAZ A, CANNATA G. The design and development of the dist-hand dextrous gripper[C]//Proceedings of the 1998 IEEE International Conference on Robotics and Automation. Leuven. Belgium.1998:IEEE:2075-2080 vol. 3.
    [26]GAZEAU J P, ZEHLOUL S, ARS1CAULT M, LALLEMAND J P. The 1ms hand:Force and position controls in the aim of the fine manipulation of objects[C]//2001 IEEE International Conference on Robotics and Automation, Seoul, Korea, Republic of,2001:IEEE:2642-2648 vol.3.
    [27]LOVCHIK C, DIFTLER M A. The robonaut hand:A dexterous robot hand for space[C]//Proceedings of the 1999 IEEE International Conference on Robotics and Automation, Detroit, MI, USA,1999:IEEE:907-912 vol.2.
    [28]AMBROSE R O, ALDRIDGE H, ASKEW R S, BURRIDGE R R, BLUETHMANN W, DIFTLER M, LOVCHIK C, MAGRUDER D, REHNMARK F. Robonaut:Nasa's space humanoid[J]. Intelligent Systems and their Applications, IEEE,2000,15(4):57-63.
    [29]AMBROSE R O, SAVELY R T, GOZA S M, STRAWSER P, DIFTLER M A, SPAIN I, RADFORD N. Mobile manipulation using nasa's robonaut[C]// Proceedings of the 2004 IEEE International Conference on Robotics and Automation, New Orleans, LA, USA,2004:IEEE:2104-2109 Vol.2.
    [30]KAWASAKI H, SHIMOMURA H, SHIMIZU Y. Educational-industrial complex development of an anthropomorphic robot hand'gifu hand'[J]. Advanced Robotics,2001,15(3):357-364.
    [31]KAWASAKI H, KOMATSU T, UCHIYAMA K. Dexterous anthropomorphic robot hand with distributed tactile sensor:Gifu hand ii[J]. Mechatronics, IEEE/ASME Transactions on,2002,7(3):296-303.
    [32]BUTTERFASS J, GREBENSTEIN M, LIU H, HIRZINGER G. Dlr-hand ii: Next generation of a dextrous robot hand[C]//Proceedings of the 2001 IEEE International Conference on Robotics & Automation, Seoul, Korea,2001: IEEE:109-114 vol.1.
    [33]LIU H, BUTTERFASS J, KNOCH S, MEUSEL P, HIRZINGER G. A new control strategy for dlr's multisensory articulated hand[J]. Control Systems, IEEE,1999,19(2):47-54.
    [34]刘宏.智能机器人灵巧手的研究[J].西安交通大学学报,2003,37(4): 331-337.
    [35]BORST C, FISCHER M, HAIDACHER S, LIU H, HIRZINGER G. Dlr hand ⅱ:Experiments and experience with an anthropomorphic hand[C]// Proceedings of the 2003 IEEE International Conference on Robotics & Automation, Taipei, Taiwan,2003:IEEE:702-707 vol. 1.
    [36]BORST C, FISCHER M, HIRZINGER G. Grasping the dice by dicing the grasp[C]//2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, NV, USA,2003:IEEE:3692-3697 vol.3.
    [37]GAO X, JIN M, JIANG L, XIE Z, HE P, YANG L, LIU Y, WEI R, CAI H, LIU H. The hit/dlr dexterous hand:Work in progress[C]//Proceedings of the 2003 IEEE International Conference on Robotics and Automation, Taipei, Taiwan,2003:IEEE:3164-3168 vol.3.
    [38]HE P, JIN M, YANG L, WEI R, LIU Y, CAI H, LIU H, SEITZ N, BUTTERFASS J, HIRZINGER G. High performance dsp/fpga controller for implementation of hit/dlr dexterous robot hand[C]//Proceedings of the 2004 IEEE International Conference on Robotics and Automation, New Orleans, LA, USA,2004:IEEE:3397-3402 Vol.4.
    [39]胡海鹰,谢宗武,李家炜,刘宏.基于指尖位置的人手与hit/dlr灵巧手运动映射[J].哈尔滨工业大学学报,2008,39(11):1727-1731.
    [40]LIU H, WU K, MEUSEL P, HIRZINGER G JIN M, LIU Y, FAN S, LAN T, CHEN Z. A dexterous humanoid five-fingered robotic hand[C]//Proceedings of the 17th IEEE International Symposium on Robot and Human Interactive Communication,2008:IEEE:371-376.
    [41]兰天.刘伊威,陈养彬,金明河,樊绍巍.刘宏.模块化嵌入式五指机器人灵巧手手指控制系统[J].吉林大学学报:工学版,2010(2):517-522.
    [42]NAMIKI A, IMAI Y, ISHIKAWA M, KANEKO M. Development of a high-speed multifingered hand system and its application to catching[C]// Proceedings ot the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, NV, USA,2003:IEEE:2666-2671.
    [43]YAMANO I, TAKEMURA K, MAENO T. Development of a robot finger for five-fingered hand using ultrasonic motors[C]//2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, NV, USA,2003: IEEE:2648-2653 vol.3.
    [44]YAMANO I, MAENO T. Five-fingered robot hand using ultrasonic motors and elastic elements[C]//Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona. Spain,2005:IEEE: 2673-2678.
    [45]YOKOI H, ARIETA A, KATOH R, YU W, WATANABE I, MARUISHI M. Mutual adaptation in a prosthetics application[C]//International Seminar Embodied Artificial Intelligence, Dagstuhl Castle, Germany,2004:Springer Verlag:146-159.
