用户名: 密码: 验证码:
氢化非晶硅薄膜制备及其微结构和光电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢化非晶硅(a-Si:H)薄膜具有光吸收率较高、电阻温度系数较大、与Si半导体IC工艺兼容等特点,在微测辐射热计、太阳能电池、医疗仪器等领域具有广泛的应用前景。然而,a-Si:H薄膜导电性及电学性能稳定性较差的问题至今没有得到根本解决。因而,当前及今后的研究重点主要围绕高品质、高稳定性a-Si:H薄膜制备技术及性能优化而开展。
     本文采用等离子体增强化学气相沉积(PECVD)法制备磷(P)掺杂a-Si:H薄膜,借助多种现代分析测试方法,研究了基片温度、硅烷气体温度、N掺杂等对a-Si:H薄膜微结构、光学、电学等特性的影响;研究了电子束辐照过程中辐照剂量和入射电子初始能量对P重掺杂a-Si:H薄膜结构和性能的影响;对薄膜微结构和性能之间的关系进行了深入分析。本文取得的重要结论和创新性研究成果如下:
     (1)当硅烷(SiH_4)气体温度从室温升高到160℃,P掺杂a-Si:H薄膜非晶网络结构的有序程度逐步得到改善,薄膜中未成对电子自旋密度降低,薄膜暗电导率得到大幅度提高。当SiH_4气体温度为160℃时,薄膜中以SiH键为主,暗电导率提高了2个数量级。尽管此时薄膜的TCR绝对值减小了约1.6%/℃,但仍然可以达到|TCR |≈2.0%/℃,表明加热硅烷气体可以制备出质量较优的P掺杂a-Si:H薄膜。经130℃长时间保温后,加热SiH_4气体制备a-Si:H薄膜的电阻变化率ΔR/R与不加热相比小许多,表明加热SiH_4气体温度可使a-Si:H薄膜的电学稳定性得到改善。
     (2)通过喇曼(Raman)光谱技术对a-Si:H薄膜纵向有序性的差异进行了深入研究,发现从a-Si:H薄膜内部到表面,薄膜非晶网络的短程和中程有序程度逐步提高。热处理可使薄膜内部的非晶网络结构短程和中程有序程度得到提高,但只能使薄膜表面非晶网络的中程有序程度得到提高。
     (3)采用傅里叶变换红外光谱(FTIR)分析技术,深入研究了a-Si:H薄膜中H的键合方式及其演变过程,并讨论了其与薄膜性能的关系。当薄膜中H含量c_H<16 at.%时,以SiH键为主;当c_H>16 at.%时,则以聚集H原子为主。随着聚集H原子的增加,薄膜非晶网络有序程度降低,暗电导率随之降低。由于二氢硅化物(SiH_2)和多氢硅化物(SiH_n)比单氢硅化物(SiH)更容易在热作用下分解,因而,以SiH键为主的a-Si:H薄膜的热稳定性比SiH_2或(SiH_n)键含量较多的薄膜的热稳定性好。
     (4)当N元素掺杂浓度较低时,P掺杂a-Si:H薄膜中Si-N键很少,薄膜结构和电学性能变化很小。继续提高N元素掺杂浓度,薄膜中H含量减少,薄膜表面颗粒尺寸变大,非晶网络有序性明显降低,光学带隙明显变宽,电学性能恶化。
     (5)采用椭圆偏振(Ellipsometry)技术深入研究了a-Si:H薄膜的微结构和光学性能。椭偏反射法与椭偏透射法测得a-Si:H薄膜的微结构和光学参数值相当,表明透射法也可用于准确测量a-Si:H薄膜的微结构和光学参数。
     (6)电子束辐照P重掺杂a-Si:H薄膜容易引起结构损伤和Si-H键断裂。然而,辐照引起的薄膜结构损伤和电学性能衰退最终趋于饱和,这是由于电子束辐照过程中存在退火作用。对辐照a-Si:H薄膜进行纵向分析后发现,薄膜表面电学性能衰退比内部更明显,且薄膜表面的短程和中程有序程度明显低于其内部,结构损伤和性能衰退主要集中在薄膜表面层。采用较低能量的入射电子进行辐照时,a-Si:H薄膜暗电导率衰退程度更大,非晶网络短程和中程有序程度更低。
Hydrogenated amorphous silicon (a-Si:H) thin films have attracted much more attention for use in uncooled microbolometers, solar cells and medical apparatus, etc., due to its enhanced optical absorption, high temperature of resistance and compatibility with semiconductor technology. However, the problems on the poor conductivity and stability of a-Si:H films are yet not ultimately resolved. Thus, the studies at present or in the future are to be carried out on preparing device-quality and high stability a-Si:H films.
     In this dissertation, Phosphor-doped (P-doped) a-Si:H films were deposited by plasma-enhanced chemical vapor deposition (PECVD). The effects of substrate temperature, silane temperature (before glow-discharge) and nitrogen doping, on the microstructure and photoelectronic properties of a-Si:H films, have been investigated by means of many modern characterization methods. Furthermore, electron irradiation effects on the properties of heavily P-doped a-Si:H films have been studied by prolonging irradiation time or irradiating with electrons of different energies. Then the relationship between the microstructure and properties of a-Si:H films are revealed. The main results in the dissertation are shown as follows:
     (1) There is an improvement in amorphous network order and an increase in dark conductivity of P-doped a-Si:H films with increasing silane temperature (T_g) before glow discharge. However, the spin density of unpaired electrons and the temperature coefficient of resistance (TCR) of the films decrease. For the films deposited at T_g=160℃, the isolated silicon-hydrogen (SiH) bonding configuration is predominant, and the dark conductivity increases by two orders of magnitude compared with those deposited at T_g=RT (room temperature). Although the TCR decreases by about 1.6 %/℃at T_g=160℃, it can be obtained above 2.0 %/℃. These results indicate that a-Si:H films with better quality can be prepared at higher silane temperatures. After holding at 130℃for some time, the resistance variation,ΔR/R, of the films deposited at higher temperature is much lower than that of the films deposited at T_g=RT, indicating that a-Si:H films deposited at higher silane temperatures behavior better in electronic stability.
     (2) The ordering evolution of the amorphous network in a-Si:H thin films was investigated by Raman spectroscopy. There exists a gradual ordering of the amorphous network on the short and intermediate scales towards the surface of a-Si:H thin films. Annealing taken on the films leads to an improved ordering of amorphous network on the short and intermediate scales in the interior region, but the network in the surface region becomes more ordered only on the intermediate scale.
     (3) Hydrogen bonding configurations and their evolution in a-Si:H films were intensively studied by Fourier transform infrared (FTIR) spectroscopy. The relationship between hydrogen bonding configurations and the properties of the films were discussed. It is found that the SiH dominates in a-Si:H films for hydrogen content c_h<16 at.%, but the polysilanes dominate in the films for c_H>16 at.%. With the increase of polysilanes amount in a-Si:H films, the amorphous network becomes more disordered and the dark conductivity decreases. Since the dihydrides (SiH_2) and the polysilanes (SiH_n) are more easily dissociated than SiH, a-Si:H films dominated by SiH behavior better in thermal stability than those films containing more SiH_2 or SiH_n.
