用户名: 密码: 验证码:
絮凝酵母重复批次高浓度乙醇发酵的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃料乙醇具有清洁环保、可再生的优点,是目前应用最广泛的生物能源之一。燃料乙醇生产成本分析表明,能耗成本占淀粉质原料燃料乙醇总生产成本的30%左右,仅次于原料成本,采用高浓度(Very high gravity, VHG)发酵技术,提高发酵终点的乙醇浓度,可以节省发酵醪精馏操作的能耗,减少废糟液总量,进而节省采用全蒸发浓缩技术(DDGS)处理废糟液的能耗,是燃料乙醇生产节能技术的发展方向。VHG乙醇发酵技术面临的最大问题是发酵终点高达15%(v/v)以上乙醇浓度对细胞的强烈抑制作用。批次发酵反应器和平推流反应器是产物抑制型反应体系最理想的选择,但传统的批次发酵过程反应器内生物量密度低、发酵周期长;而多级串联发酵虽能在一定程度上减轻返混,生产12-13%(v/v)的乙醇,但仍然难以满足VHG乙醇发酵的要求。
     酵母絮凝是一种由絮凝基因调控的,并受环境因素影响的,通过酵母细胞互相粘附形成酵母颗粒团的现象。在乙醇发酵工业中,絮凝酵母可以作为细胞固定化的方法来提高反应器中的生物量密度,进而提高发酵效率及设备生产强度。本论文利用过程工程的原理,利用絮凝酵母SPSC01菌株进行VHG乙醇发酵的研究,旨在解决目前VHG乙醇发酵生产效率低的技术难题。
     论文研究工作主要包括以下内容:
     1.建立了SPSC01重复批次VHG乙醇发酵工艺
     利用絮凝酵母SPSC01进行传统的批次发酵,虽然可以达到较高的终点乙醇浓度,但是发酵时间较长、生产效率较低,与游离酵母相比,不具备技术经济优势。利用絮凝酵母SPSC01进行单级和多级连续发酵,在不进行补充接种的条件下,发酵初期菌体活性较好,可以维持高浓度生产,但持续高浓度的乙醇对细胞造成严重毒害,菌体活性很快降低,系统无法稳定运行。因此,基于过程工程的原理,开发了高密度重复批次发酵工艺,减少了高浓度底物和产物对酵母的生长抑制和毒害,并且能够在发酵终点利用菌体沉降特性迅速进行细胞分离。与其他高浓度乙醇发酵工艺相比,利用絮凝酵母进行重复批次发酵,在发酵终点乙醇浓度为15%(v/v)的前提下,设备生产强度达到8.62g/L/h,具有明显的经济技术优势。
     2.研究了重复批次发酵过程中SPSC01沉降性能下降的原因
     针对在重复批次发酵过程中随着发酵批次的增加,酵母沉降性能下降的现象,研究了SPSC01沉降性能的变化规律。絮凝酵母经过培养后,呈颗粒形态,以自由沉降为特征,随着重复发酵过程的进行,酵母由颗粒形态转化为絮状形态,沉降表现为干扰沉降和压缩沉降。这种沉降方式速度缓慢,不利于菌体快速沉降分离,导致每批次发酵结束后酵母持续受到乙醇毒害而逐渐丧失活力。
     考察了酵母密度、表观粘度、颗粒粒径等因素对重复批次过程中SPSC01沉降性能的影响,判断酵母颗粒粒径的减小及发酵液粘度的变化是造成沉降性能下降的主要原因。通过对培养后用钙离子螯合剂处理的不同粒径酵母体系表观粘度、沉降性能的考察,明确了酵母颗粒大小决定表观粘度大小及沉降速率快慢的规律。酵母颗粒大小反映了酵母絮凝性能的强弱,SPSC01絮凝性能的衰退造成了沉降性能的下降。
     3.重复批次发酵过程SPSC01絮凝性能衰退原因的分析及实验验证
     课题组前期研究表明,絮凝酵母SPSC01中FLO1基因对其絮凝性能至关重要。本论文研究证明,FLO1基因的的表达会赋予酵母絮凝特性和疏水性。论文对酵母絮凝能力与疏水性的研究结果表明,疏水性不是影响SPSC01絮凝性能的主要因素。高浓度乙醇对于絮凝酵母细胞壁表面的理化作用,以及对于其线粒体功能的影响,都不是导致发酵过程絮凝性能衰退的主要原因。SPSC01菌株在重复批次发酵过程前后,其絮凝基因片段完整性没有发生改变。
     将重复批次发酵末期的酵母菌体重新摇瓶培养,其絮凝性能可以回复。对比摇瓶和重复批次发酵末期的SPSC01菌体FLO1基因的转录水平可知,该基因在VHG高强度乙醇发酵条件下,转录水平大幅下降,这是导致SPSC01絮凝性能衰退的根本原因。
     对SPSC01重复批次发酵进行工艺优化,在批次发酵终点采出酵母菌体以降低生产强度,减轻乙醇生产过快产生的抑制,刺激菌体生长,可以使酵母菌体通过自我繁殖更新实现发酵过程的稳定和持续性,不但省去额外菌体培养过程,其酵母絮凝能力和沉降性能也可以满足工艺要求。
     4.乙醇浓度及其变化速率对SPSC0l絮凝基因FLO1转录及细胞形态的影响
     发现乙醇对于SPSC01菌体絮凝性能的影响是通过抑制絮凝基因FLO1的转录水平来实现的。乙醇浓度越高、乙醇浓度的变化速率越快,其对SPSC01絮凝基因FLO1的转录抑制越强。较快的乙醇浓度变化,也对SPSC01的形态造成改变,产生了假丝形态。这种形态变化,不是由于氮元素缺乏造成,而可能来自于重复批次发酵过程中周期变化的乙醇浓度对于酵母细胞周期造成的影响。利用组成型表达SPSC01絮凝基因FLO1的重组菌BHL01进行重复批次VHG乙醇发酵,菌体发酵性能及絮凝性能的稳定性均优于SPSC01。
     综上所述,本论文利用絮凝酵母SPSC01进行VHG乙醇发酵的工艺探索,建立了重复批次发酵的生产工艺,提高了发酵生产强度;从絮凝基因FLO1的转录水平解释了重复批次发酵过程中酵母絮凝性能衰退现象及由此而导致的沉降性能下降问题;分析了乙醇浓度及其变化速率对于FLO1的转录水平及细胞形态的影响;以上述研究为依据,将生化过程工程与基因工程结合,对重复批次发酵工艺进行了工艺优化,并利用基因重组絮凝酵母大幅度提升了VHG重复批次乙醇发酵工艺性能。
Fuel ethanol, both environmentally friendly and renewable, is the mostly widely used biofuel in the world. Cost analysis of ethanol production from starch-based feedstocks reveals that energy consumption contributes about 30% of the total cost, the second largest only after that from feedstocks consumption. Very high gravity (VHG) fermentation, aiming at achieving more than 15% (v/v) ethanol, can significantly save energy consumption, not only in the distillation, but also in the treatment of the distillage with the DDGS (distilled dry grain with solubles) process, making it much more promising. However, the biggest challenge of VHG fermentation comes from the strong inhibition of ethanol. Batch and plug flow reactors are two ideal models to alleviate product inhibition, but biomass conconcentration is usually low within a batch reactor, which correspondingly needs longer fermentation time. The multistage fermentation system that can alleviate backmixing to some extent and produce 12-13% (v/v) ethanol is still problematic for VHG ethanol fermentation.
     Yeast flocculation is a phenomenon that is controlled by FLO genes and affected by bivalent cations, particularly Ca2+, through which yeast cells adhere together and form flocs. In the brewing industry, yeast flocculation benefits the separation of biomass at the end of the fermentation. Recently, ethanol fermentation with the self-flocculating yeast SPSC01 immobilized within bioreactors was developed for fuel ethanol production. In this thesis, VHG ethanol fermentation by SPSC01 was studied, with the following focuses:
     1. Development of consecutive batch VHG ethanol fermentation strategy
     Conventional batch mode using the flocculating yeast SPSC01 under VHG conditions needs much longer fermentation time, and thus its ethanol productivity is very low, which confers no advantages over free yeast cells. Moreover, without a seed culture system to supplement viable yeast flocs into the fermentation system periodically, continuous ethanol fermentation using SPSC01, whether a single fermentor or tanks in series, produced high ethanol concentration for a while, but was unstable thereafter due to significant viability loss of yeast flocs suffered from severe ethanol inhibition. Consecutive batch fermentation with SPSC01 at high biomass density was then developed to shorten fermentation time. Taking advantage of yeast flocs to separate from fermentation broth by self-sedimentation, the inhibition of ethanol in yeast cell growth was significantly alleviated. Compared to other VHG fermentation technologies, the consecutive batch mode produced more than 15% (v/v) ethanol, with an average productivity as high as 8.62 g/L/h.