    [46]TAKAMUKU S, GOMEZ G, HOSODA K, PFEIFER R. Haptic discrimination of material properties by a robotic hand[C]//07 IEEE 6th International Conference on Development and Learning, London, United kingdom,2007: IEEE:1-6.
    [47]SUAREZ R, GROSCH P. Dexterous robotic hand ma-i, software and hardware architecture[C]//Intelligent Manipulation and Grasping International Conference, Genova, Italy,2004:91-96.
    [48]FARBER G, SUAREZ R. Fast on-line determination of quasi-optimal grasp configurations based on off-line analysis and parametrization of the wrist position[R].Barcelona, Spain:Institut d'Organitzacio i Control de Sistemes Industrials (IOC),2004.
    [49]李继婷,苏文魁,张玉茹,郭卫东.具有运动耦合关节的灵巧手运动学反解[J].机器人,2003,25(7):674-676.
    [50]李久振,刘博,张玉茹.北航bh-985灵巧手结构设计[C]//《全国印刷、包装机械凸轮、连杆机构学术研讨会(第6届全国凸轮机构学术年会)论文集》,2005:140-142.
    [51]CANNATA G, MAGGIALI M. An embedded tactile and force sensor for robotic manipulation and grasping[C]//2005 5th IEEE-RAS International Conference on Humanoid Robots, Tsukuba, Japan,2005:IEEE:80-85.
    [52]UEDA J, ISHIDA Y, KONDO M, OGASAWARA T. Development of the naist-hand with vision-based tactile fingertip sensor[C]//Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain,2005:IEEE:2332-2337.
    [53]UEDA J, KONDO M, OGASAWARA T. The multifingered naist hand system for robot in-hand manipulation[J]. Mechanism and Machine Theory,2010, 45(2):224-238.
    [54]SABETIAN P, FEIZOLLAHI A, CHERAGHPOUR F, MOOSAVIAN S A A. A compound robotic hand with two under-actuated fingers and a continuous finger[C]//9th IEEE International Symposium on Safety, Security, and Rescue Robotics. Kyoto, Japan.2011:IEEE:238-244.
    [55]ROBINSON G, DAVIES J. Continuum robots-a state of the art[C]// Proceedings of the 1999 IEEE International Conference on Robotics and Automation, Detroit, MI, USA,1999:IEEE:2849-2854 vol.4.
    [56]COWAN L S. WALKER I D.'Soft'continuum robots:The interaction of continuous and discrete elements[J]. Artificial Life,2008,11:126-133.
    [57]JONES B A, WALKER I D. Practical kinematics for real-time implementation of continuum robots[J]. IEEE Transactions on Robotics,2006,22(6): 1087-1099.
    [58]RUCKER D C, WEBSTER III R J. Statics and dynamics of continuum robots with general tendon routing and external loading[J]. IEEE Transactions on Robotics,2011(99):1-12.
    [59]WALKER I D, CARRERAS C, MCDONNELL R, GRIMES G. Extension versus bending for continuum robots[J]. International Journal of Advanced Robotic Systems,2006,3(2):171-178.
    [60]KYRIAKOPOULOS K J, VAN RIPER J, ZINK A, STEPHANOU H E. Kinematic analysis and posit ion/force control of the anthrobot dextrous hand[J]. Systems, Man, and Cybernetics, Part B:Cybernetics, IEEE Transactions on,1997,27(1):95-104.
    [61]CHOI B, LEE S, CHOI H R, KANG S. Development of anthropomorphic robot hand with tactile sensor:Skku hand ii[C]//Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China.2006:IEEE:3779-3784.
    [62]MENG Q, WANG H, LI P, WANG L, HE Z. Dexterous underwater robot hand: Heu hand ii[C]//Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, Luoyang, China,2006:IEEE:1477-1482.
    [63]FUKAYA N, TO YAM A S, ASFOUR T, DILLMANN R. Design of the tuat/karlsruhe humanoid hand[C]//Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, Takamatsu, Japan, 2000:IEEE:1754-1759 vol.3.
    [64]Elumotion Ltd. Elu2 hand data sheet.2010. http://www.elumot ion.com/Pdfs/Elu2-Hand-Data-Sheet-24-2-10-a.pdf.
    [65]OSSWALD D, W RN H. Mechanical system and control system of a dexterous robot hand[C]//Proceedings of the 2001 International Conference on Humanoid Robots, Tokyo, Japan,2001:IEEE:8.
    [66]CARBONE G, GONZ LEZ A. A numerical simulation of the grasp operation by larm hand iv:A three finger robotic hand[J]. Robotics and Computer-Integrated Manufacturing,2011,27(2):450-459.
    [67]RODRIGUEZ N E N, CARBONE G, CECCARELLI M. Optimal design of driving mechanism in a 1-dof anthropomorphic finger[J]. Mechanism and Machine Theory,2006,41(8):897-911.
    [68]CARBONE G, IANNONE S, CECCARELLI M. Regulation and control of larm hand iii[J]. Robotics and Computer-Integrated Manufacturing,2010, 26(2):202-211.
    [69]KANEKO K, HARADA K, KANEHIRO F. Development of multi-fingered hand for life-size humanoid robots[C]//2007 IEEE International Conference on Robotics and Automation, Rome, Italy,2007:IEEE:913-920.
    [70]TEGIN J, ILIEV B, SKOGLUND A, KRAGIC D, WIKANDER J. Real life grasping using an under-actuated robot hand-simulation and experiments[C]// 2009 International Conference on Advanced Robotics, Munich, Germany, 2009:IEEE Computer Society.