     (4) When nitrogen (N) concentration in a-Si:H films is relatively low, the microstructure and electronic properties of heavily P-doped films change little. With the continuous increase of N concentration in a-Si:H films, hydrogen content decreases and amorphous network becomes more disordered. Meanwhile, the surface morphology of the films gets worse and the optical bandgap widens. Furthermore, the electronic properties of the films deteriorate significantly for N content c_N>1.0 at.%.
     (5) The microstructure and optical constants of a-Si:H films have been intensively studied by Ellipsometry. The results obtained from the transmittance spectra agree well with those measured by the reflecttance spectra, indicating that the microstructure and optical properties of a-Si:H films can also be accurately determined from transmittance spectra.
     (6) Electron irradiation induces the breaking of Si-H bonds and structural damage in heavily P-doped a-Si:H films. However, the structural damage and the degradation in dark conductivity of the films come to saturations after irradiation for some hours. This is because there is an irradiation-induced annealing effect during electron irradiation. Depth profile studies on irradiated P-doped a-Si:H films reveal that, the degradation in dark conductivity is much distinct in the near surface, and the film surfaces become more disordered as compared with their interior regions. These indicate that the created defects and structural damage are concentrated in the near surface of a-Si:H films. When heavily P-doped a-Si:H films are irradiated with lower electron energies, the degradation in dark conductivity of the films is greater and the amorphous network becomes more disordered.
引文
[1]J L Tissot,F Rothan,C Vedel,et al.LETI/LIR'S uncooled microbolometer development.Proc SPIE,1998,3379:139-144
    [2]J M(u|¨)llerova,S Jurecka,P Sutta.Optical characterization of polysilicon thin films for solar applications.Solar Energy,2006,80(6): 667-674
    [3]K S Shin,J H Lee,S.M Han,et al.Effect of channel length on the threshold voltage degradation of hydrogenated amorphous silicon TFTs due to the drain bias stress.J Non-Cryst Solids,2006,352(9-20): 1708-1710
    [4]A F Ioffe,A R Regel.Non-crystalline,amorphous and liquid electronic semiconductors.Prog in Semiconductors,1960,4:237-291
    [5]W E Spear,P G LeComber.Substitutional doping of amorphous silicon.Solid State Commun,1975,17(9): 1193-1196
    [6]C R Wronski,D E Carlson.Schottky-barrier characteristics of metal-amorphous-silicon diodes.Appl Phys Lett,1976,29(9): 602-605
    [7]S R Ovshinsky,A Madan.A new amorphous silicon-based alloy for electronic applications.Nature,1978,276:482-484
    [8]H Matsumura,Y Nakagome,S Furukawa.A heat-resisting new amorphous silicon.Appl Phys Lett,1980,36(6) 439-441
    [9]P G LeComber,W E Spear,A Ghaith.Amorphous-silicon field-effect device and possible application.Electron Lett,1979,15(6): 179-131
    [10]D L Staebler,C R Wronski.Reversible conductivity changes in discharge-produced amorphous Silicon.Appl Phys Lett,1977,31 (4): 292-297
    [11]G Pfister,H Scher.Dispersive (non-Gaussian) transient transport in disordered solids.Adv in Phys,1978,27(5): 747-798
    [12]T Tiedje,A Rose.A physical interpretation of dispersive transport in disordered semiconductors.Solid State Commun,1980,37(1): 49-52
    [13]张世斌,孔光临,徐艳月,等.微量硼掺杂非晶硅的瞬态光电导衰退及其光致变化.物理学报,2002,51(1):11 1-1 14
    [14]G Morell,F L S Katiyar,S Z Weisz,et al.Raman study of the network disorder in sputtered and glow discharge a-Si:H films.J Appl Phys,1995,78(8): 5120-5125
    [15]景俊海,孙青.Hg敏化光CVD SiO_2薄膜最佳工艺条件的研究.材料研究学报,1991,02:164-168
    [16]G H Chen,X H Zhu,S Y Yin,et al.Improvement on the conventional MWECR-CVD system and preparation of hydrogenated amorphous silicon films.Vacuum,2005,77(3): 355-358
    [17]S R Jadkar,J V Sali,S T Kshirsagar.Influence of process pressure on HW-CVD deposited a-Si:H films.Solar Energy Mater & Solar Cells,2005,85(3): 301-312
    [18]陈萌炯.RF-PECVD和DBD-PECVD制备a-Si:H薄膜的性能研究及其比较:[博士学位论文].浙江:浙江大学,2006,35-48
    [19]T Shimizu.Local structure study of tetrahedrally-boned amorphous semiconductors by NMR,ESR and Raman spectroscopies.J of Non-Cryst solids,1983,59-60,Part 1:117-124
    [20]张生俊.MWECR-CVD系统及BN薄膜生长与特性研究:[博士学位论文].北京:北京工业大学,2001,42-49
    [21]陈治明.非晶半导体材料与器件.北京:科学出版社,1991,88
    [22]D Adler.Electronic structure of amorphous semiconductors.J Non-Cryst Solids,1980,42(1-3): 315-333
    [23]R A Street.Doping and the fermi energy in amorphous silicon.Phys Rev Lett,1982,49(16): 1187-1190
    [24]J Robterson.Doping and gap states in amorphous silicon.J Phys C,1984,17(3): L349-L354
    [25]W E Spear,P G Lecomber.Electronic properties of substitutionally doped amorphous Si and Ge.Philos Mag,1976,33(6): 935-949
    [26]A Morimoto,M Matsumoto,M Yoshita,et al.Doping effect of oxygen or nitrogen impurity in hydrogenated amorphous silicon films.Appl Phys Lett,1991,59(17): 2130-2132
    [27]M Stutzmann,W B Jackson,C C Tsai.Light-induced metastable defects in hydrogenated amorphous silicon: A systematic study.Phys Rev B,1985,32(1): 23-47
    [28]R A Street,K Winer.Defect equilibria in undoped a-Si:H.Phys Rev B,1989,40(9): 6236-6249
    [29]H Branz.Hydrogen collision model of light-induced metastability in hydrogenated amorphous silicon.Solid State Commun,1998,105(6): 387-391
    [30]S Sriraman,S Agarwal,E S Aydil,et al.Mechanism of hydrogen-induced crystallization of amorphous silicon.Nature,2002,418:62-65
    [31]M J Powell,S C Dean.Improved defect-pool model for charged defects in amorphous silicon.Phys Rev B,1993,48(15): 10815-10827
    [32]D Adler.Origin of the photo-induced changes in hydrogenated amorphous silicon.Solar Cells,1983,9(1-2): 133-148