     2. Investigation of the settling performance of SPSC01
     Within the duration of the consecutive batch fermentation, yeast flocs experienced significant change in their settling performance, from free settling of intact flocs to hindered settling of snowflake-like incompact flocs, followed by compression settling, which was slow and undesirable for separating yeast flocs from fermentation broth, exacerbating ethanol inhibition in the yeast flocs. The impact of the density and size of yeast flocs and the apparent viscosity of fermentation broth on their settling performance was thus investigated. It was found that the decrease of the size of yeast flocs was the main reason for this phenomenon.
     3. Mechanism of the deflocculation of SPSC01 and process modification
     Previous studies indicated that the gene FLO1 is crucial to the flocculation of SPSC01, and its expression confers both flocculation and hydrophobicity to yeast cells. It was found that the hydrophobicity of yeast flocs was not the main factor affecting their flocculation performance. Neither were the physiochemical effect of ethanol on yeast cell wall and its physiological effect on intracellular mitochondrial functions. Moreover, no significant change in the gene intergrity was detected, since the flocculating ability of the de-flocculating yeast flocs could be restored by the regeneration of them in flask culture. The analysis of the FLO1 transcription indicated that compared with flask culture, its expression level decreased sharply at the end of the consetutive batch fermentation, which was the underlying reason for the deflocculation of SPSC01.
     The process was modified by purging yeast cells at the end of each batch within the duration of the consecutive batch fermentation, which lowered the density of yeast flocs within the fermentor, and thus simulated their growth. The flocculationd settling performance of yeast flocs were improved, and the fermentatioin system was run reliably.
     4. Effect of ethanol concentration and production rate on FLO] transcription
     Ethanol affects the flocculating ability of yeast flocs by inhibiting FLO1 transcription. It was found that the higher the ethanol concentration and the faster the production rate, the more severe was the gene transcription inhibited. The high ethanol production rate change not only impaired FL01 transcription, but also induced pseudohyphal development, a significant morphology change.
     In summary, consecutive VHG batch fermentation using SPSC01 that could improve ethanol productivity was established. The deflocculation of the yeast flocs under VHG conditions and subsequent impact in their settling performance were contributed to the decrease in the FLO1 transcription. The effect of ethanol concentration and production rate on the FLO1 transcription and morphology of SPSC01 were observed. With these understandings, the consecutive VHG batch fermentation process was modified and the performance was greatly imporved.
引文
[1]Karl TR, Trenberth KE. Modern global climate change [J]. Science,2003,302:1719-1723.
    [2]Tim Appenzeller. The End of Cheap Oil [J]. National Geographic Magazine,2004, June.
    [3]Kerr RA. CLIMATE CHANGE:Global Warming Is Changing the World [J]. Science,2007,316: 188-190.
    [4]Hill J, Nelson E, Tilman D, et al. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels [J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103:11206-11210.
    [5]United States Department of Energy. Wang M, Saricks C, Santini D.. Effects of Fuel Ethanol Use on Fuel-Cycle Energy and Greenhouse Gas Emissions [R]. Argonne National Laboratory,1999.
    [6]Hill J, Polasky S, Nelson E, et al. Climate change and health costs of air emissions from biofuels and gasoline [J]. Proceedings of the National Academy of Sciences of the United States of America,2009, 106:2077-2082.
    [7]Huo H, Wang M, Bloyd C, et al. Life-Cycle Assessment of Energy Use and Greenhouse Gas Emissions of Soybean-Derived Biodiesel and Renewable Fuels [J]. Environmental Science & Technology,2009, 43:750-756.
    [8]The World Bank. Biofuels:The Promise and the Risks [R]. World Development Report,2008.
    [9]U.S. Renewable Fuel Association. Statistics:2008 World Fuel Ethanol Production [R]. United States RFA,2009.
    [10]Alternative Fuels and Advanced Vehicles Data Center. Alternative and Advanced Vehicles:Flexible Fuel Vehicles [R]. National Renewable Energy Laboratory. Golden, CO, USA,2001
    [11]The Energy Policy Act of 2005. [OL]. Public Law 109-58—Aug.8,2005[2005,08,05] http://www.epa.gov/oust/fedlaws/publ_109-058.pdf
    [12]U.S. Ethanol Production [OL] http://www.ethanol.org/index.php?id=37&parentid=8
    [13]Kelsail DR, Lyons, TP. Grain dry milling and cooking procedures:extracting sugars in preparation for fermentation [M]. The alcohol textbook,4th ed. Nottingham:Nottingham University Press,2003.
    [14]Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P. Land clearing and the biofuel carbon debt [J]. Science,2008,319:1235-1238.
    [15]Pimentel D, Patzek TW. Ethanol Production Using Corn, Switchgrass, and Wood; Biodiesel Production Using Soybean and Sunflower [J]. Natural Resources Research,2005,14:65-76.
    [16]Shapouri H, Duffield JA, Wang M. The Energy Balance of Corn Ethanol:an Update [R]. United States Department of Agriculture,2007
    [17]Jay I, Hendricks B.6. Homegrown Energy [M]. Washington, D.C.:Island Press,2007
    [18]Luiz A, Nogueira H. Perspectivas de un Programa de Biocombustibles en America Central:Proyecto Uso Sustentable de Hidrocarburos (in Spanish) [R]. Comision Economica para America Latina y el Caribe (CEPAL),2004
    [19]Sperling, Daniel, Gordo D.4 Brazilian Cane Ethanol:A Policy Model [M]. New York:Oxford University Press,2009
    [20]李志军.生物燃料乙醇发展现状、问题与政策建议[J].中国生物工程杂志,2008,28:139-142.
    [21]秦建文,王耀钰,叶洪强.广西木薯燃料酒精产业发展研究[J].广西大学学报(哲学社会科学版),2008,30:15-18.
    [22]郎晓娟,郑风田,崔海兴.中国燃料乙醇政策演变[J].林业经济,2009,3:29-33.
    [23]张艳丽,高新星,王爱华,等.我国生物质燃料乙醇示范工程的全生命周期评价[J].可再生能源,2009,27:63-68.
    [24]Zabaniotou A, loannidou O, Skoulou V. Rapeseed residues utilization for energy and 2nd generation biofuels [J]. Fuel,2008,87:1492-1502.
    [25]Antizar-Ladislao B, Turrion-Gomez JL. Second-generation biofuels and local bioenergy systems [J]. Biofuels Bioproducts & Biorefining-Biofpr,2008,2:455-469.
    [26]Lawford H, Rousseau J. Cellulosic fuel ethanol [J]. Applied Biochemistry and Biotechnology,2003, 106:457-469.
    [27]Melis A, Zhang L, Forestier M, et al. Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga chlamydomonas reinhardtii [J]. Plant Physiology.,2000,122:127-136.
    [28]Chisti Y. Biodiesel from microalgae [J]. Biotechnology Advances,2007,25:294-306.
    [29]Bai FW. Process oscillations in continuous ethanol fermentation with Saccharomyces cerevisiae [D]. Ontario:University of Waterloo,2007.
    [30]McAloo A, Taylor F, Yee W, et al. Determining the cost of producing ethanol from corn starch and lignocellulosic feedstocks [R]. National Renewable Energy Laboratory. Golden, CO, USA,1999
    [31]Cardona CA, Sanchez OJ. Fuel ethanol production:Process design trends and integration opportunities [J]. Bioresource Technology,2007,98:2415-2457.
    [32]申渝.酵母细胞超高浓度乙醇连续发酵振荡行为的研究[D].大连:大连理工大学,2009
    [33]Pimentel D. Biofuels, solar and wind as renewable energy systems:benefits and risks [M]. Dordrecht (Netherlands):Springer-Verlag,2008.
    [34]Balat M, Balat H. Recent trends in global production and utilization of bio-ethanol fuel [J]. Applied Energy,2009,86:2273-2282.
    [35]Sanchez OJ, Cardona CA. Trends in biotechnological production of fuel ethanol from different feedstocks [J]. Bioresource Technology,2008,99:5270-5295.
    [36]Wilkie AC, Riedesel KJ, Owens JM. Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks [J]. Biomass and Bioenergy,2000,19:63-102.
    [37]Ergun M, Mutlu SF, Gurel O. Improved Ethanol Production by Saccharomyces cerevisiae with EDTA, Ferrocyanide and Zeolite X Addition to Sugar Beet Molasses [J]. Journal of Chemical Technology & Biotechnology,1997,68:147-150.
    [38]Sun ZM, Zhou X, Liu LP. Food crisis and development and utilization of cassava as raw material to biomass energy [J]. Modern Chemical Industry,2008,28:11-14.