    [71]Shadow Robot Company Ltd. Shadow dexterous hand c6m2 technical specification.2010. http://www.shadowrobot.com/downloads/shadow_dextrous_hand_technical_s pecification_C6.pdf.
    [72]LOUCKS C, JOHNSON V, BOISSIERE P, STARR G, STEELE J. Modeling and control of the stanford/jpl hand[C]//Proceedings of the 1987 IEEE International Conference on Robotics and Automation, Raleigh, NC, USA, 1987:IEEE:573-578.
    [73]FEARING R. Some experiments with tactile sensing during grasping[C]// Proceedings of the 1987 IEEE International Conference on Robotics and Automation, Raleigh, NC, USA,1987:IEEE:1637-1643.
    [74]GAZEAU J P, ZEGHLOUL S. RAMIREZ G, Manipulation with a polyarticulated mechanical hand:A new efficient real-time method for computing fingertip forces for a global manipulation strategy[J]. Robotica. 2005,23(04):479-490.
    [75]DAOUD N. GAZEAU J. ZEGHLOUL S. ARSICAULT M. A real-time strategy for dexterous manipulation:Fingertips motion planning, force sensing and grasp stability[J]. Robotics and Autonomous Systems,2012,60(3): 377-386.
    [76]JACOBSEN S, IVERSEN E, KNUTTI D, JOHNSON R, BIGGERS K. Design of the utah/m.I.T dextrous hand[C]//Proceedings of the 1986 IEEE International Conference on Robotics and Automation, San Francisco, CA, USA,1986:IEEE:1520-1532.
    [77]赵怀林,李果,余达太.Mckibben气动人工肌肉特性研究[J].液压与气动,2005(7):29-31.
    [78]TONDU B, LOPEZ P. Modeling and control of mckibben artificial muscle robot actuators[J]. Control Systems. IEEE,2000,20(2):15-38.
    [79]LEE Y K, SHIMOYAMA 1. A skeletal framework artificial hand actuated by pneumatic artificial muscles[C]//Proceedings of the 1999 IEEE International Conference on Robotics and Automation. Detroit, MI, USA,1999:IEEE: 926-931 vol.2.
    [80]SCHULZ S, PYLATIUK C, BRETTHAUER G. A new ultralight anthropomorphic hand[C]//Proceedings of the 2001 IEEE International Conference on Robotics and Automation, Seoul, Korea,2001:IEEE: 2437-2441 vol.3.
    [81]BOBLAN I, BANNASCH R, SCHWENK H, PRIETZEL F, MIERTSCH L, SCHULZ A. A human-like robot hand and arm with fluidic muscles: Biologically inspired construction and functionality[C]//Embodied Artificial Intelligence-International Seminar, Dagstuhl Castle, Germany,2004:Springer Verlag:160-179.
    [82]BOBLAN I, BANNASCH R, SCHULZ A, SCHWENK H. A human-like robot torso zar5 with fluidic muscles:Toward a common platform for embodied ai[C]//50 years of artificial intelligence,2007:Springer Verlag:347-357.
    [83]BOBLAN I, SCHULZ A. A humanoid muscle robot torso with biologically inspired construction[C]//2010 41st International Symposium on Robotics (ISR) and 2010 6th German Conference on Robotics (ROBOTIK), Munich, Germany,2010:IEEE:1-6.
    [84]隋立明,王祖温,包钢.气动肌肉与生物肌肉的力学特性对比研究[J].机床与液压,2004(6):22-24.
    [85]Shadow Robot Company Ltd. Design of a dextrous hand for advanced clawar applications.2003. http://www.shadowrobot.com/hand/papers.shtml.
    [86]Shadow Robot Company Ltd. Shadow dexterous hand c5 technical specification.2008. http://www.shadowrobot.com/downloads/shadow_dextrous_hand_technical_s pecification_C6P6.pdf.
    [87]Shadow Robot Company Ltd. Shadow dextrous hand research systems.2009. http://mindtrans.narod.ru/pdfs/Standard_Prices_aug_09.pdf.
    [88]彭光正,余麟,刘昊.气动人工肌肉驱动仿人灵巧手的结构设计[J].北京理工大学学报,2006,26(7):593-597.
    [89]范伟,余麟,刘昭博,刘昊,彭光正.气动人工肌肉驱动仿人灵巧手的设计[J].机床与液压,2006(8):62-65.
    [90]余麟,彭光正,刘昊,王振兴.气动肌肉驱动的灵巧手指及模糊pld控制[J].液压与气动,2008(11):37-39,50.
    [91]GAISER I, SCHULZ S, KARGOV A, KLOSEK H, BIERBAUM A, PYLATIUK C, OBERLE R, WERNER T, ASFOUR T, BRETTHAUER G. A new anthropomorphic robotic hand[C]//2008 8th IEEE-RAS International Conference on Humanoid Robots, Daejeon, Korea, Republic of,2008:IEEE: 418-422.
    [92]王志恒,钱少明,杨庆华,鲍官军,张立彬.气动机器人多指灵巧手——zjut hand[J].机器人,2012,34(2).
    [93]余海湖,赵愚,姜德生.智能材料与结构的研究及应用[J].武汉理工大学学报,2001,23(11):37-37.
    [94]谭湘强,杨宜民.Ipmc人工肌肉的特性及其应用[J].高技术通讯,2002,12(001):50-52.