    [33]N Ishii,M Kumeda,Y Shimizu.A model for the Staebler-Wronski effect based on charged impurities.Jpn J Appl Phys,1985,24:L244-L246
    [34]D Redfield,R H Bube.Identification of defects in amorphous silicon.Phys Rev Lett,1990,65(4): 464-468
    [35]S Shimizu,T Komaru,K Okawa,et al.Properties of amorphous silicon solar cells fabricated from SiH_2C1_2.Solar Energy Mater and Cells,2001,66(1-4): 289-295
    [36]T Uesugi,H Ihara,H Matsumura.Steabler-Wronski effect in hydro-fluorinated amorphous silicon prepared using the intermediate species SiF_2.Jpn J Appl Phys,1985,24:909-911
    [37]U Schmid,H Seidel.Enhanced stability of Ti/Pt micro-heaters using a-SiC:H passivation layers.Sensors and Actuators A: Physical,2006,130-131: 194-201
    [38]K Mokeddema,M Aouchera,T Smail.Hydrogenated amorphous silicon nitride deposited by DC magnetron sputtering.Superlattices and Microstructures,2006,40:598-602
    [39]张慧芳,吴绍平.a-Si:H薄膜光衰效应的研究.山东工业大学学报,2001,31(5):428-433
    [40]T Su,P C Taylor,G Ganguly,et al.Direct role of hydrogen in the staebler-wronski effect in hydrogenated amorphous silicon.Phys Rev Lett,2002,89(1): 015502
    [41]J L Tissot,J L Martin,E Mottin,et al.320×240 microbolimeter uncooled IRFPA development.SPIE,2000,413:473-479
    [42]S Y Myong,S W Kwon,K SLim,et al.Inclusion of nanosized silicon grains in hydrogenated protocrystalline silicon multilayers and its relation to stability.Appl Phys Lett,2006,88(8): 083118
    [43]G Ambrosone,U Coscia,R Murri,et al.Structural,optical and electrical characterizations of μc-Si:H films deposited by PECVD.Solar Energy & Solar cells,2005,87(1-4): 375-386
    [44]T Aoki,H Kanno,Kenjo A,T Sadoh,et al.Au-induced lateral crystallization of a-Si_(l-x)Ge_x (x: 0-1) at low temperature.Thin Solid Films,2006,508(1-2): 44-47
    [45]Y Z Wang,O O Awadelkarim.Metal-induced solid-phase crystallization of hydrogenated amorphous silicon: Dependence on metal type and annealing temperature.Appl Phys A: Mater Sci & Processing,2000,70(5): 587-590
    [46]S J Park,K H Kima,J Jang.Control of grain position in Ni-mediated crystallization of amorphous silicon.J Crystal Growth,2006,297(2): 382-386
    [47]M Rojas-L(?)pez,A Ordu(?)ia-Diaz,R Delgado-Macuil,et al.Morphological transformation and kinetic analysis in the aluminum-mediated a-Si:H crystallization.J Non-Cryst Solids,2006,352(3): 281-284
    [48]N L Wang,V L Dalal.Improving stability of amorphous silicon using chemical annealing with helium.J Non-Cryst Solids,2006,352(9-20): 1937-1940
    [49]Y J Rui,J X Mei,J Xu,et al.Structural ordering in amorphous silicon thin film due to post hydrogen plasma annealing.SPIE,2004,5774: 279~282,
    [50]H M Branz,C O Boulder.Method for improving the stability of amorphous silicon.USA,US713400B 1,2004-03-30
    [51]H M Branz,Y Q Xu,S Heck,et al.Improved stability of hydrogenated amorphous silicon photosensitivity by ultraviolet illumination.Appl Phys Lett,2002,81 (18): 3353-3355
    [52]M Zhang,L Pan,Y Nakayama.Structural modifications of hydrogenated amorphous carbon nitride due to ultraviolet light irradiation and thermal annealing.J Non-Cryst Solids,2000 266-269,Part 2:815-820
    [53]W Bronner,M Mehring,R Briiggemann.Transport and electrically detected electron spin resonance of microcrystalline silicon before and after electron irradiation.Phys Rev B,2002,65(16): 165212
    [54]A Klaver,J W Metselaar,M Zeman,et al.Simulations on 1-Mev electron-beam irradiated amorphous silicon solar cells with varying thickness.Proc of the 31st IEEE-PVSC(Florida,USA),2005,1440-1443
    [55]魏雄邦,吴志明,王涛,蒋亚东.氧化钒薄膜在玻璃基片上的生长研究.无机材料学报,2008,23(2):364-368
    [56]刘梅冬,陈实,李元昕,等.铁电薄膜热释电非致冷红外传感器研究.仪表技术与传感器,2004.02:3-4.28
    [57]R A Wood.Uncooled thermal imaging with monolithic silicon focal planes.SPIE,1999,3202: 322-329
    [58]C Jansson,U Ringh,K Liddiard,et al.FOA/DSTO uncooled IRFPA development.SPIE,1999,3698:264-275
    [59]D L Staebler,R S Crandall,R Williams.Stability of n-i-p amorphous silicon solar cells.Appl Phys Lett,1981,39(9): 733-735
    [60]Z E Smith,S Wagner,B W Faughnan.Carrier lifetime model for the optical degradation of amorphous silicon solar cells.Appl Phys Lett,1985,46(11): 1078-1080
    [61]D E Carlson,K Rajan.The reversal of light-induced degradation in amorphous silicon solar cells by an electric field.Appl Phys Lett,1997,70(16): 2168-2170
    [62]J Yang,A Banerjee,S Guha.Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies.Appl Phys Lett,1997,70(22): 2975-2977
    [63]I Sakata,Y Hayashi.Open-circuit voltage decay (OCVD) measurement applied to hydrogenated amorphous silicon solar cells.Jpn J Appl Phys 1990,29:L27-L29
    [64]N Matsuki,Y Abiko,K Miyazaki,et al.Concept and performance of a field-effect amorphous silicon solar cell.Semicond Sci Technol 2004,19(1): 61-64
    [65]菅井秀郎著.等离子体电子工程学(张海波,张丹译).北京:科学出版社,2002,141
    [66]T M Searle.Properties of amorphous silicon and its alloys.London: Institution of Engineering and Technology,1998,4-17
    [67]R Martins,V Silva,I Ferreira,et al.Role of the gas temperature and power to gas flow ratio on powder and voids formation in films grown by PECVD technique.Vacuum,2000,56(1): 25-30
    [68]U Bhandarkar,U Kortshagen,S L Girshick.Numerical study of the effect of gas temperature on the time for onset of particle nucleation in argon-silane low-pressure plasmas.J Phys D: Appl Phys,2003,36(12): 1399-1408
    [69]L Boufendi,J Gaudin,S Huet,et al.Detection of particles of less than 5 nm in diameter formed in an argon-silane capacitively coupled radio-frequency discharge.Appl Phys Lett,2001,79(26): 4301-4303
    [70]M Marinov,N Zotov.Model investigation of the Raman spectra of amorphous silicon.Phys Rev B,1997,55(5): 2938-2944
    [71]W S Wei,G Y Xu,J L Wang,et al.Raman spectra of intrinsic and doped hydrogenated nanocrystalline silicon films.Vacuum,2007,81 (5): 656-662