    [39]Mao ZG, Zhang JH. Trend of "zero energy consumption and wastewater" in fuel ethanol production [J]. Chinese Journal of Biotechnology,2008,24:946-949.
    [40]Gnansounou E, Dauriat A, Wyman CE. Refining sweet sorghum to ethanol and sugar:economic trade-offs in the context of North China [J]. Bioresource Technology,2005,96:985-1002.
    [41]Claassen PAM, van Lier JB, Lopez Contreras AM, et al. Utilisation of biomass for the supply of energy carriers [J]. Applied Microbiology and Biotechnology,1999,52:741-755.
    [42]Rubin EM. Genomics of cellulosic biofuels [J]. Nature,2008,454:841-845.
    [43]van Wyk JP. Biotechnology and the utilization of biowaste as a resource for bioproduct development [J]. Trends in Biotechnology,2001,19:172-177.
    [44]Lee J. Biological conversion of lignocellulosic biomass to ethanol [J]. Journal of Biotechnology,1997, 56:1-24.
    [45]Mosier N, Wyman C, Dale B, et al. Features of promising technologies for pretreatment of lignocellulosic biomass [J]. Bioresource Technology,2005,96:673-686.
    [46]Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production:a review [J]. Bioresource Technology,2002,83:1-11.
    [47]Aden, A., Ruth, M., Ibsen, K., et, al. Lignocellulosic biomass to ethanol process design and economics utilizing cocurrent dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. Technical Report NREL/TP-510-32438 [R]. National Renewable Energy Laboratory. Golden, CO, USA,2002
    [48]Palmqvist E, Hahn-Hagerdal B. Fermentation of lignocellulosic hydrolysates. Ⅱ:inhibitors and mechanisms of inhibition [J]. Bioresource Technology,2000,74:25-33.
    [49]Zhang YH, Lynd LR. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems [J]. Biotechnology and Bioengineering,2004,88:797-824.
    [50]Olsson L, Hahn-Hagerdal B. Fermentation of lignocellulosic hydrolysates for ethanol production [J]. Enzyme and Microbial Technology,1996,18:312-331.
    [51]Aristidou A, Penttila M. Metabolic engineering applications to renewable resource utilization [J]. Current Opinion in Biotechnology,2000,11:187-198.
    [52]Wingren A, Galbe M, Zacchi G. Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks [J]. Biotechnology Progress,2003,19: 1109-1117.
    [53]Ohgren K, Bengtsson O, Gorwa-Grauslund MF, et al. Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400 [J]. Journal of Biotechnology,2006,126:488-498.
    [54]Ohgren K, Bura R, Saddler J, et al. Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover [J]. Bioresource Technology,2007,98:2503-2510.
    [55]Palmqvist E, Hahn-Hagerdal B. Fermentation of lignocellulosic hydrolysates. Ⅰ:inhibition and detoxification [J]. Bioresource Technology,2000,74:17-24.
    [56]Zaldivar J, Nielsen J, Olsson L. Fuel ethanol production from lignocellulose:a challenge for metabolic engineering and process integration [J]. Applied Microbiology and Biotechnology,2001,56:17-34.
    [57]Lin Y, Tanaka S. Ethanol fermentation from biomass resources:current state and prospects [J]. Applied Microbiology and Biotechnology,2006,69:627-642.
    [58]Kim K, Hamdy MK. Acid hydrolysis of Jerusalem artichoke for ethanol fermentation [J]. Biotechnology Bioengineering,1986,28:138-141.
    [59]Guiraud JP, Daurelles J, Galzy P. Alcohol production from jerusalem artichoke using yeast with inulinase activity [J]. Biotechnology and Bioengineering,1981,23:1461-1465.
    [60]袁文杰.克鲁维酵母同步糖化发酵菊芋生产乙醇的研究[D].大连:大连理工大学,2009
    [61]Szambelan K, Nowak J, Czarnecki Z. Use of Zymomonas mobilis and Saccharomyces cerevisiae mixed with Kluyveromyces fragilis for improved ethanol production from Jerusalem artichoke tubers [J]. Biotechnology Letters,2004,26:845-848.
    [62]Margaritis A, Bajpai P. Continuous ethanol production from Jerusalem artichoke tubers. Ⅰ. Use of free cells of Kluyveromyces marxianus [J]. Biotechnology and Bioengineering,1982,24:1473-1482.
    [63]Yuan W, Ren J, Zhao X, Bai F. One-step ethanol fermentation with Kluyveromyces marxianus YX01 from Jerusalem artichoke [J]. Chinese Journal of Biotechnology,2008,24:1931-1936.
    [64]Mccaig R, Mckee J, Pfisterer EA, et al. Very high gravity brewing-laboratory and pilot plant trials [J]. Journal of the American Society of Brewing Chemists,1992,50:18-26.
    [65]Casey GP, Ingledew WMM. Ethanol Tolerance in Yeasts [J]. Critical Reviews in Microbiology,1986, 13:219-280.
    [66]D'AMORE T, Stewart G. Ethanol tolerance of yeast [J]. Enzyme Microbial Technology,1987,9: 322-330.
    [67]Thomas KC, Hynes SH, Ingledew WM. Practical and theoretical considerations in the production of high concentrations of alcohol by fermentation [J]. Process Biochemistry,1996,31:321-331.
    [68]Thomas K, Hynes S, Jones A, Ingledew W. Production of fuel alcohol from wheat by VHG technology [J]. Applied Biochemistry and Biotechnology,1993,43:211-226.
    [69]Thomas KC, Ingledew WM. Fuel alcohol production:effects of free amino nitrogen on fermentation of very-high-gravity wheat mash [J]. Applied and Environmental Microbiology,1990,56:2046-2050.
    [70]Thomas KC, Ingledew WM. Production of fuel alcohol from oats by fermentation [J]. Journal of Industrial Microbiology and Biotechnology,1995,15:125-130.
    [71]Jones AM, Ingledew WM. Fuel alcohol production:Assessment of selected commercial proteases for very high gravity wheat mash fermentation [J]. Enzyme and Microbial Technology,1994,16: 683-687.
    [72]Wang S, Thomas KC, Sosulski K, et al. Grain pearling and very high gravity (VHG) fermentation technologies for fuel alcohol production from rye and triticale [J]. Process Biochemistry,1999,34: 421-428.
    [73]Bvochora JM, Read JS, Zvauya R. Application of very high gravity technology to the cofermentation of sweet stem sorghum juice and sorghum grain [J]. Industrial Crops and Products,2000,11:11-17.
    [74]Bafrncova P, Smogrovicova D, Slavikova I, et al. Improvement of very high gravity ethanol fermentation by media supplementation using Saccharomyces cerevisiae [J]. Biotechnology Letters, 1999,21:337-341.
    [75]Jones AM, Ingledew WM. Fuel alcohol production:appraisal of nitrogenous yeast foods for very high gravity wheat mash fermentation [J]. Process Biochemistry,1994,29:483-488.
    [76]Devantier R, Pedersen S, Olsson L. Characterization of very high gravity ethanol fermentation of corn mash. Effect of glucoamylase dosage, pre-saccharification and yeast strain [J]. Applied Microbiology and Biotechnology,2005,68:622-629.
    [77]Reddy LVA, Reddy OVS. Improvement of ethanol production in very high gravity fermentation by horse gram (Dolichos biflorus) flour supplementation [J]. Letters in Applied Microbiology,2005,41: 440-444.
    [78]Reddy LVA, Reddy OVS. Rapid and enhanced production of ethanol in very high gravity (VHG) sugar fermentation by Saccharomyces cerevisiae:Role of finger millet (Eleusine coracana L.) flour [J]. Process Biochemistry,2006,41:726-729.
    [79]Thomas KC, Hynes SH, Ingledew WM. Effects of particulate materials and osmoprotectants on very-high-gravity ethanolic fermentation by Saccharomyces cerevisiae [J]. Applied and Environmental Microbiology,1994,60:1519-1524.
    [80]Majara M, OconnorCox ESC, Axcell BC. Trehalose-An osmoprotectant and stress indicator compound in high and very high gravity brewing [J]. Journal of the American Society of Brewing Chemists,1996,54:149-154.
    [81]Birch RM, Walker GM. Influence of magnesium ions on heat shock and ethanol stress responses of Saccharomyces cerevisiae [J]. Enzyme and Microbial Technology,2000,26:678-687.
    [82]Hu CK, Bai FW, An LJ. Enhancing ethanol tolerance of a self-flocculating fusant of Schizosaccharomyces pombe and Saccharomyces cerevisiae by Mg2+ via reduction in plasma membrane permeability [J]. Biotechnology Letters,2003,25:1191-1194.