    [95]沈辉,于敏,季宏丽,戴振东,裘进浩.Ipmc的力输出特性[J].功能材料, 2007,38(9):1516-1518.
    [96]孙力群,赵耀.Ipmc制备方法和计算模型的研究进展[J].材料科学与工程学报.2008,26(003):473-478.
    [97]李新贵.张瑞锐,黄美荣.李荣贵.导电聚合物人工肌肉[J].材料科学与工程学报,2004,22(001):128-131.
    [98]CHUC N H, VUONG N H L, KIM D S, MOON H, KOO J C, LEE Y, NAM J, CHOI H R. Design and control of a multi-jointed robot finger driven by an artificial muscle actuator[J]. Advanced Robotics,2010,24(14):1983-2003.
    [99]李传兵,廖昌荣.压电智能结构的研究进展[J].压电与声光,2002,24(001):42-46.
    [100]李世才,汤炳新,压电陶瓷作动器静,动态特性的实验研究[J].河海大学常州分校学报,2002,16(004):12-16.
    [101]张磊,束立红,何琳,刘永光,付永领.磁致伸缩作动器的设计与性能分析[J].海军工程大学学报,2006,18(4):75-79.
    [102]YANG Z, SEYER D J, KOZLOV M E, OH J, XIE H, RAZAL J, HALL L J, FERRARIS J P, MACDIARMID A G, BAUGHMAN R H. Fuel-powered artificial muscles[J]. Science,2006,311(5767):1580-1583.
    [103]NAKANO Y, FUJIE M, HOSADA Y. Hitachi's robot hand[J]. Robotics Age, 1984,6(7):18-20.
    [104]DE LAURENTIS K J, MAVROIDIS C. Mechanical design of a shape memory alloy actuated prosthetic hand[J]. Technology and Health Care,2002,10(2): 91-106.
    [105]S.AFAK K K, ADAMS G G. Modeling and simulation of an artificial muscle and its application to biomimetic robot posture control[J]. Robotics and Autonomous Systems,2002,41(4):225-243.
    [106]O'TOOLE K, MCGRATH M, HATCHETT D. Transient characterisation and analysis of shape memory alloy wire bundles for the actuation of finger joints in prosthesis design[J]. Mechanika,2007,6:65-69.
    [107]ABADIE J, CHAILLET N, LEXCELLENT C. An integrated shape memory alloy micro-actuator controlled by thermoelectric effect[J]. Sensors and Actuators A:Physical,2002,99(3):297-303.
    [108]GRANT D, HAYWARD V. Variable structure control of shape memory alloy actuators[J]. Control Systems Magazine, IEEE,1997,17(3):80-88.
    [109]SECORD T W, ASADA H H. Cellular muscle actuators with variable resonant frequencies[J]. Robotics Sci. Syst.2009.
    [110]BANERGEE A, BHATTACHARYA B, MALLIK A. Forward and inverse analyses of an sma actuated compliant link[J]. Journal of mechanisms and robotics,2011,3(2):021003_1-021003_10.
    [111]GRANT D, HAY WARD V. Design of shape memory alloy actuator with high strain and variable structure control[C]//Proceedings of the 1995 IEEE International Conference on Robotics and Automation, Nagoya, Japan,1995: IEEE:2305-2312 vol.3.
    [112]杨凯,辜承林.考虑次迟滞环的内嵌式sma电机非线性模型[J].华中科技大学学报:自然科学版,2006,34(002):42-43.
    [11 3]杨凯,贺晋华,辜承林.基于内嵌式sma电机的多指手驱动控制系统[J].华中科技大学学报:自然科学版,2007,35(6):64-66.
    [114]杨凯,贺晋华,辜承林.新型记忆合金拟人执行器机构与参数设计[J].华中科技大学学报:自然科学版,2008,36(003):122-125.
    [115]YANG K, GU C. A novel robot hand with embedded shape memory alloy actuators[J]. Proceedings of the Institution of Mechanical Engineers. Part C Journal of Mechanical Engineering Science,2002,216(7):737-745.
    [116]付宜利.刘浩,颜增翼,王树国.两自由度导管机器人的动力学仿真研究[J].高技术通讯,2010(6):602-607.
    [117]付宜利.颜增翼,刘浩.形状记忆合金驱动导管机器人的动力学仿真研究[J].高技术通讯,2010(5):499-504.
    [118]VEERAMANI A S, BUCKNER G D, OWEN S B, COOK R C, BOLOTIN G. Modeling the dynamic behavior of a shape memory alloy actuated catheter[J]. Smart materials and structures,2008,17:015037.
    [119]李明东,程君实.适用于有限空间的微型形状记忆合金丝驱动器[J].上海交通大学学报,2000,34(3):366-369.
    [120]应申舜,秦现生,汪文旦,王战玺.基于形状记忆合金弹簧阵列的人工肌肉设计与研究[J].中国机械工程,2008,19(15):1782-1786.
    [121]MENCIASSI A, GORINI S, PERNORIO G, DARIO P. A sma actuated artificial earthworm[C]//Proceedings of the 2004 International Conference on Robotics & Automation, New Orleans, LA, USA,2004:IEEE:3282-3287 Vol. 4.
    [122]CARLO M, METIN S. A biomimetic climbing robot based on the gecko[J]. Journal of Bionic Engineering,2006,3(3):115-125.
    [123]MENCIASSI A. GORINI S. PERNORIO G, WEITING L. VALVO F. DARIO P. Design, fabrication and performances of a biomimetic robotic earthworm[C]//Proceedings of the 2004 IEEE International Conference on Robotics and Biomimetics, Shenyang, China,2004:IEEE:274-278.