    [72]N Zotov,M Marinov,N Mousseau,et al.Dependence of the vibrational spectra of amorphous silicon on the de-fect concentration and ring distribution.J Phys: Condens Matter,1999,11(48): 9647-9658
    [73]W S Wei.One-and two-phonon Raman scattering from hydrogenated nanocrystalline silicon films.Vacuum,2007,81(7): 857-865
    [74]M H Brodsky,M Cardona,J Cuomo.Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering.Phys Rev B,1977,16(8): 3556-3571
    [75]吴正龙,刘洁.现代X光电子能谱(XPS)分析技术.现代仪器,2006,1(1):50-52
    [76]莫党.固体光学.北京:高等教育出版社,1996:233-245
    [77]A H Mahan,J Yang,S Guha,et al.Structural changes in a-Si:H film crystallinity with high H dilution.Phys Rev B,2000,61(3): 1677-1680
    [78]M Heintze,R Zedlitz,G H Bauer.Analysis of high-rate a-Si:H deposition in a VHF plasma.J Phys D: Appl Phys,1993,26(10): 1781-1786
    [79]芦齐力.MWECR-CVD制备a-Si:H薄膜的沉积速率研究及红外分析:[硕士学位论文].北京:北京工业大学,2003,3-5
    [80]D Beeman,R Tsu,M F Thorpe.Structural information from the Raman spectrum of amorphous silicon.Phys Rev B,1985,32(2): 874-878
    [81]P Danesh,B pantchev,K Antonova,et al.Hydrogen bonding and structural order in hydrogenated amorphous silicon prepared with hydrogen-diluted silane.J Phys D: Appl Phys,2004,37(2): 249-254
    [82]S Guha,J Yang,D L Willianmson,et al.Structural,defect,and device behavior of hydrogenated amorphous Si near and above the onset of microcrystallinity.Appl Phys Lett,1999,74(13): 1860-1868
    [83]N M Liao,W Li,Y D Jiang,et al.Effects of gas temperature on optical and transport properties of a-Si:H films deposited by PECVD.Philos Magazine,2008,88(25): 3051-3057
    [84]R A Street.Hydrogenated Amorphous Silicon.London: the University of Cambridge,1991,145-150
    [85]C J Zhong,H Tanaka,S Sugawa,et al.Effect of power density on the structure properties of microcrystalline silicon film prepared by high-density low-ion-energy microwave plasma.Thin Solid Films,2005,493(1-2): 54-59
    [86]A Hadjadj,A Beorchia,P Roca i Cabarrocas,et al.Temperature improvement of the optical and electrical properties of hydrogenated nanostructured silicon thin films.Thin Solid Films,2002,403-404:139-143
    [87]F Yndurain,P N Sen.Effects of the local configuration on the lattice dynamics of group-Ⅳ semiconductors.Phys Rev B,1976,4(2): 531-537
    [88]J Kocka,H Stuchl(?)kov(?),J Stuchlik,et al.Model of transport in microcrystalline silicon.J Non-Cryst Solids,2002,299-302,Part 1:355-359
    [89]J Kocka,A Fejfar,H Stuchl(?)kov(?),et al.Basic features of transport in microcrystalline silicon.Solar Energy Mater.& Solar Cells,2003,78(1-4): 493-512
    [90]H Fujiwara,M Kondo,A Matsuda.T-shaped quantum wires in magnetic fields: Weakly confined magnetoexcitons beyond the diamagnetic limit.Phys Rev B,2001,63(11): 115306
    [91]T Umeda,S Yamasaki,J Isoya,et al.Electron-spin-resonance center of dangling bonds in undoped a-Si:H.Phys Rev B,1999,59(7): 4849-4857
    [92]A Lehner,G Steinhoff,M S Brandt,et al.Hydrosilylation of crystalline silicon (111) and hydrogenated amorphous silicon surfaces: A comparative x-ray photoelectron spectroscopy study.J Appl Phys,2003,94(4): 2289-2294
    [93]S Y Ren,W Y Ching.Electronic structures of β-and α-silicon nitride.Phys Rev B,1981,23(10): 5454-5463
    [94]J Robertson,M J Powell.Gap states in silicon nitride.Appl Phys Lett,1984,44(4): 415-419
    [95]A Simunek,G Wiech.Determination of local structure using X-ray emission spectroscopy: Hydrogenated a-SiN_x and a-SiO_x.J Non-cryst Solids,1995,192-193(1): 161-164
    [96]岳瑞峰,王燕,廖显伯,等.非晶氮化硅薄膜退火前后微结构的XPS研究.真空科学与技术,2000,20(6):425-429
    [97]A Lqbal,W B Jackson,C C Tsai,et al.Electronic structure silicon nitride and amorphous silicon/silicon nitride band offsets by electron spectroscopy.J Appl Phys,1987,61(8): 2947-2953
    [98]K Maeda,L Umezu.Atomic microstructure and electreonic properties of a-SiN_x:H deposited by radio frequency glow discharge.J Appl Phys,199 1,70(5): 2745-2754
    [99]M H Brodsky.Quantum well model of hydrogenated amorphous silicon.Solid State Commun,1980,36(1): 55-59
    [100]K C Lin,S C Lee.The structural and optical properties of a-SiN_x:H prepared by plasma enhanced chemical-vapor deposition.J Appl Phys,1992,72(11): 5474-5478
    [101]J L Yeh,S C Lee.Structural and optical properties of amorphous silicon oxynitride.J Appl Phys,1996,79(2): 656-663
    [102]R K(a|¨)rcher,L Ley,R L Johnson.Electronic structure of hydrogenated and unhydrogenated amorphous SiN_x (0≤x≤1.6): A photoemission study.Phys Rev B,1984,30(4): 1896-1910
    [103]I Bertoti.Characterization of nitride coatings by XPS.Surf Coat Technol,2002,151-152: 194-203
    [104]T Y Chiu,W G Oldham,C Hovland.The material properties of silicon nitride formed by low energy ion implantation.J Electrochem Soc,1984,131(9): 2110-2115
    [105]J I Pankove.Semiconductors and Semimetals.New York: Academic Press,1984,159
    [106]A Masuda,K Itoh,M Kumeda,et al.Origin of charged dangling bonds in nitrogen-doped hydrogenated amorphous silicon.J Non-Cryst Solids,1996,198-200,Part 1:395-398
    [107]T Shimizu,H Kidoh,A Morimoto,et al.Nature of localized states in hydrogenated Si-based amorphous semiconductor films elucidated from LESR and CPM.Jpn J Appl Phys,1989,28: 586-592
    [108]J H Zhou,K Yamaguchi,Y Yamamoto,et al.Nitrogen doping in hydrogenated amorphous silicon.J Appl Phys,1993,74(8): 5086-5089
    [109]M J Powell,C van Berkel,J R Hughes.Time and temperature dependence of instability mechanisms in amorphous silicon thin-film transistors.Appl Phys Lett,1989,54(14): 1323-1325
    [110]J C Knights,R A Lujan,M P Rosenblum,et al.Effects of inert gas dilution of silane on plasma-deposited a-Si:H films.Appl Phys Lett,1981,38(6): 331-333