    [83]Hu CK, Bai FW, An LJ. Effect of the flocculating of a self-flocculating yeast on its ethanol tolerance and corresponding mechanisms [J]. Chinese Journal of Biotechnology,2005,21:123-128.
    [84]Rees EMR, Stewart GG. The effects of increased magnesium and calcium concentrations on yeast fermentation performance in high gravity worts [J]. Journal of the Institute of Brewing,1997,103: 287-291.
    [85]Rees EMR, Stewart GG. Effects of magnesium, calcium and wort oxygenation on the fermentative performance of ale and lager strains fermenting normal and high gravity worts [J]. Journal of the Institute of Brewing,1999,105:211-217.
    [86]Thomas KC, Ingledew WM. Production of 21% (v/v) ethanol by fermentation of very high gravity (VHG) wheat mashes [J]. Journal of Industrial Microbiology and Biotechnology,1992,10:61-68.
    [87]Jones AM, Ingledew WM. Fuel Alcohol Production:Optimization of Temperature for Efficient Very-High-Gravity Fermentation [J]. Applied and Environmental Microbiology,1994,60:1048-1051.
    [88]Bai FW, Anderson WA, Moo-Young M. Ethanol fermentation technologies from sugar and starch feedstocks [J]. Biotechnology Advances,2008,26:89-105.
    [89]Maiorella BL, Blanch HW, Wilke CR. Eeconomic evaluation of alternative ethanol fermentation processes [J]. Biotechnology and Bioengineering,1984,26:1003-1025.
    [90]Lee JH, Woodard JC, Pagan RJ, Rogers PL. Vacuum fermentation for ethanol production using strains of Zymomonas mobilis [J]. Biotechnology Letters,1981,3:177-182.
    [91]Ghose TK, Roychoudhury PK, Ghosh P. Simultaneous saccharification and fermentation (SSF) of lignocellulosics to ethanol under vacuum cycling and step feeding [J]. Biotechnology and Bioengineering,1984,26:377-381.
    [92]Minier M, Goma G. Ethanol production by extractive fermentation [J]. Biotechnology and Bioengineering,1982,24:1565-1579.
    [93]Barros MR, Cabral JM, Novais JM. Production of ethanol by immobilized Saccharomyces bayanus in an extractive fermentation system [J]. Biotechnology and Bioengineering,1987,29:1097-1104.
    [94]Taylor F, Kurantz MJ, Goldberg N, et al. Control of packed column fouling in the continuous fermentation and stripping of ethanol [J]. Biotechnology and Bioengineering,1996,51:33-39.
    [95]Taylor F, Kurantz MJ, Goldberg N, et al. Effects of ethanol concentration and stripping temperature on continuous fermentation rate [J]. Applied Microbiology and Biotechnology,1997,48:311-316.
    [96]Christen P, Minier M, Renon H. Ethanol extraction by supported liquid membrane during fermentation [J]. Biotechnology and Bioengineering,1990,36:116-123.
    [97]Shabtai Y, Chaimovitz S, Freeman A, et al. Continuous ethanol production by immobilized yeast reactor coupled with membrane pervaporation unit [J]. Biotechnology and Bioengineering,1991,38: 869-876.
    [98]Bayrock DP, Ingledew WM. Application of multistage continuous fermentation for production of fuel alcohol by very-high-gravity fermentation technology [J]. Journal of Industrial Microbiology & Biotechnology,2001,27:87-93.
    [99]Bai FW, Chen LJ, Zhang Z, et al. Continuous ethanol production and evaluation of yeast cell lysis and viability loss under very high gravity medium conditions [J]. Journal of Biotechnology,2004,110: 287-293.
    [100]Attfield PV. Stress tolerance:The key to effective strains of industrial baker's yeast [J]. Nature Biotechnology,1997,15:1351-1357.
    [101]Gibson BR, Lawrence SJ, Leclaire JPR, et al. Yeast responses to stresses associated with industrial brewery handling [J]. FEMS Microbiology Reviews,2007,31:535-569.
    [102]Zhao XQ, Bai FW. Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production [J]. Journal of Biotechnology,2009,144:23-30.
    [103]Zhang QM, Zhao XQ, Jiang RJ, et al. Ethanol tolerance in yeast:molecular mechanisms and genetic engineering [J]. Chinese Journal of Biotechnology,2009,25:481-487.
    [104]Alexandre H, Ansanay-Galeote V, Dequin S, et al. Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae [J]. Febs Letters,2001,498:98-103.
    [105]Wu H, Zheng X, Araki Y, et al. Global gene expression analysis of yeast cells during sake brewing [J]. Applied and Environmental Microbiology,2006,72:7353-7358.
    [106]Lucero P, Penalver E, Moreno E, et al. Internal trehalose protects endocytosis from inhibition by ethanol in Saccharomyces cerevisiae [J]. Applied and Environmental Microbiology,2000,66: 4456-4461.
    [107]Bandara A, Fraser S, Chambers PJ, et al. Trehalose promotes the survival of Saccharomyces cerevisiae during lethal ethanol stress, but does not influence growth under sublethal ethanol stress [J]. FEMS Yeast Research,2009,9:1208-1216.
    [108]Guimaraes PM, Londesborough J. The adenylate energy charge and specific fermentation rate of brewer's yeasts fermenting high-and very high-gravity worts [J]. Yeast,2008,25:47-58.
    [109]Hirasawa T, Yoshikawa K, Nakakura Y, et al. Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis [J]. Journal of Biotechnology,2007,131:34-44.
    [110]Marisa E-R, Cantoral JM, Matallana E, et al. Btn2p is involved in ethanol tolerance and biofilm formation in flor yeast [J]. FEMS Yeast Research,2008,8:1127-1136.
    [111]Sekine T, Kawaguchi A, Hamano Y, et al. Desensitization of feedback inhibition of the Saccharomyces cerevisiae gamma-glutamyl kinase enhances proline accumulation and freezing tolerance [J]. Applied and Environmental Microbiology,2007,73:4011-4019.
    [112]Kajiwara S, Shirai A, Fujii T, et al. Polyunsaturated fatty acid biosynthesis in Saccharomyces cerevisiae:expression of ethanol tolerance and the FAD2 gene from Arabidopsis thaliana [J]. Applied and Environmental Microbiology,1996,62:4309-4313.
    [113]You KM, Rosenfield CL, Knipple DC. Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content [J]. Applied and Environmental Microbiology,2003,69: 1499-1503.
    [114]Yazawa H, Iwahashi H, Uemura H. Disruption of URA7 and GAL6 improves the ethanol tolerance and fermentation capacity of Saccharomyces cerevisiae [J]. Yeast,2007,24:551-560.
    [115]Santos J, Sousa MJ, Cardoso H, et al. Ethanol tolerance of sugar transport, and the rectification of stuck wine fermentations [J]. Microbiology,2008,154:422-430.
    [116]James TC, Campbell S, Donnelly D, et al. Transcription profile of brewery yeast under fermentation conditions [J]. Journal of Applied Microbiology,2003,94:432-448.
    [117]Rasmus D, Britta S, Silas Granato V-B, et al. Metabolite profiling for analysis of yeast stress response during very high gravity ethanol fermentations [J]. Biotechnology and Bioengineering,2005, 90:703-714.
    [118]Pham TK, Chong PK, Gan CS, et al. Proteomic analysis of Saccharomyces cerevisiae under high gravity fermentation conditions [J]. Journal of Proteome Research,2006,5:3411-3419.
    [119]Rautio JJ, Huuskonen A, Vuokko H, et al. Monitoring yeast physiology during very high gravity wort fermentations by frequent analysis of gene expression [J]. Yeast,2007,24:741-760.
    [120]Pham TK, Wright PC. The proteomic response of Saccharomyces cerevisiae in very high glucose conditions with amino acid supplementation [J]. Journal of Proteome Research,2008,7:4766-4774.
    [121]Alper H, Moxley J, Nevoigt E, et al. Engineering yeast transcription machinery for improved ethanol tolerance and production [J]. Science,2006,314:1565-1568.
    [122]Yazawa H, Iwahashi H, Uemura H. Disruption of URA7 and GAL6 improves the ethanol tolerance and fermentation capacity of Saccharomyces cerevisiae [J]. Yeast,2007,24:551-560.
    [123]Hou L, Cao X, Wang C, et al. Effect of overexpression of transcription factors on the fermentation properties of Saccharomyces cerevisiae industrial strains [J]. Letters in Applied Microbiology,2009, 49:14-19.
    [124]Shi DJ, Wang CL, Wang KM. Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae [J]. Journal of Industrial Microbiology and Biotechnology,2009,36:139-147.
    [125]Kierstan M, Bucke C. The immobilization of microbial cells, subcellular organelles, and enzymes in calcium alginate gels [J]. Biotechnology and Bioengineering,1977,19:387-397.