    [124]章永华,马记,何建慧,吴月,杨杰.基于人工肌肉的仿生机器鱼关节机构设计与力学分析[J].机器人,2006,28(1):40-44.
    [125]HO M, DESAI J P. Towards a mri-compatible meso-scale sma-actuated robot using pwm control[C]//Proceedings of the 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, Tokyo, Japan,2010:IEEE Computer Society:361-366.
    [126]HO M, MCMILLAN A B, SIMARD J M, GULLAPALLI R, DESAI J P. Toward a meso-scale sma-actuated mri-compatible neurosurgical robot[J]. IEEE Transactions on Robotics,2012,28(1):213-222.
    [127]MAENO T. HINO T. Miniature five-fingered robot hand driven by shape memory alloy actuators[C]//Proceedings of the 12th IASTED International Conference on Robotics and Applications, Honolulu, HI, USA.2006:Acta Press:174-179.
    [128]CHO K J. ROSEMARIN J, ASADA H. Design of vast dof artificial muscle actuators with a cellular array structure and its application to a five-fingered robotic hand[C]//Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, Florida, USA,2006:IEEE:2214-2219.
    [129]SELDEN B, CHO K J, ASADA H H. Segmented binary control of shape memory alloy actuator systems using the peltier effect[C]//Proceedings of the 2004 IEEE International Conference on Robotics & Automation, New Orleans. LA. USA.2004:IEEE:4931-4936 Vol.5.
    [130]SELDEN B, CHO K, ASADA H H. Segmented shape memory alloy actuators using hysteresis loop control[J]. Smart materials and structures,2006,15:642.
    [131]CHO K J. ASADA H H. Architecture design of a multiaxis cellular actuator array using segmented binary control of shape memory alloy[J]. IEEE Transactions on Robotics,2006,22(4):831-843.
    [132]PRICE A, JNIFENE A, NAGUIB H. Design and control of a shape memory alloy based dexterous robot hand[J]. Smart materials and structures,2007,16: 1401.
    [133]O'TOOLE K T, MCGRATH M M. Mechanical design and theoretical analysis of a four fingered prosthetic hand incorporating embedded sma bundle actuators[J]. International Journal of Mathematical, Physical and Engineering Sciences,2008,1:83-90.
    [134]O'TOOLE K T, MCGRATH M M. COYLE E. Analysis and evaluation of the dynamic performance of sma actuators for prosthetic hand design[J]. Journal of materials engineering and performance.2009,18(5):781-786.
    [135]BUNDHOO V, HASLAM E, BIRCH B. A shape memory alloy-based tendon-driven actuation system for biomimetic artificial fingers, part ⅰ:Design and evaluation[J]. Robotica,2009,27(1):131-146.
    [136]GILARDI G, HASLAM E, BUNDHOO V. PARK E J. A shape memory alloy based tendon-driven actuation system for biomimetic artificial fingers, part ⅱ: Modelling and control[J]. Robotica.2010.28(05):675-687.
    [137]罗玉元,李朝东,张国贤.基于离子聚合物金属复合结构(ipmc)的柔性致动器研究[J].中国机械工程,2006,17(4):410-413.
    [138]OTERO T F, CORTES M T. Artificial muscles with tactile sensitivity[J]. Advanced Materials,2003,15(3):279-282.
    [139]YUN K S. A novel three-finger ipmc gripper for microscale applications[D]. College Station, Texas, USA:Texas A&M University,2006.
    [140]NGUYEN V D. Constructing force-closure grasps[J]. The International Journal of Robotics Research,1988,7(3):3-16.
    [141]ZUO B R, QIAN W H. A general dynamic force distribution algorithm for multifingered grasping[J]. IEEE Trans. Syst. Man Cybernet.-Part B: Cybernetics,2000,30(1):185-192.
    [142]ZHENG Y, QIAN W H. Dynamic force distribution in multifingered grasping by decomposition and positive combination[J]. IEEE Transactions on Robotics, 2005,21(4):718-726.
    [143]SUAREZ R, ROA M, CORNELLA J. Grasp quality measures[R].Barcelona, Spain:Institut d'Organitzacio i Control de Sistemes Industrials,Universitat Politecnica de Catalunya,2006.
    [144]BUSS M, HASHIMOTO H, MOORE J B. Dextrous hand grasping force optimization[J]. IEEE Trans. Robot. Autom.,1996,12(3):406-418.
    [145]CHENG F T. ORIN D E. Optimal force distribution in multiple-chain robotic systems[J]. IEEE Trans. Syst. Man Cybernet.,1991,21(1):13-24.
    [146]NAHON M A, ANGELES J. Real-time force optimization in parallel kinematic chains under inequality constraints[J]. IEEE Trans. Robot. Autom., 1992.8(4):439-450.
    [147]CORNELLA J, SUAREZ R, CARLONI R, MELCHIORRI C. Dual programming based approach for optimal grasping force distribution[J]. Mechatronics,2008,18(7):348-356.
    [148]HAN L, TRINKLE J C, LI Z X. Grasp analysis as linear matrix inequality problems[J]. IEEE Trans. Robot. Autom.,2000,16(6):663-674.
    [149]BUSS M, FAYBUSOVICH L, MOORE J B. Dikin-type algorithms for dextrous grasping force optimization[J]. Int. J. Robotics Res.,1998,17(8): 831.