    [111]W A Lanford,H P Trautvetter,J F Ziegler,et al.New precision technique for measuring the concentration versus depth of hydrogen in solids.Appl Phys Lett,1976,28(9): 566-568
    [112]P John,I M Odeh,M J K Thomas,et al.Determination of the hydrogen content of a-Si films by infrared spectroscopy and 25 MeV-particle elastic scattering.J Phys C,1981,14(3): 309-318
    [113]R C Ross,I S Y Tsong,R Messier.Quantification of hydrogen in a-Si:H by IR spectroscopy,~(15)N nuclear reaction and SIMS.J Vac Sci Technol,1982,20(3): 406-409
    [114]H Fritzsche,M Tanielian,C C Tsai,et al.Hydrogen content and density of plasma-deposited amorphous silicon-hydrogen.J Appl Phys,1979,50(5): 3366-3369
    [115]吕惠云,陈克铭.气相色谱法测定薄膜中氢含量.半导体学报,1993,14(3):189-193
    [116]G Lucovsky,R J Nemanich,J C Knights.Structural interpretation of the vibrational spectra of a-Si: H alloys.Phys Rev B,1979,19(4): 2064-2073
    [117]B Turtle,J B Adams.Structural interpretation of the vibrational spectra of a-Si: H alloys.Phys Rev B,1997,56(8): 4565-4572
    [118]K J Chang,D J Chadi.Acoustic velocities and phase transitions in molybdenum under strong shock compression.Phys Rev Lett,1989,62(4): 637-640
    [119]J C Knights,G Lucovsky,R J Nemannich.Hydrogen bonding in silicon-hydrogen alloys.Philos Mag B,1978,37(4): 467-475
    [120]陈治明.非晶半导体材料与器件.北京:科学出版社,1991,68
    [121]A A Langford,M L Fleet,B P Nelson,et al.Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon.Phys Rev B,1992,45(23): 13367-13677
    [122]C Manfredotti,F Fizzotti,M Boero,et al.Influence of hydrogen-bonding configurations on the physical properties of hydrogenated amorphous silicon.Phys Rev B,1994,50(24): 18046-18053
    [123]W B Jackson,C C Tsai.Hydrogen transport in amorphous silicon.Phys Rev B,1992,45(12): 6564-6580
    [124]S Lebib,P Roca i Cabarrocas.Effects of ion energy on the crystal size and hydrogen bonding in plasma-deposited nanocrystalline silicon thin films.J Appl Phys,2005,97(10): 104334
    [125]R E I Schropp,M Zeman.Amorphous and microstalline silicon solar cells-Modeling,materials and device technology.Massachusetts: Kluwer Academic Publishers,1998,154
    [126]陈治明.非晶半导体材料与器件.北京:科学出版社,1991,6
    [127]M Cardona.Vibrational spectra of hydrogen in silicon and germanium.Phys Status Solidi B,1983,118(2): 463-481
    [128]Avon Keudell,J R Abelson.Evidence for atomic H insertion into strained Si-Si bonds in the amorphous hydrogenated silicon subsurface from in situ infrared spectroscopy.Appl Phys Lett,1997,71 (26): 3832-3834
    [129]Avon Keudell,J.R.Abelson.The interaction of atomic hydrogen with very thin amorphous hydrogenated silicon films analyzed using in situ real time infrared spectroscopy: Reaction rates and the formation of hydrogen platelets.J Appl Phys,1998,84(1): 489-495
    [130]Avon Keudell,J R Abelson.Thermally induced changes in the hydrogen microstructure of amorphous hydrogenated silicon films,analyzed using in situ real time infrared spectroscopy.Jpn J Appl Phys,1999,38(7): 4002-4006
    [131]S Lebib,P Roca i Cabarrocas.Structure and hydrogen bonding in plasma deposited polymorphous silicon thin films.Eur Phys J: Appl Phys,2004,26(1): 17-27
    [132]H Fujiwara,Y Toyoshima,M Kondo,et al.Structural study of initial layer for μc-Si:H growth using real time in situ spectroscopic ellipsometry and infrared spectroscopy.J Non-cryst Solids,2000,266-269,Part 1:38-42
    [133]S Vignoli,R Butt(?),R Meaudre,et al.Links between hydrogen bonding,residual stress,structural properties and metastability in hydrogenated nanostructured silicon thin films.J Phys: Condens Matter,2003,15(43): 7185-7200
    [134]Y SKim,K J Chang.Structural transformation in the formation of h-Induced (111) platelets in Si.Phys Rev Lett,2001,86(9): 1773-1776
    [135]P Roca i Cabarrocas,S Hamma,S N Sharma,et al.Nanoparticle formation in low-pressure silane plasmas: Bridging the gap between a-Si:H and μc-Si films.J Non-Cryst Solids,1998,227-230,Part 2:871-875
    [136]N H Nickel,G B Anderson,J Walker.Hydrogen-induced platelets in disordered silicon.Solid State Commun,1996,99(6): 427-431
    [137]N H Nickel,G B Anderson,N M Johnson,et al.Nucleation of hydrogen-induced platelets in silicon.Phys Rev B,2000,62(12): 8012-8015
    [138]J I Pankove,D E Carlson.Photoluminescence of hydrogenated amorphous silicon.Appl Phys Lett,1977,31(7): 450-451
    [139]李世彬,吴志明,朱魁鹏,等.衬底温度对用RF-PECVD法制备的非晶硅薄膜光学性能影响.物理化学学报,2007,23(8):1252-1256
    [140]K C Hsu,H L Hwang.Nuclear magnetic resonance study on Si-H microstructure in hydrogenated amorphous silicon prepared by diluted-hydrogen and hydrogen-atom-treatment methods.Appl Phys Lett,1992,61(17): 2075-2077
    [141]E Amanatides,D Mataras,D E Rapakoulias.Effect of frequency in the deposition of microcrystalline silicon from silane discharges.J Appl Phys,2001,90(11 ): 5799-5807
    [142]A Morimoto,Y Tsujimura,M Kumeda,et al.Properties of hydrogenated amorphous Si-N prepared by various methods.Jpn J Appl Phys,1985,24(11) 1394-1398
    [143]D V Tsu,G Lucovsky,M J Mantini.Local atomic structure in thin films of silicon nitride and silicon diimide produced by remote plasma-enhanced chemical-vapor deposition.Phys Rev B,1986,33(10): 7069-7076
    [144]C S(?)n(?)maud,A Gheorghiu,L Amoura,et al.Local order and H-bonding in N-rich amorphous silicon nitride.J Non-Cryst Solids,1993,164-166,Part 2:1073-1076
    [145] M M Pradhan, M Arora. Infrared absorptance studies of hydrogenated silicon nitride films at low temperatures. Optics Communications, 1992, 94(5): 428-435
    [146] G Lucovsky, J Yang, S S Chao, et al. Nitrogen-bonding environments in glow-discharge-deposited a-Si:H films. Phys Rev B, 1983, 28(6): 3234-3240
    [147] E Bustarret, M Bensouda, M C Habrard, et al. Configurational statistics in a-Si_xN_yH_z alloys: A quantitative bonding analysis. Phys Rev B, 1988, 38(12): 8171-8184