    [126]Black GM, Webb C, Matthews TM, et al. Practical reactor systems for yeast cell immobilization using biomass support particles [J]. Biotechnology Bioengineering,1984,26:134-141.
    [127]Fukui S, Tanaka A. Immobilized microbial cells [J]. Annual Review of Microbiology,1982,36: 145-172.
    [128]Kourkoutas Y, Bekatorou A, Banat IM, et al. Immobilization technologies and support materials suitable in alcohol beverages production:a review [J]. Food Microbiology,2004,21:377-397.
    [129]Verbelen PJ, De Schutter DP, Delvaux F, et al. Immobilized yeast cell systems for continuous fermentation applications [J]. Biotechnology Letters,2006,28:1515-1525.
    [130]Karel SF, Libicki SB, Robertson CR. The immobilization of whole cells:Engineering principles [J]. Chemical Engineering Science,1985,40:1321-1354.
    [131]Norton S, D'Amore T. Physiological effects of yeast cell immobilization:Applications for brewing [J]. Enzyme and Microbial Technology,1994,16:365-375.
    [132]Hilge-Rotmann B, Rehm H-J. Relationship between fermentation capability and fatty acid composition of free and immobilized Saccharomyces cerevisiae [J]. Applied Microbiology and Biotechnology,1991,34:502-508.
    [133]Norton S, Watson K, D'Amore T. Ethanol tolerance of immobilized brewers' yeast cells [J]. Applied Microbiology and Biotechnology,1995,43:18-24.
    [134]Minoru N, Masaki A, Sadao N, et al. Continuous ethanol fermentation using immobilized yeast cells [J]. Biotechnology and Bioengineering,1984,26:992-997.
    [135]Bailey JE. Toward a science of metabolic engineering [J]. Science,1991,252:1668-1675.
    [136]Nevoigt E. Progress in metabolic engineering of Saccharomyces cerevisiae [J]. Microbiology and Molecular Biology Reviews,2008,72:379-412.
    [137]Nielsen J, Jewett MC. Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae [J]. FEMS Yeast Research,2008,8:122-131.
    [138]Bailey JE, Sburlati A, Hatzimanikatis V, et al. Inverse metabolic engineering:a strategy for directed genetic engineering of useful phenotypes [J]. Biotechnology and Bioengineering,2002,79:568-579.
    [139]Sato N, Matsumoto T, Ueda M, et al. Long anchor using Flol protein enhances reactivity of cell surface-displayed glucoamylase to polymer substrates [J]. Applied Microbiology and Biotechnology, 2002,60:469-474.
    [140]Shigechi H, Koh J, Fujita Y, et al. Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and alpha-amylase [J]. Applied and Environmental Microbiology,2004,70:5037-5040.
    [141]Domingues L, Teixeira JA, Lima N. Construction of a flocculent Saccharomyces cerevisiae fermenting lactose [J]. Applied Microbiology and Biotechnology,1999,51:621-626.
    [142]Van Vleet JH, Jeffries TW. Yeast metabolic engineering for hemicellulosic ethanol production [J]. Current Opinion in Biotechnology,2009,20:300-306.
    [143]Lynd LR, Zyl WHv, McBride JE, et al. Consolidated bioprocessing of cellulosic biomass:an update [J]. Current Opinion in Biotechnology,2005,16:577-583.
    [144]Hahn-Hagerdal B, Karhumaa K, Jeppsson M, et al. Metabolic engineering for pentose utilization in Saccharomyces cerevisiae [J]. Advances in Biochemical Engineering and Biotechnology,2007,108: 147-177.
    [145]Miroslav S, Nancy WYH. Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast [J]. Yeast,2004,21:671-684.
    [146]van Maris AJ, Winkler AA, Kuyper M, et al. Development of efficient xylose fermentation in Saccharomyces cerevisiae:xylose isomerase as a key component [J]. Advances in Biochemical Engineering and Biotechnology,2007,108:179-204.
    [147]Karhumaa K, Garcia Sanchez R, Hahn-Hagerdal B, et al. Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae [J]. Microbial cell factories,2007,6:5.
    [148]Ni H, Laplaza JM, Jeffries TW. Transposon mutagenesis to improve the growth of recombinant Saccharomyces cerevisiae on D-xylose [J]. Applied and Environmental Microbiology,2007,73: 2061-2066.
    [149]Watanabe S, Abu Saleh A, Pack SP, et al. Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis [J]. Microbiology,2007,153:3044-3054.
    [150]Jeffries TW, Grigoriev IV, Grimwood J, et al. Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis [J]. Nature Biotechnology,2007,25:319-326.
    [151]Bengtsson O, Jeppsson M, Sonderegger M, et al. Identification of common traits in improved xylose-growing Saccharomyces cerevisiae for inverse metabolic engineering [J]. Yeast,2008,25: 835-847.
    [152]Gardner N, Rodrigue N, Champagne CP. Combined effects of sulfites, temperature, and agitation time on production of glycerol in grape juice by Saccharomyces cerevisiae [J]. Applied and Environmental Microbiology,1993,59:2022-2028.
    [153]Nissen TL, Hamann CW, Kielland-Brandt MC, et al. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis [J]. Yeast,2000,16:463-474.
    [154]Nissen TL, Kielland-Brandt MC, Nielsen J, et al. Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation [J]. Metab Eng, 2000,2:69-77.
    [155]Luong JH. Kinetics of ethanol inhibition in alcohol fermentation [J]. Biotechnology and Bioengineering,1985,27:280-285.
    [156]Thatipamala R, Rohani S, Hill GA. Effects of high product and substrate inhibitions on the kinetics and biomass and product yields during ethanol batch fermentation [J]. Biotechnology and Bioengineering,1992,40:289-297.
    [157]Brown SW, Oliver SG, Harrison DEF, et al. Ethanol inhibition of yeast growth and fermentation-differences in the magnitude and complexity of the effect [J]. European Journal of Applied Microbiology and Biotechnology,1981,11:151-155.
    [158]Groot WJ, Sikkenk CM, Waldram RH, et al. Kinetics of ethanol production by baker's yeast in an integrated process of fermentation and microfiltration [J]. Bioprocess and Biosystems Engineering, 1992,8:39-47.
    [159]Ge XM, Bai FW. Intrinsic kinetics of continuous growth and ethanol production of a flocculating fusant yeast strain SPSC01 [J]. Journal of Biotechnology,2006,124:363-372.
    [160]Kosaric N, Velikonja J. Liquid and gaseous fuels from biotechnology:challenge and opportunities [J]. Fems Microbiology Reviews,1995,16:111-142.
    [161]Hong J. Optimal substrate feeding policy for a fed batch fermentation with substrate and product inhibition-kinetics [J]. Biotechnology and Bioengineering,1986,28:1421-1431.
    [162]Kosaric, N., Z. Duvnjak, A. Farkas, et al. Ethanol [M]5th ed. N.Y.:Ullmann's Encyclopedia of Industrial Chemistry, Vol A9. VCH Publishers,1987
    [163]Kosaric, N., Wieczorek A, Cosentino CP, et al. Ethanol fermentation [M]. Weinheim:Biotechnology Volume 3, Verlag Chemie,1983.
    [164]Prince IG, Barford JP. Continuous tower fermentation for power ethanol production [J]. Biotechnology Letters,1982,4:263-268.
    [165]Kuriyama H, Seiko Y, Murakami T, et al. Continuous ethanol fermentation with cell recycling using flocculating yeast [J]. Journal of Fermentation. Technology,1985,63:159-165.
    [166]Wieczorek A, Michalski H. Continuous ethanol production by flocculating yeast in the fluidized bed bioreactor [J]. FEMS Microbiology Review,1994,14:69-74.
    [167]Morimura S, Ling ZY, Kida K. Ethanol production by repeated-batch fermentation at high temperature in a molasses medium containing a high concentration of total sugar by a thermotolerant flocculating yeast with improved salt-tolerance [J]. Journal of Fermentation and Bioengineering,1997, 83:271-274.
    [168]Choi GW, Kang HW, Moon SK. Reapeated-batch fermentation using flocculent hydbrid, Saccharomyces cerevisiae CHFY0321 for efficient production of bioethanol [J]. Applied Microbiology and Biotechnology,2009,84:261-269.
    [169]Freeman A, Woodley JM, Lilly MD. In situ product removal as a tool for bioprocessing [J]. Bio-Technology,1993,11:1007-1012.
    [170]Ezeji TC, Qureshi N, Blaschek HP. Bioproduction of butanol from biomass:from genes to bioreactors [J]. Current Opinion in Biotechnology,2007,18:220-227.