    [150]XIA Y, WANG J, FOK L M. Grasp ing-force optimization for multifingered robotic hands using a recurrent neural network[J]. IEEE Trans. Robot. Autom., 2004.20(3):549-554.
    [151]LIU Y H. Qualitative test and force optimization of 3-d frictional form-closure grasps using linear programming[J]. IEEE Trans. Robot. Autom.,1999,15(1): 163-173.
    [152]HELMKE U, HUPER K, MOORE J B. Quadratically convergent algorithms for optimal dextrous hand grasping[J]. IEEE Trans. Robot. Autom.,2002, 18(2):138-146.
    [153]LIU G, XU J. LI Z. On geometric algorithms for real-time grasping force optimization[J]. IEEE Trans. Control Syst. Technol.,2004,12(6):843-859.
    [154]ZHENG Y, QIAN W. Linearizing the soft finger contact constraint with application to dynamic force distribution in multifingered grasping[J]. Science in China Series E:Technological Sciences,2005,48(2):121-130.
    [155]HOWARD W S, KUMAR V. On the stability of grasped objects[J]. IEEE Transactions on Robotics and Automation,1996,12(6):904-917.
    [156]LI J W, LIU H, CAI H G. On computing three-finger force-closure grasps of 2-d and 3-d objects[J]. IEEE Trans. Robot. Autom.,2003,19(1):155-161.
    [157]NGUYEN V D. Constructing stable grasps[J]. The International Journal of Robotics Research,1989,8(1):26-37.
    [158]吴玉光,钱晋武.多指灵巧手抓取规划方法综述[J].中国机械工程,2004,15(3):276-281.
    [159]熊有伦,熊蔡华.机器人多指抓取的研究进展与展望[J].华中科技大学学报(自然科学版),2004,1.
    [160]OKAMURA A M, SMABY N, CUTKOSKY M R. An overview of dexterous manipulation[C]//Proceedings of the 2000 IEEE International conference on Robotics & Automation, San Francisco, CA,2000:IEEE:255-262 vol.1.
    [161]ZHU X Y, WANG J. Synthesis of force-closure grasps on 3-d objects based on the q distance[J]. IEEE Trans. Robot. Autom.,2003,19(4):669-679.
    [162]XIONG Y L. Theory of point contact restraint and qualitative analysis of robot grasping[J]. Sci. China, Ser. A,1994,37(5):629-640.
    [163]BICCHI A. On the closure properties of robotic grasping[J]. The International Journal of Robotics Research,1995,14(4):319-334.
    [164]ZHU X Y, DING H, WANG M Y. A numerical test for the closure properties of 3-d grasps[J]. IEEE Trans. Robot. Autom.,2004,20(3):543-549.
    [165]左炳然,钱文瀚.机器人多指抓取力封闭分析的非线性规划算法[J].机械工程学报,1999,35(2):19-22.
    [166]秦志强,李泽湘.机器人多指抓取的力封闭判别[J].上海交通大学学报,1999,33(7):858-861.
    [167]LIU Y H. Computing n-finger form-closure grasps on polygonal objects[J]. Int. J. Robot. Res.,2000,19(2):149-158.
    [168]NIPARNAN N, SUDSANG A. Computing all force-closure grasps of 2d objects from contact point set[C]//2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China,2006:IEEE:1599-1604.
    [169]CHEONG J S, VAN DER STAPPEN A F. Computing all independent form-closure grasp regions of a rectilinear polyhedron[C]//IEEE Conference on Automation Science and Engineering, Scottsdale, AZ, USA,2007:IEEE: 288-294.
    [170]VAN DER STAPPEN A F, WENTINK C, OVERMARS M H. Computing immobilizing grasps of polygonal parts[J]. The International Journal of Robotics Research,2000,19(5):467-479.
    [171]DING D. LEE Y H, WANG S. Computation of 3-d form-closure grasps[J]. IEEE Transactions on Robotics and Automation,2001,17(4):515-522.
    [172]DING D. LIU Y H. ZHANG J, KNOLL A. Computation of fingertip positions for a form-closure grasp[C]//2001 IEEE Int. Conf. Robot. Autom.. Seoul, Korea,2001:IEEE, Piscataway, USA:2217-2222.
    [173]LIU Y F. LAM M L, DING D. A complete and efficient algorithm for searching 3-d form-closure grasps in the discrete domain[J]. IEEE Trans. Robot. Autom.,2004,20(5):805-816.
    [174]FERRARI C, CANNY J. Planning optimal grasps[C]//1992 IEEE Int. Conf. Robot. Autom., Nice, France,1992:IEEE, Piscataway, USA:2290-2295.
    [175]MIRTICH B, CANNY J. Easily computable optimum grasps in 2-d and 3-d[C]//1994 IEEE Int. Conf. Robot. Autom., San Diego, CA.1994:IEEE, Piscataway, USA:739-747.
    [176]TEICHMANN M. A grasp metric invariant under rigid motions[C]//1996 IEEE Int. Conf. Robot. Autom., Minneapolis, Minnesota.1996:IEEE, Piscataway, USA:2143-2148.
    [177]莫海军.黄平.基于最大力螺旋多指手抓取规划[J].机械工程学报,2009,45(3):258-262.
    [178]YOSHIKAWA T. Manipulability of robotic mechanisms[J]. The International Journal of Robotics Research,1985,4(2):3-9.
    [179]LI Z, SASTRY S S. Task-oriented optimal grasping by multifingered robot hands[J]. IEEE Trans. Robot. Autom.,1988,4(1):32-44.