    [148] W Beyer. New Insights into processes of hydrogen incorporation and hydrogen diffusion in hydrogenated amorphous silicon. Phys Status Solidi A, 1997, 159(1): 53-63
    [149] S Acco, D L Williamson, P A Stolk, et al. Hydrogen solubility and network stability in amorphous silicon. Phys Rev B, 1996, 53(8): 44154427
    [150] C G van de Walle, P J H Denteneer, Y Bar-Yam, et al. Theory of hydrogen diffusion and reactions in crystalline silicon. Phys Rev B, 1989, 39(15): 10791-10808
    [151] S B Zhang, W B Jackson, D J Chadi. Diatomic-hydrogen-complex dissociation: A microscopic model for metastable defect generation in Si. Phys Rev Lett, 1990, 65(20): 2575-2578
    [152] C G Van de Walle, R A Street. Structure, energetics, and dissociation of Si-H bonds at dangling bonds in silicon. Phys Rev B, 1994, 49(20): 14766-14769
    [153] E Bhattacharya, A H Mahan. Microstructure and the light-induced metastability in hydrogenated amorphous silicon. Appl Phys Lett, 1988, 52(19): 1587-1589
    [154] N Nakamura, T Takahama, M Isomura, et al. Influence of the Si-H_2 bond on the light- induced effect in a-Si films and a-Si solar cells. Jpn J Appl Phys, 1989,28(10): 1762-1768
    [155] N H Nickel, Hydrogen in Semiconcductors II. San Diego: Academic Press, 1999, 165
    [156] A H M Smets, J H van Helden, M C M van de Sanden. Bulk and surface defects in a-Si:H films studied by means of the cavity ring down absorption technique. J Non-Cryst Solids,2002, 299-302, Part 1: 610-614
    [157] S Chattopadhyay, S N Sharma, R Banerjee, et al. Short-range order, microstructure and their correlation with light-induced degradation in hydrogenated amorphous silicon deposited at high growth rates by cathode heating technique. J Appl Phys, 1994, 76(9): 5208-5213
    [158] G Amato, G Benedetto, L Boarino, et al. Photothermal detection of surface states in amorphous silicon films. Appl Phys A, 1990, 50(5): 503-507
    [159] A Asano, M Stutzmann. Depth profiling of nonuniform optical absorption in thin films:Application to hydrogenated amorphous silicon. J App Phys, 1991, 70(9): 5025-5034
    [160]W B Jackson,D K Biegelsen,R J Nemanich,et al.Optical absorption spectra of surface or interface states in hydrogenated amorphous silicon.Appl Phys Lett,1983,42(1 ): 105-107
    [161]A H Mahan,Y Xu,D L Williamson,et al.Structural properties of hot wire a-Si:H films deposited at rates in excess of 100 (?)/s.J Appl Phys,2001,90 (10): 5038-5047
    [162]P I Rovira,A S Ferlanto,J Koh,et al.Optics of textured amorphous silicon surfaces.J Non-Cryst Solids,2000,266-269,Part 1:279-283
    [163]毋国光,战元龄.光学[M].北京:高等教育出版社,1978,65
    [164]R M A Azzam,N M Bashara.Ellipsometry and Polarized Light.Amsterdam: North Holland,1977,287
    [165]R Swanepoel.Determination of the thickness and optical constants of amorphous silicon.J Phys E: Sci Instrum,1983,16(12): 1214-1222
    [166]M McClain,A Feldman,D Kahanner,et al.An algorithm and computer program for the calculation of envelope curves.Computers in Phys,1991,5 (1): 45-48
    [167]B S Richards,A Lambertz,A B Sproul.Determination of the optical properties of non-uniformly thick non-hydrogenated sputtered silicon thin films on glass.Thin Solid Films,2004,460(1-2): 247-255
    [168]M Born,E Wolf.Principle of Optics 5~(th) edition.Oxford: Pergamon Press,1975,90-97
    [169]A R Forouhi,I Bloomer.Optical dispersion relations for amorphous semiconductors and amorphous dielectrics.Phys Rev B,1986,34(10): 7018-7026
    [170]Y Liu,G Xu,C Song et al.Modification on Forouli and Bloomer model for the optical properties of amorphous silicon thin films.Thin Solid Films,2007,515(7-8): 3910-3913
    [171]E D Palik.Handbook of optical constants of solid.London: Academic Press,1985,104-108
    [172]A Matsuda.Amorphous Si and Si-based alloys from glow-discharge.Plasma Pure & Appl Chem,1988,60(5): 733-740
    [173]M J Kushner.A model for the discharge kinetics and plasma chemistry during plasma enhanced chemical vapor deposition of amorphous silicon.J Appl Phys,1988,63(8): 2532-2551
    [174]D L Smith,A S Alimonda,C C Chen,et al.Mechanism of Si_xN_y deposition from NH_3-SiH_4 plasma.J Electrochem Soc,1990,37(2): 614-618
    [175]A H Mahan,D L Williamson,B P Nelson,et al.Small-angle X-ray scattering studies of microvoids in a-SiC:H and a-Si:H.Solar Cells,1989,27(1-4): 465-476
    [176] S Gupta, B R Weiner, G Morell. Interplay of hydrogen and deposition temperature in optical properties of hot-wire deposited a-Si:H films: Ex situ spectroscopic ellipsometry studies. J Vacuum Sci and Technol, 2005, 23(6): 1668-1675
    [177] M J van den Boogaard, S J Jones, Y Chen, et al. The influence of the void structure on deuterium diffusion in a-Si:H. Mater Res Soc Symp Proc, 1992,258: 407-513
    [178] S Acco, D L Williamson, W G J H M van Sark, et al. Nanoclustering of hydrogen in ion-implanted and plasma-grown amorphous silicon. Phys Rev B, 1998, 58(19): 12853-12864
    [179] R W Collins. In Situ Ellipsometry Studies of the Growth of Hydrogenated Amorphous Silicon by Glow Discharge. J Vac Sci Technol A, 1986,4(3): 514-517
    [180] M C M van de Sanden, R J Severens, W M M Kessels, et al. The Role of H in the Growth Mechanism of PECVD a-Si:H. Mater Res Soc Symp Proc, 1997,467: 621-6265
    [181] N Layadi, P Roca i Cabarrocas, B Dr(?)villon, et al. Real-time spectroscopic ellipsometry study of the growth of amorphous and m(?)crocrystalline silicon thin films prepared by alternating silicon deposition and hydrogen plasma treatment. Phys Rev B, 1995, 52(7): 5136-5144
    [182] A Fontcuberta i Morral, P Roca i Cabarrocas, C Clerc. Structure and hydrogen content of polymorphous silicon thin films studied by spectroscopic ellipsometry and nuclear measurements. Phys Rev B, 2004, 69(12): 125307