    [171]Octave L. The monod equation:A revisit and a generalization to product inhibition situations [J]. Biotechnology and Bioengineering,1980,22:1671-1687.
    [172]Shang-Tian Y, Martin RO. Effects of temperature on lactose hydrolysis by immobilized beta-galactosidase in plug-flow reactor [J]. Biotechnology and Bioengineering,1989,33:873-885.
    [173]Levenspiel O. The tanks-in-series models, in chemical reaction engineering [M].3rd ed. New York: John Wiley & Sons,1999.
    [174]Bai FW, Ge XM, Anderson WA, et al. Parameter oscillation attenuation and mechanism exploration for continuous VHG ethanol fermentation [J]. Biotechnology Bioengineering,2009,102:113-121.
    [175]Elisabetta C, Ashok KA, Graeme MW. Atomic force microscopic study of the effects of ethanol on yeast cell surface morphology [J]. FEMS Microbiology Letters,2006,255:308-315.
    [176]Pascual C, Alonso A, Garcia I, et al. Effect of ethanol on glucose transport, key glycolytic enzymes, and proton extrusion in Saccharomyces cerevisiae [J]. Biotechnology and Bioengineering 1988,32: 374-378.
    [177]Valery VP, Lev AO. Increase of anion and proton permeability of Saccharomyces carlsbergensis plasmalemma by n-alcohols as a possible cause of its de-energization [J]. Yeast,1990,6:311-318.
    [178]Jones RP, Greenfield PF. Ethanol and the fluidity of the yeast plasma membrane [J]. Yeast,1987,3: 223-232.
    [179]Chi Z, Arneborg N. Relationship between lipid composition, frequency of ethanol-induced respiratory deficient mutants, and ethanol tolerance in Saccharomyces cerevisiae [J]. Journal of Applied Microbiology,1999,86:1047-1052.
    [180]Rossignol T, Dulau L, Julien A, et al. Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation [J]. Yeast,2003,20:1369-1385.
    [181]van Voorst F, Houghton-Larsen J, Jonson L, et al. Genome-wide identification of genes required for growth of Saccharomyces cerevisiae under ethanol stress [J]. Yeast,2006,23:351-359.
    [182]Alexandre H, Charpentier C. Biochemical aspects of stuck and sluggish fermentation in grape must [J]. Journal of Industrial Microbiology & Biotechnology,1998,20:20-27.
    [183]Bisson LF. Stuck and sluggish fermentations [J]. American Journal of Enology and Viticulture,1999, 50:107-119.
    [184]Kosaric N, Velikonja J. Liquid and gaseous fuels from biotechnology:challenge and opportunities [J]. Ferns Microbiology Reviews,1995,16:111-142.
    [185]Casey GP, Magnus CA, Ingledew WM. High-Gravity Brewing:Effects of Nutrition on Yeast Composition, Fermentative Ability, and Alcohol Production [J]. Applied and Environmental Microbiology,1984,48:639-646.
    [186]Ingledew WM. Continuous fermentation in the fuel alcohol industry:How does the technology affect yeast? [M]. The alcohol textbook,4th ed. Nottingham:Nottingham University Press,2003.
    [187]Skinner KA, Leathers TD. Bacterial contaminants of fuel ethanol production [J]. Journal of Industrial Microbiology and Biotechnology,2004,31:401-408.
    [188]Causton HC, Ren B, Koh SS, et al. Remodeling of yeast genome expression in response to environmental changes [J]. Molecular Biology of the Cell,2001,12:323-337.
    [189]Guijarro JM, Lagunas R. Saccharomyces cerevisiae does not accumulate ethanol against a concentration gradient [J]. Journal of Bacteriology,1984,160:874-878.
    [190]Novak M, Strehaiano P, Moreno M, et al. Alcoholic fermentation:On the inhibitory effect of ethanol [J]. Biotechnology and Bioengineering,1981,23:201-211.
    [191]Nagodawithana TW, Steinkraus KH. Influence of the rate of ethanol production and accumulation on the viability of Saccharomyces cerevisiae in "rapid fermentation" [J]. Applied and Environmental Microbiology,1976,31:158-162.
    [192]Dasari G, Worth MA, Connor MA, et al. Reasons for the apparent difference in the effects of produced and added ethanol on culture viability during rapid fermentations by Saccharomyces cerevisiae [J]. Biotechnology and Bioengineering,1990,35:109-122.
    [193]Li J, McLellan PJ, Daugulis AJ. Inhibition effects of ethanol concentration history and ethanol concentration change rate on Zymomonas mobilis [J]. Biotechnology Letters,1995,17:321-326.
    [194]Hobley TJ, Pamment NB. Differences in response of Zymomonas mobilis and Saccharomyces cerevisiae to change in extracellular ethanol concentration [J]. Biotechnology and Bioengineering, 1994,43:155-158.
    [195]McLellan PJ, Daugulis AJ, Li J. The incidence of oscillatory behavior in the continuous fermentation of Zymomonas mobilis [J]. Biotechnology Progress,1999,15:667-680.
    [196]Ghosh A, Chance B. Oscillations of glycolytic intermediates in yeast cells [J]. Biochemical and Biophysical Research Communications,1964,16:174-181.
    [197]Murray DB, Roller S, Kuriyama H, et al. Clock control of ultradian respiratory oscillation found during yeast continuous culture [J]. Journal of Bacteriology,2001,183:7253-7259.
    [198]Bai FW, Chen LJ, Anderson WA, et al. Parameter oscillations in a very high gravity medium continuous ethanol fermentation and their attenuation on a multistage packed column bioreactor system [J]. Biotechnology and Bioengineering,2004,88:558-566.
    [199]Richard P. The rhythm of yeast [J]. FEMS Microbiology Reviews,2003,27:547-557.
    [200]Jobses IML, Egberts GTC, Luyben KCAM, et al. Fermentation kinetics of Zymomonas mobilis at high ethanol concentrations:Oscillations in continuous cultures [J]. Biotechnology and Bioengineering,1986,28:868-877.
    [201]Shen Y, Zhao XQ, Ge XM, et al. Metabolic flux and cell cycle analysis indicating new mechanism underlying process oscillation in continuous ethanol fermentation with Saccharomyces cerevisiae under VHG conditions [J]. Biotechnology Advances,2009,27:1118-1123.
    [202]Abulesz EM, Lyberatos G. Periodic operation of a continuous culture of Baker's yeast [J]. Biotechnology and Bioengineering,1989,34:741-749.
    [203]Garhyan P, Elnashaie SSEH, Al-Haddad SM, et al. Exploration and exploitation of bifurcation/chaotic behavior of a continuous fermentor for the production of ethanol [J]. Chemical Engineering Science,2003,58:1479-1496.
    [204]Shen Y, Ge XM, Bai FW. Application of oscillation for efficiency improvement of continuous ethanol fermentation with Saccharomyces cerevisiae under very-high-gravity conditions [J]. Applied Microbiology and Biotechnology,2009,86:103-108.
    [205]Jin YL, Alex Speers R. Flocculation of Saccharomyces cerevisiae [J]. Food Research International, 1998,31:421-440.
    [206]Verstrepen KJ, Derdelinckx G, Verachtert H, et al. Yeast flocculation:what brewers should know [J]. Applied Microbiology and Biotechnology,2003,61:197-205.
    [207]Stratford M. Yeast flocculation:Calcium specificity [J]. Yeast,1989,5:487-496.
    [208]Stratford M. Yeast flocculation:Reconciliation of physiological and genetic viewpoints [J]. Yeast, 1992,8:25-38.
    [209]Bidard F, Bony M, Blondin B, et al. The Saccharomyces cerevisiae FLO1 flocculation gene encodes for a cell surface protein [J]. Yeast,1995,11:809-822.
    [210]Bony M, Thines-Sempoux D, Barre P, et al. Localization and cell surface anchoring of the Saccharomyces cerevisiae flocculation protein Flo1p [J]. Journal of Bacteriology,1997,179: 4929-4936.
    [211]Stratford M, Assinder S. Yeast flocculation:Flo1 and NewFlo phenotypes and receptor structure [J]. Yeast,1991,7:559-574.
    [212]Sieiro C, Reboredo NM, Villa TG. Flocculation of industrial and laboratory strains of Saccharomyces cerevisiae [J]. Journal of Industrial Microbiology,1995,14:461-466.
    [213]Nishihara H, Kio K, Imamura M. Possible mechanism of co-flocculation between non-flocculent yeasts [J]. Journal of the Institute of Brewing,2000,106:7-10.
    [214]Peng X, Sun J, Iserentant D, et al. Flocculation and co-flocculation of bacteria by yeasts [J]. Applied Microbiology and Biotechnology,2001,55:777-781.