    [180]HASCHKE R, STEIL J J, STEUWER I, RITTER H. Task-oriented quality measures for dextrous grasping[C]//2005 IEEE International Symposium on Computational Intelligence in Robotics and Automation Espoo, Finland,2005: IEEE:689-694.
    [181]BORST C, FISCHER M, HIRZINGER G. Grasp planning:How to choose a suitable task wrench space[C]//2004 IEEE Int. Conf. Robot. Autom., New Orleans, LA,2004:IEEE, Piscataway, USA:319-325.
    [182]STRANDBERG M, WAHLBERG B. A method for grasp evaluation based on disturbance force rejection[J]. IEEE Trans. Robot. Autom.,2006,22(3): 461-469.
    [183]CHINELLATO E, FISHER R B, MORALES A, DEL POBIL A P. Ranking planar grasp configurations for a three-finger hand[C]//2003 IEEE Int. Conf. Robot, Autom., Taipei, Taiwan,2003:IEEE, Piscataway, USA:1133-1138.
    [184]王滨,李家炜.刘宏.机器人多指手的优化抓取力计算[J].吉林大学学报:工学版.2008,38(1):178-182.
    [185]姜力,刘宏.多指抓取的实时力优化算法[J].机械工程学报,2008,43(12):144-149.
    [186]秦志强,李泽湘.机器人多指操作的抓取力分析和实时优化[J].机械工程学报,2000,36(003):8-12.
    [187]BORGSTROM H, BATALIN M A, SUKHATME G S, KAISER W J. Weighted barrier functions for computation of force distributions with friction cone constraints[C]//2010 IEEE International Conference on Robotics and Automation, Anchorage, Alaska, USA,2010:IEEE:785-792.
    [188]BARKAT B, ZEGHLOUL S, GAZEAU J. Optimization of grasping forces in handling of brittle objects[J]. Robotics and Autonomous Systems,2009,57(4): 460-468.
    [189]BOYD S P, WEGBREIT B. Fast computation of optimal contact forces[J]. IEEE Transactions on Robotics,2007,23(6):1117-1132.
    [190]MANGIALARDI L, MANTRIOTA G, TRENTADUE A. A three-dimensional criterion for the determination of optimal grip points[J]. Robot. Comput.-Integr. Manuf,1996,12(2):157-167.
    [191]MANTRIOTA G. Communication on optimal grip points for contact stability[J]. Int. J. Robot. Res.,1999,18(5):502-513.
    [192]WANG M Y. An optimum design for 3-d fixture synthesis in a point set domain[J]. IEEE Trans. Robot. Autom.,2000,16(6):839-846.
    [193]ROA M A, SUAREZ R. Finding locally optimum force-closure grasps[J]. Robot. Comput.-Integr. Manuf,2009,25(3):536-544.
    [194]ROA M, SUAREZ R. Computation of independent contact regions for grasping 3-d objects[J]. IEEE Trans. Robot. Autom.,2009,25(4):839-850.
    [195]ZHU X Y, DING H, LI H X. A quantitative measure for multi-fingered grasps[C]//2001 IEEE/ASME Int. Conf. Advanced Intelligent Mechatronics, Como, Italy,2001:IEEE, Piscataway, USA,:213-219.
    [196]PHOKA T, NIPARNAN N, SUDSANG A. Planning optimal force-closure grasps for curved objects by genetic algorithm[C]//2006 IEEE Conf. on Robotics Automation and Mechatronics, Bangkok, Thailand,2006:IEEE, Piscataway, USA:1-6.
    [197]DING D. LIU Y H. WANG M Y. WANG S G. Automatic selection of fixturing surfaces and fixturing points for polyhedral workpieces[J]. IEEE Trans. Robot. Autom.,2001,17(6):833-841.
    [198]ZHU X, DING H. Computation of force-closure grasps:An iterative algorithm[J]. IEEE Transactions on Robotics,2006,22(1):172-179.
    [199]ROA M A, SUAREZ R. Determination of independent contact regions on discretized 3d objects[C]//Proceedings of the 2007 IEEE International Symposium on Assembly and Manufacturing, Ann Arbor, Michigan, USA. 2007:IEEE:191-196.
    [200]WATANABE T, YOSHIKAWA T. Grasping optimization using a required external force set[J]. IEEE Trans. Autom. Sci. Eng.,2007,4(1):52-66.
    [201]CORNELLA J. SUAREZ R. On 2d 4-finger frictionless optimal grasps[C]// Proceedings of IEEE/RSJ Int. Conf. Intelligent Robots Systems, Las Vegas. Nevada. Oct.,27-31,2003:IEEE:3680-3685.
    [202]CORNELLA J, SUAREZ R. Efficient determination of four-point form-closure optimal constraints of polygonal objects[J]. IEEE Trans. Autom. Sci. Eng.,2009,6(1):121-130.
    [203]ZHENG Y, QIAN W H. Improving grasp quality evaluation[J]. Robot. Auton. Syst.,2009.57(6-7):665-673.
    [204]ZHENG Y, QIAN W H. On some weaknesses existing in optimal grasp planning[J]. Mechanism and Machine Theory,2008,43(5):576-590.
    [205]BICCHI A. Hands for dexterous manipulation and robust grasping:A difficult road toward simplicity[J]. IEEE Trans. Robot. Autom.,2000,16(6):652-662.
    [206]ZHANG Y, GRUVER W A. Method of classifying grasps by robot hands[J]. Chinese Journal of Mechanical Engineering,1996,9(4):271-277.