    [183] S H Lin, Y C Chan, D P Webb, et al. Investigation of mis-estimation of structure of amorphous silicon films in ellipsometric modeling. J Non-Cryst Solids, 2000, 276(1): 35-39
    [184] J Tauc. Amorphous and Liquid Semiconductors. London and New York: Plenum Press, 1974,
    [185] J Tauc, R Grigrovici, A Vancu. Optical properties and electronic structure of amorphous germanium. Phys Status Solidi, 1966, 15(2): 627-637
    [186] H Kurata, M Hirose, Y Osaka. Wide optical-gap, photoconductive a-Si_xN_(1-x):H. Jpn J Appl Phys, 1981, 20(2): L811-L813
    [187] D D Sala, C Coluzza, G Fortunato, et al. Infrared and optical study of a-SiN alloys. J Non-Cryst Solids, 1985,77-78, Part 2: 933-936
    [188] R Karcher, L Ley, R Johnson. Electronic structure of hydrogenated and unhydrogenated amorphous SiN_x (0≤x≤1.6): A photoemission study. Phys Rev B, 1984, 30(4): 1896-1910
    [189] S Ghua. Amorphous silicon alloy solar cells and modules-oppertunities and challenges. The Twenty Fifth IEEE Photovoltaic Specialists Conference, Washington DC: IEEE press, 1996,1017-1022
    [190] H Amekura, N Nishimoto, K Kono. Radiation-induced two-step degradation of Si photoconductors and space solar cells. IEEE Trans Nucl Sci, 1998,45(3): 1508-1513
    [191] N Kishimoto, H Amekura, K Kono, et al. Radiation-resistant photoconductivity of doped silicon under 17 MeV proton bombardment. J Nucl Mater, 1996, 233-237, Part 2: 1244-1248
    [192] A Scholz, B Schr(?)der, H Oechsner. The saturation behaviour of metastable defect creation in a-Ge:Hinvestigated by keV-electron irradiation. Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference. Louisville: IEEE Press, 1993, 907-912
    [193] F Diehl, W Herbst, S Bauer, et al. Creation of metastable defects in a-Si:H by keV-electron irradiation at different temperatures. J. Non-Cryst Solids, 1996, 198-200, Part 1: 436-440
    [194] R Br(?)ggemann, J P Kleider, C Longeaud, et al. Electronic properties of silicon thin films prepared by hot-wire chemical vapour deposition. J Non-Cryst Solids, 2000, 266-269, Part 1:258-262
    [195] W Bronner, J P Kleider, R Br(?)ggemann, et al. Defects and transport properties of electron-irradiated microcrystalline silicon with successive annealing. Thin Solid Films, 2003,427(1-2): 51-55
    [196] R Br(?)ggemann, S Brehme, J P Kleider, et al. Effects of proton irradiation on the photoelectronic properties of microcrystalline silicon. J Non-Cryst Solids, 2004, 338-340:477-480
    [197] A Skumanich, N M Amer, W B Jackson. Effects of dopants and defects on light-induced metastable states in a-Si:H. Phys Rev B, 1985, 31(4): 2263-2269
    [198] K Morigaki, I Hirabayashi, N Nakayma, et al. Fatigue effect in luminescence of glow discharge amorphous silicon at low temperatures. Solid State Commun, 1980, 33(8): 851-856
    [199] I Hirabayashi, K Morigaki, S Nitta. New Evidence for Defect Creation by High Optical Excitation in Glow Discharge Amorphous Silicon. Jpn J Appl Phys, 1980, 19: L357-L360
    [200] D V Lang, J D Cohen, J P Harbison, et al. Observation of photoinduced changes in the bulk density of gap states in hydrogenated amorphous silicon. Appl Phys Lett, 1982, 40(6):474-476
    [201] A Klaver, R A C M M van Swaaij. Modeling of light-induced degradation of amorphous silicon solar cells. Solar Energy Materi and Solar Cells, 2008, 92(1): 50-60
    [202] S Guha, K L Narasimhan, S Pietruszko. The chromatic and spherical aberration of round electron optical lenses with spatially periodic electrostatic fields: Cone-edge and cone focusing. J Appl Phys, 1981, 52(2): 859-562
    [203] D L Staebler, C R Wronski. Optically induced conductivity changes in discharge-produced hydrogenated amorphous silicon. J Appl Phys, 1980, 51(6): 3262-3268
    [204] D E Carlson. Effects of prolonged illumination on the properties of hydrogenated amorphous silicon. Solar Energy Mater, 1982, 8(1-3): 129-140
    [205] C S Hong, H L Hwang. Evidence of light-induced bond breaking in hydrogenated amorphous silicon. Appl Phys Lett, 1986,49(11): 645-647
    [206] Y P Zhao, D L Zhang, G L Kong. Evidence for Light-induced increase of Si-H bonds in undoped a-Si:H. Phys Rev Lett, 1995, 74(4): 558-561
    [207] V Franco, X Batlle, A Labarta, et al. From demagnetizing to magnetizing interactions in CoFe-AgCu granular films. J Appl Phys, 1987, 81(8): 4593-4597
    [208] H Schade, J I Pankove. Electron-beam induced centers in hydrogenated amorphous silicon. J Phys, 1981,42-4C(10): 327-330
    [209] O Astakhov, F Finger, R Carius, et al. Electron spin resonance in thin film silicon after low temperature electron irradiation. Thin Solid Films, 2007, 515(19): 7513-7516
    [210] S Krishnan, G Sanjeev, M Pattabi. 8 MeV electron irradiation effects in silicon photo-detectors. Nucl Instrum Methods Phys Res B, 2007, 264(1): 79-82
    [211] P Danesh, B Pantchev, Vlaikova E. 18 MeV electron irradiation-induced metastability in hydrogenated amorphous silicon. Nucl Instrum Methods Phys Res B, 2005, 239(4): 370-374
    [212] D Wagner, P Irsigler. On the annealing behavior of the Staebler-Wronski effect in a-Si:H. Appl Phys A: Mater Sci Process, 1984, 35(1): 9-12
    [213] M Isomura, M Tanaka, S Tsuda. Considering the dependence of the light-induced effect on carbon content in boron-doped amorphous silicon-carbon. Jpn J Appl Phys, 1996, 35(9A): 4626-4627
    [214] H Friztzsche. Photo-induced structural changes associated with the Staebler-Wronski effect in hydrogenated amorphous silicon. Solid State Commun, 1995, 94(12): 953-955
    [215] T Gotoh, S Nonomura, M Nishio, et al. Experimental evidence of photoinduced expansion in hydrogenated amorphous silicon using bending detected optical lever method. Appl Phys Lett,1998, 72(23): 2978-2980