    [215]Verstrepen KJ, Klis FM. Flocculation, adhesion and biofilm formation in yeasts [J]. Molecular Microbiology,2006,60:5-15.
    [216]Smukalla S, Caldara M, Pochet N, et al. FLO1 Is a Variable Green Beard Gene that Drives Biofilm-like Cooperation in Budding Yeast [J]. Cell,2008,135:726-737.
    [217]Zhao XQ, Bai FW. Yeast flocculation:New story in fuel ethanol production [J]. Biotechnology Advances,2009,27:849-856.
    [218]Teunissen AWRH, Steensma HY. Review:The dominant flocculation genes of Saccharomyces cerevisiae constitute a new subtelomeric gene family [J]. Yeast,1995,11:1001-1013.
    [219]Verstrepen KJ, Reynolds TB, Fink GR. Origins of variation in the fungal cell surface [J]. Nature Reviews Microbiology,2004,2:533-540.
    [220]Sato M, Maeba H, Watari J, et al. Analysis of an inactivated Lg-FLO1 gene present in bottom-fermenting yeast [J]. Journal of Bioscience and Bioengineering,2002,93:395-398.
    [221]Liu N, Wang D, Wang ZY, et al. Genetic basis of flocculation phenotype conversion in Saccharomyces cerevisiae [J]. FEMS Yeast Research,2007,7:1362-1370.
    [222]Lo WS, Dranginis AM. The cell surface flocculin FLO11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae [J]. Molecular Biology of the Cell,1998,9:161-171.
    [223]Reynolds TB, Fink GR. Bakers'yeast, a model for fungal biofilm formation [J]. Science,2001,291: 878-881.
    [224]Gagiano M, van Dyk D, Bauer FF, et al. Msnlp/Mss10p, Mss11p and Muclp/Flo11p are part of a signal transduction pathway downstream of Mep2p regulating invasive growth and pseudohyphal differentiation in Saccharomyces cerevisiae [J]. Molecular Microbiology,1999,31:103-116.
    [225]Bayly JC, Douglas LM, Pretorius IS, et al. Characteristics of FLO11-dependent flocculation in Saccharomyces cerevisiae [J]. FEMS Yeast Research,2005,5:1151-1156.
    [226]Guo B, Styles CA, Feng Q, et al. A Saccharomyces gene family involved in invasive growth, cell-cell adhesion, and mating [J]. Proceedings of the National Academy of Sciences of the United States of America,2000,97:12158-12163.
    [227]Liu H, Styles CA, Fink GR. Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth [J]. Genetics,1996,144:967-978.
    [228]Kobayashi O, Yoshimoto H, Sone H. Analysis of the genes activated by the FLO8 gene in Saccharomyces cerevisiae [J]. Current Genetics,1999,36:256-261.
    [229]Dranginis AM, Rauceo JM, Coronado JE, et al. A biochemical guide to yeast adhesins:Glycoproteins for social and antisocial occasions [J]. Microbiology and Molecular Biology Reviews,2007,71: 282-294.
    [230]Kapteyn JC, Van Den Ende H, Klis FM. The contribution of cell wall proteins to the organization of the yeast cell wall [J]. Biochimica et Biophysica Acta (BBA)-General Subjects,1999,1426:373-383.
    [231]Javadekar VS, Sivaraman H, Sainkar SR, et al. A mannose-binding protein from the cell surface of flocculent Saccharomyces cerevisiae (NCIM 3528):its role in flocculation [J]. Yeast,2000,16: 99-110.
    [232]Beauvais A, Loussert C, Prevost MC, et al. Characterization of a biofilm-like extracellular matrix in FLO1-expressing Saccharomyces cerevisiae cells [J]. FEMS Yeast Research,2009,9:411-419.
    [233]Ishida-Fujii K, Goto S, Sugiyama H, et al. Breeding of flocculent industrial alcohol yeast strains by self-cloning of the flocculation gene FLO1 and repeated-batch fermentation by transformants [J]. The Journal of General and Applied Microbiology,1998,44:347-353.
    [234]Govender P, Domingo JL, Bester MC, et al. Controlled expression of the dominant flocculation genes FLO1, FLO5, and FLO11 in Saccharomyces cerevisiae [J]. Applied and Environmental Microbiology, 2008,74:6041-6052.
    [235]Van Mulders SE, Christianen E, Saerens SMG, et al. Phenotypic diversity of Flo protein family-mediated adhesion in Saccharomyces cerevisiae [J]. Ferns Yeast Research,2009,9:178-190.
    [236]Harrison P, Kumar A, Lan N, et al. A small reservoir of disabled ORFs in the yeast genome and its implications for the dynamics of proteome evolution [J]. Journal of Molecular Biology,2002,316: 409-419.
    [237]Verstrepen KJ, Jansen A, Lewitter F, et al. Intragenic tandem repeats generate functional variability [J]. Nature Genetics,2005,37:986-990.
    [238]Fichtner L, Schulze F, Braus GH. Differential Flo8p-dependent regulation of FLO 1 and FLO11 for cell-cell and cell-substrate adherence of S. cerevisiae S288c [J]. Molecular Microbiology,2007,66: 1276-1289.
    [239]Dietvorst J, Brandt A. Flocculation in Saccharomyces cerevisiae is repressed by the COMPASS methylation complex during high-gravity fermentation [J]. Yeast,2008,25:891-901.
    [240]Halme A, Bumgarner S, Styles C, et al. Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast [J]. Cell,2004,116:405-415.
    [241]Teunissen AW, van den Berg JA, Steensma HY. Transcriptional regulation of flocculation genes in Saccharomyces cerevisiae [J]. Yeast,1995,11:435-446.
    [242]Gancedo JM. Control of pseudohyphae formation in Saccharomyces cerevisiae [J]. FEMS Microbiology Reviews,2001,25:107-123.
    [243]Ge XM, Zhang L, Bai FW. Impacts of temperature, pH, divalent cations, sugars and ethanol on the flocculating of SPSC01 [J]. Enzyme and Microbial Technology,2006,39:783-787.
    [244]Jin YL, Speers RA. Effect of enviromnental conditions on the flocculation of Saccharomyces cerevisiae [J]. Journal of the American Society of Brewing Chemists,2000,58:108-116.
    [245]Amory DE, Rouxhet PG, Dufour JP. Flocculation of brewery yeast and their surface properties: chemical composition, electrostatic charge and hydrophobicity. Journal of the Institute of Brewing, 1988,84:79-84.
    [246]Claro FB, Rijsbrack K, Soares EV. Flocculation onset in Saccharomyces cerevisiae:Effect of ethanol, heat and osmotic stress [J]. Journal of Applied Microbiology,2007,102:693-700.
    [247]Straver MH, vd Aar PC, Smit G, et al. Determinants of flocculence of brewer's yeast during fermentation in wort [J]. Yeast,1993,9:527-532.
    [248]Lawrence SJ, Gibson BR, Smart KA. Expression of the cell wall mannoprotein genes CWP and DAN During industrial-scale lager fermentations [J]. Journal of the American Society of Brewing Chemists, 2009,67:58-62.
    [249]Barker MG, Smart KA. Morphological changes associated with the cellular aging of a brewing yeast strain [J]. Journal of the American Society of Brewing Chemists,1996,54:121-126.
    [250]Powell CD, Quain DE, Smart KA. The impact of brewing yeast cell age on fermentation performance, attenuation and flocculation [J]. FEMS Yeast Research,2003,3:149-157.
    [251]van Oss CJ. Hydrophobicity of biosurfaces—Origin, quantitative determination and interaction energies [J]. Colloids and Surfaces B:Biointerfaces,1995,5:91-110.
    [252]Bos R, van der Mei HC, Busscher HJ. Physico-chemistry of initial microbial adhesive interactions-its mechanisms and methods for study [J]. Ferns Microbiology Reviews,1999,23:179-230.
    [253]Wilcocks KL, Smart KA. The importance of surface charge and hydrophobicity for the flocculation of chain-forming brewing yeast strains and resistance of these parameters to acid washing [J]. FEMS Microbiology Letters,1995,134:293-297.
    [254]Jin YL, Ritcey LL, Speers RA, et al. Effect of cell surface hydrophobicity, charge, and zymolectin density on the flocculation of Saccharomyces cerevisiae [J]. Journal of the American Society of Brewing Chemists,2001,59:1-9.
    [255]Speers RA, Wan YQ, Jin YL, et al. Effects of fermentation parameters and cell wall properties on yeast flocculation [J]. Journal of the Institute of Brewing,2006,112:246-254.
    [256]Kuriyama H, Umeda I, Kobayashi H. Role of cations in the flocculation of Saccharomyces cerevisiae and discrimination of the corresponding proteins [J]. Canadian Journal of Microbiology,1991,37: 397-403.