    [207]LI J, ZHANG Y, GUO W, ZHANG Q. Force optimization of grasping by robotic hands[J]. Chinese Journal of Mechanical Engineering,2003,16(2): 128-131.
    [208]ZHENG Y, LIN M C, MANOCHA D. A fast n-dimensional ray-shooting algorithm for grasping force optimization[C]//Proceedings of IEEE International Conference on Robotics and Automation, Anchorage, Alaska, USA,2010:IEEE:1300-1305.
    [209]ZHENG Y, QIAN W H. Limiting and minimizing the contact forces in multifingered grasping[J]. Mech. Mach. Theory,2006,41(10):1243-1257.
    [210]GILBERT E G. FOO C P. Computing the distance between general convex objects in three-dimensional space[J]. IEEE Trans. Robot. Autom.,1990,6(1): 53-61.
    [211]ZHENG Y, CHEW C M. Distance between a point and a convex cone in n-dimensional space:Computation and applications[J]. IEEE Transactions on Robotics,2009,25(6):1397-1412.
    [212]BOYD S P, VANDENBERGHE L, Convex optimization[M]:Cambridge University Press,2004.
    [213]MAEKAWA H, TANIE K, KOMORIYA K. Dynamic grasping force control using tactile feedback for grasp of multifingered hand[C]//IEEE Int. Conf. Robot. Autom.,1996:IEEE:2462-2469.
    [214]ZHENG Y, QIAN W H. A fast procedure for optimizing dynamic force distribution in multifingered grasping[J]. IEEE Trans. Syst. Man Cybernet.-Part B:Cybernetics,2006,36(6):1417-1422.
    [215]HOWE R D, KAO I, CUTKOSKY M R. The sliding of robot fingers under combined torsion and shear loading[C]//IEEE Int. Conf. Robot. Automat., 1988:IEEE,1988:103-105 vol.1.
    [216]BARBER C B, DOBKIN D P, HUHDANPAA H. The quickhull algorithm-for convex hulls[J]. ACM Transactions on Mathematical Software (TOMS),1996, 22(4):469-483.
    [217]GILBERT E G, JOHNSON D W, KEERTHI S S. A fast procedure for computing the distance between complex objects in three-dimensional space[J]. IEEE J. Robot. Autom.,1988,4(2):193-203.
    [218]VAN DEN BERGEN G, VAN G. A fast and robust gjk implementation for collision detection of convex objects[J]. J. Graph. Tools,1999,4(2):7-25.
    [219]ZEIDLER E, Nonlinear functional analysis and its applications iv: Applications to mathematical physics[M].New York:Springer,1997.
    [220]W HLKE G. A simulation-based grasp planning system for multifinger robot hands[C]//Proceedings of the 1993 International Symposium on Intelligent Control,1993:IEEE,1993:219-224.
    [221]YOSHIKAWA T. Multifingered robot hands:Control for grasping and manipulation[J]. Annual Reviews in Control,2010,34(2):199-208.
    [222]ZHENG Y, QIAN W H. Simplification of the ray-shooting based algorithm for 3-d force-closure test[J]. IEEE Transactions on Robotics.2005,21(3): 470-473.
    [223]STANSFIELD S. Robotic grasping of unknown objects:A knowledge-based approach[J]. The International Journal of Robotics Research,1991,10(4):314.
    [224]WANG B, JIANG L, LI J, CAI H. Grasping unknown objects based on 3d model reconstruction[C]//Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Monterey, California, USA, 2005:IEEE:461-466.
    [225]BONE G M, LAMBERT A, EDWARDS M. Automated modeling and robotic grasping of unknown three-dimensional objects[C]//2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA,2008:IEEE: 292-298.
    [226]RICHTSFELD M, VINCZE M. Grasping of unknown objects from a table top[C]//In:Workshop on Vision in Action:Efficient strategies for cognitive agents in complex environments, Marseille, France,2008.
    [227]SAXENA A, DRIEMEYER J, NG A Y. Robotic grasping of novel objects using vision[J]. The International Journal of Robotics Research,2008,27(2): 157-173.
    [228]GRZYB B J, CHINELLATO E, MORALES A, DEL POBIL A P. A 3d grasping system based on multimodal visual and tactile processing[J]. Industrial Robot:An International Journal,2009,36(4):365-369.
    [229]MEIER M, SCHOPFER M, HASCHKE R, RITTER H. A probabilistic approach to tactile shape reconstruction[J]. IEEE Transactions on Robotics, 2011(99):1-6.
    [230]周学才,李泽湘,张启先.基于腕力传感器的机器人位置触觉[J].机器人,1997,19(4):265-270.
    [231]韩壮志,王田苗,张玉茹,刘军传.基于指端6维力传感器的接触点测量算法研究[J].北京航空航天大学学报,2004,30(05):400-404.
    [232]Dynalloy, Inc. Technical characteristics of flexinol(?) actuator wires. http://www.dynalloy.com/pdfs/TCF1140.pdf.
    [233]MA N, SONG G. Control of shape memory alloy actuator using pulse width modulation[J]. Smart materials and structures,2003,12:712.
    [234]HINO T. MAENO T. Development of a miniature robot finger with a variable stiffness mechanism using shape memory alloy[C]//International Simposium on Robotics and Automation, Queretaro, Mexico,2004.
    [235]CUTKOSKY M R. On grasp choice, grasp models, and the design of hands for manufacturing tasks[J]. IEEE Transactions on Robotics and Automation,1989, 5(3):269-279.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700