    [216] S Gupta, R S Katiyar, S Z Weisz, et al. The effect of light soaking on the structural order in a-Si:H. J Non-Cryst Solids, 2002, 66-269, Part 1: 496-500
    [217] J M Gibson, M M J Treacy, P M Voyles, et al. Structural disorder induced in hydrogenated amorphous silicon by light soaking. Appl Phys Lett, 1998, 73(23): 3093-3095
    [218] B Pantchev, P Danesh, I Savatinova, et al. The effect of structural disorder on mechanical stress in a-Si:H films. J Phys D: Appl Phys, 2001, 34(17): 2589-2592
    [219] U Schneider, B Schr(?)der, F Finger. The creation of metastable defects in a-Si:H films by high dose irradiation with keV-electrons. J of Non-Cryst Solids, 1981, 97-98, Part 2: 795-798
    [220] H M Branz, S E Asher, B P Nelson. Light-enhanced deep deuterium emission and the diffusion mechanism in amorphous silicon. Phys Rev B, 1993,47(12): 7061-7066
    [221] I Kwon, R Biswas, C M Soukoulis. Molecular-dynamics simulations of the stability of amorphous silicon. Phys Rev B, 1991,43(2): 1859-1862
    [222] M Kostana, J Jang, S M Pietruszko. Stability of low pressure chemical vapour deposition amorphous silicon. Thin Solid Films, 1999, 337(1-2): 78-81
    [223] J Takada, H Fritzsche. Photoinduced change in the density of localized states near the conduction band of doped a-Si:H. Phys Rev B, 1987, 36(3): 1706-1709
    [224] J O Orwa, J M Shannon, R G Gateru, et al. Effect of ion bombardment and annealing on the electrical properties of hydrogenated amorphous silicon metal-semiconductor-metal structures. J Appl Phys, 2005, 97(2): 023519
    [225] P P Altermatt, G Heiser. Predicted electronic properties of polycrystalline silicon from three-dimensional device modeling combined with defect-pool model. J Appl Phys, 2002,92(5): 2561-2574
    [226] R M A Dawson, C M Fortmann. The Staebler-Wronski effect and the thermal equilibration of defect and free carrier concentrations. J Appl Phys, 1996, 79(6): 3075-3083
    [227] B Ebersberger, W Kruhler, W Fuhs, et al. Equilibrium defect density in hydrogenated amorphous germanium. Appl Phys Lett, 1994, 65(13): 1683-1685
    [228] D Redfield. Reversibility of recombination-induced defect reactions in amorphous Si:H. Appl Phys Lett, 1986,49(22): 1517-1519
    [229] C F O Graeff, R Buhleier,M Stutzman. Light-induced annealing of metastable defects in hydrogenated amorphous silicon. Appl Phys Lett, 1993, 62(23): 3001-3003
    [230] P V Santos, N M Johnson, R A Street. Light-enhanced hydrogen motion in a-Si:H. Phys Rev Lett, 1991, 67(19): 2686-2689
    [231] H M Branz. Hydrogen collision model: Quantitative description of metastability in amorphous silicon. Phys Rev B, 1999, 59(8): 5498-5512
    [232] P Danesh, B Pantchev, E Liarokapis, et al. Raman study of ion-implanted hydrogenated amorphous silicon. J Mater Sci, 2003, 14(10-12): 753-754
    [233] P Danesh, B Pantchev, I Savatinova, et al. Electron irradiation of a-Si:H films prepared from hydrogen-diluted silane. Vacuum, 2003, 69(1-3): 79-82
    [234] T K Chini, F Okuyama, M Tanemura. Structural investigation of KeV Ar-ion-induced surface ripples in Si by cross-sectional transmission electron microscopy. Phys Rev B, 2003, 67(20):205403
    [235] J D Moreno, F Agull(?)-Rueda, E Montoya, et al. Depth resolved micro-Raman study of porous silicon at different oxidationstates. Appl Phys Lett, 1997, 71(15): 2166-2167
    [236] J F Power, S W Fu. Longitudinal light profile microscopy: A new method for seeing below the surfaces of thin-film materials. Appl Spectros, 1999, 53(12): 1507-1519
    [237] P Van Huong. Depth Profile in Multilayer Semiconductors. Proceedings of the XV Ⅱ th International Conference on Raman Spectroscpoy, Chichester-NewYork: John Wiley&Sons Ltd, 2000, 562-563
    [238] O W Holland, S J Pennycook, G L Albert. New model for damage accumulation in Si during self-ion irradiation. Appl Phys Lett, 1989, 55(24): 2503-2505
    [239] A Yelon, H Fritzsche, H M Branz. Electron beam creation of metastable defects in hydrogenated amorphous silicon: Hydrogen collision model. J Non-Cryst Solids, 2000, 266-269, Part 1:437443
    [240] R A Street, C C Tsai, J Kakalios, et al. Hydrogen diffusion in amorphous silicon. Philos Mag B, 1987, 56(3): 305-320
    [241] R Biswas, Q M Li, B C Pan, et al. Mechanism for hydrogen diffusion in amorphous silicon. Phys Rev B, 1991, 57(4): 2253-2256
    [242] P V Santos, N M Johnson, R A Street. Light-induced hydrogen motion in a-Si:H. Phys Rev Lett, 1991, 67(19): 2686-2689
    [243] M S Janson, A Hallen, M K Linnarsson, et al. Hydrogen diffusion, complex formation, and dissociation in acceptor-doped silicon carbide. Phys Rev B, 2001, 64(19): 195202
    [244] M R Cleland, R A Galloway, A H Heiss, et al. Comparisons of Monte Carlo calculations with absorbed dose determinations in flat materials using high-current, energetic electron beams. Nucl Instr Methods in Phys Res B, 2007, 261(1-2): 90-93
    [245] Y Zhou, X Z Zhou, Z An, et al. Measurements and calculations of electron dose distributions in circular materials. Radiat Phys Chem, 2002, 63(3-6): 723-727
    [246] T Tabata, P Andreo, K Shinoda, et al. Depth profiles of charge deposition by electrons in elemental absorbers: Monte Carlo results, experimental benchmarks and derived parameters. Nucl Instr Methods in Phys Res B, 1995, 95(3): 289-299
    [247] V Cobut, L Cirioni, J P Patau. Accurate transport simulation of electron tracks in the energy range 1 keV-4 MeV. Nucl Instr Methods in Phys Res B, 2004, 215(1-2): 57-68
    [248] M R Cleland, R A Galloway, A H Heiss, et al. Energy dependence of electron beam penetration, area throughput rates and electron energy utilization in the low-energy region. Nucl Instr Methods in Phys Res B, 2007, 261(1-2): 94-97

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700