    [257]Gouveia C, Soares EV. Pb2+ inhibits competitively flocculation of Saccharomyces cerevisiae [J]. Journal of the Institute of Brewing,2004,110:141-145.
    [258]Nishihara H, Fujita T, Yokoi N, et al. Studies on flocculation of Saccharomyces diastaticus, especially irreversible deflocculation by Fe(Ⅲ) [J]. Journal of the Institute of Brewing,1994,100: 427-430.
    [259]Zhao XQ, Xue C, Ge XM, et al. Impact of zinc supplementation on the improvement of ethanol tolerance and yield of self-flocculating yeast in continuous ethanol fermentation [J]. Journal of Biotechnol,2009,139:55-60.
    [260]Hinrichs J, Stahl U, Esser K. Flocculation in Saccharomyces cerevisiae and mitochondrial DNA structure [J]. Applied Microbiology and Biotechnology,1988,29:48-54.
    [261]Evans IH, Diala ES, Earl A, et al. Mitochondrial control of cell surface characteristics in Saccharomyces cerevisiae [J]. Biochim Biophys Acta,1980,602:201-206.
    [262]lung AR, Coulon J, Kiss F, et al. Mitochondrial function in cell wall glycoprotein synthesis in Saccharomyces cerevisiae NCYC 625 (wild type) and [rho0] mutants [J]. Applied and Environmental Microbiology,1999,65:5398-5402.
    [263]Stratford M. Yeast flocculation:A new perspective [J]. Advances in Microbial Physiology,1992,33: 2-71.
    [264]Strauss CJ, van Wyk PWJ, Lodolo EJ, et al. Oxylipin associated co-flocculation in yeasts [J]. Journal of the Institute of Brewing,2006,112:66-71.
    [265]Smart KA, Whisker S. Effect of serial repitching on the fermentation properties and condition of brewing yeast [J]. Journal of the American Society of Brewing Chemists,1996,54:41-44.
    [266]Powell CD, Diacetis AN. Long term serial repitching and the genetic and phenotypic stability of brewer's yeast [J]. Journal of the Institute of Brewing,2007,113:67-74.
    [267]Bendiak D, vanderAar P, Barbero F, et al. Yeast flocculation by absorbance method [J]. Journal of the American Society of Brewing Chemists,1996,54:245-248.
    [268]Van Hamersveld EH, Van Der Lans RGJM, Luyben KCAM. Quantification of brewers'yeast flocculation in a stirred tank:Effect of physical parameters on flocculation [J]. Biotechnology and Bioengineering,1997,56:190-200.
    [269]Suhr H, Wehnert G, Schneider K, et al. In situ microscopy for on-line characterization of cell-populations in bioreactors, including cell-concentration measurements by depth from focus [J]. Biotechnology and Bioengineering,1995,47:106-116.
    [270]Ge XM, Zhao XQ, Bai FW. Online monitoring and characterization of flocculating yeast cell floes during continuous ethanol fermentation [J]. Biotechnology and Bioengineering,2005,90:523-531.
    [271]Shammas NK, Kumar IJ, Chang Shoou-Yuh, et al. Sedimentation [M]. Handbook of Environmental Engineering, Volume 3:Physicochemical Treatment Processes, Chapter 11. Totowa, NJ:The Humana Press Inc.,2005
    [272]Fengwu B, Yan J, Pusun F, et al. Continuous ethanol fermentation using the fusion strain SPSC floes: floc size distribution, cell growth, and ethanol fermentation kinetics [J]. Chinese Journal of Biotechnology,1999,15:245-252.
    [273]Brohan B, McLoughlin AJ. Characterization of the physical properties of yeast flocs [J]. Applied Microbiology and Biotechnology,1984,20:16-22.
    [274]Speers RA, Tung MA, Durance TD, et al. Colloidal aspects of yeast flocculation:A review [J]. Journal of the Institute of Brewing,1992,98:525-531.
    [275]Vicente AA, Dluh M, Ferreira EC, et al. Mass transfer properties of glucose and O2 in Saccharomyces cerevisiae flocs [J]. Biochemical Engineering Journal,1998,2:35-43.
    [276]Netto CB, Destruhaut A, Goma G. Ethanol fermentation by flocculating yeast:Performance and stability dependence on a critical fermentation rate [J]. Biotechnology Letters,1985,7:355-360.
    [277]Wang ZX, Zhuge J, Fang HY, et al. Glycerol production by microbial fermentation:A review [J]. Biotechnology Advances,2001,19:201-223.
    [278]Xu TJ, Zhao XQ, Bai FW. Continuous ethanol production using self-flocculating yeast in a cascade of fermentors [J]. Enzyme and Microbial Technology,2005,37:634-640.
    [279]Wang FQ, Gao CJ, Yang CY, et al. Optimization of an ethanol production medium in very high gravity fermentation [J]. Biotechnology Letters,2007,29:233-236.
    [280]Yu L, Ge XM, Bai FW. Rheology of self-flocculating yeast suspension of SPSC01. Chinese Journal of Bioprocess Engineering,2007,5:37-43.
    [281]Jaroslav K, Maia J, Vicente AA, et al. Relationships between hydrodynamics and rheology of flocculating yeast suspensions in a high-cell-density airlift bioreactor [J]. Biotechnology and Bioengineering,2005,89:393-399.
    [282]Brohan B, McLoughlin AJ. The behaviour of yeast flocs in hindered settling and fluidized bed regimes [J]. Applied Microbiology and Biotechnology,1984,20:10-15.
    [283]van Hamersveld EH, van Loosdrecht MCM, Luyben KCAM. How important is the physicochemical interaction in the flocculation of yeast cells? Colloids and Surfaces B:Biointerfaces,1994,2:165-171.
    [284]Hermansson M. The DLVO theory in microbial adhesion [J]. Colloids and Surfaces B:Biointerfaces, 1999,14:105-119.
    [285]Rosenberg, M. Bacterial adherence to hydrocarbons:a useful technique for studying cell surface hydrophobicity [J]. FEMS Microbiology Letters,1984,22:289-295.
    [286]Kovacs M, Stuparevic I, Mrsa V, et al. Characterization of Ccw7p cell wall proteins and the encoding genes of Saccharomyces cerevisiae wine yeast strains:relevance for flor formation [J]. FEMS Yeast Reasearch,2008,8:1115-1126.
    [287]C. Damas-Buenrostro. Detection of FLO genes in lager and wild yeast strains [J]. Journal of the American Society of Brewing Chemists,2008,66:184-187
    [288]李永红.圆红冬孢酵母菌油脂发酵研究[D].大连:大连理工大学环境与生命学院,2007.
    [289]王江龙,孜力汗,白凤武.絮凝酵母SPSC01酒精连续发酵并联产酵母工艺过程[J].化工学报,2004.55:1024-1027.
    [290]Madhani, H.D.; Fink, G.R. The control of filamentous differentiation and virulence in fungi [J]. Trends in Cell Biology,1998,8:348-353.
    [291]Lorenz MC, Cutler NS, Heitman J. Characterization of alcohol-induced filamentous growth in Saccharomyces cerevisiae [J]. Molecular Biology of the Cell,2000,11:183-199.
    [292]Gimeno CJ, Ljungdahl PO, Styles CA, et al. Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth:Regulation by starvation and RAS [J]. Cell,1992,68:1077-1090.
    [293]Gancedo, JM. Control of pseudohyphae formation in Saccharomyces cerevisiae [J]. FEMS Microbiology Reviews,2001,25:107-123.
    [294]严正.废糟液全循环条件下自絮凝颗粒酵母酒精发酵系统运行稳定性考察及过程物质积累的研究[D].大连:大连理工大学环境与生命学院,2005.
    [295]Yeong FM. Severing all ties between mother and daughter:cell separation in budding yeast [J]. Molecular Microbiology,2005,55:1325-1331.
    [296]Kuranda MJ, Robbins, PW. Chitinase is required for cell separation during growth of Saccharomyces cerevisiae [J]. The Journal of Biological Chemistry,1991,266:19758-19767.
    [297]Rando OJ, Verstrepen KJ. Timescales of genetic and epigenetic inheritance [J]. Cell,2007,128: 655-668.
    [298]Gasch AP, Spellman PT, Kao CM, et al. Genomic expression programs in the response of yeast cells to environmental changes [J]. Molecular Biology of the Cell,2000,11:4241-4257.
    [299]张琳.氮源和磷源对SPSC01时程解絮特征及酒精发酵性能影响的研究[D].大连:大连理工大学环境与生命学院,2006.
    [300]Xue C, Zhao XQ, Ge XM, et al. Effect of zinc ion on ethanol eolerance and floc size of self-flocculating yeast [J]. Journal of Chemical Industry and Engineering,2008,10:2582-2588.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700