用户名: 密码: 验证码:
锌空气电池之气体扩散电极性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锌空气电池凭借其自身能量密度高、输出功率大、价格低廉、安全无污染等特点成为动力电源的首选。气体扩散电极是锌空气电池的能量转换器,其性能的优劣制约着锌空气电池的发展。气体扩散电极的性能包括将化学能转化为电能的能力(简称放电性能)和电极的循环使用寿命。本文主要致力于提高气体扩散电极输出功率和延长电极循环使用寿命方面的研究,并借助数学模型模拟气体扩散电极的工作机理。
     木文的主要工作包括:第一、提高气体扩散电极放电性能,包括测试气体扩散电极催化层位置特征,催化层组分材料功能,以及优化催化层材料之间的配比;从制约气体扩散电极输出功率的因素出发,通过增加气体扩散电极比表面积和催化剂的催化能力提高电极输出功率。第二,探索了引起扩散电极性能衰退的原因,确定了导致电极性能衰退的主要因素,以及该因素导致电极性能衰退的机理。第三,结合气体扩散电极中氧气在二氧化锰催化作用下的还原机理以及物质传输过程,建立气体扩散电极数学模型。取得的主要进展和成果如下:
     1)测试了催化层位置对气体扩散电极放电性能的影响,以及材料活性炭、乙炔黑、石墨、MnO2、PTFE各自在催化层添加量发生变化时对气体扩散电极放电性能的影响。根据使用材料的性质确定了气体扩散电极催化层材料配比。
     2)通过增加电极比表面积和降低电极活化极化过电位来提高气体扩散电极输出功率。具体包括在制作过程中对粘结剂PTFE经过乙醇预处理;将气体扩散电极经过不同的温度热处理;在气体扩散电极制作过程中添加造孔剂;采用新方法制作气体扩散电极双催化剂共同催化体系。
     3)由气体扩散电极在使用过程中呈现的现象出发,设计一系列实验,探索引起气体扩散电极性能衰退的原因。结果显示在气体扩散电极工作过程中电解液迁移是造成电极性能衰退的主要原因。根据电解液迁移的特征,探索了导致电解液迁移的动力,以及电解液迁移造成电极性能衰退的机理。
     4)考虑到气体扩散电极多孔结构的复杂性,对其进行合理简化。结合电极中二氧化锰催化剂作用下的氧气还原机理以及物质传递过程,建立数学模型。通过分析数值结果讨论了氧气作为反应物的溶解边界条件对各物理量演化的影响,以及不同工作环境及参数的变化对于电极性能的作用。为了解气体扩散电极的工作机理及优化设计提供了参考。
With the advantages of high energy density, large power, low costs and environment harmlessness etc, zinc air batteries distinguish themselves from others batteries to be the primary choice of dynamic power. Gas diffusion electrode (GDE) is the energy convertor of zinc air battery, so the performance of it has a great impact on the development of zinc air battery. The nature of GDE consists of the capability to convert chemical energy to electric energy and the cycle life of the electrode. The targets of this dissertation include developing methods to enlarge the output power and to prolong the cycle life of GDE. Also the working mechanisms of GDE was studied by a mathematical model.
     The main content of this dissertation comprise:first, methods to improve the discharge performance of GDE, including testing the effect of different catalyst layer position, functions of component materials of catalyst layer, optimization of the mixture ratio of the component, increasing the specific area of GDE and improving the catalysis ability of catalysts. Second, research into the decline of GDE's performance was conducted. The main factor responsible for it and the mechanism of the decline were confirmed. Third, a mathematical model considering the mechanism of oxygen reduction reaction (ORR) on manganese oxide-catalyzed GDE and mass transport process was developed. The main progresses are as follows:
     1) Measurements of the position of catalyst layer on the GDE discharge performance was made. And also that of the addition of absorbent charcoal, acetylene black, graphite, MnO2, polytetrafluoroethylene (PTFE) on the performance respectively. The mixture ratio that consists the catalyst layer was confirmed.
     2) The output power of GDE was enlarged by increasing the specific area of electrodes and depressing the active overpotential. The details comprised pretreatment of PTFE with ethanol, treatment of GDEs under different temperature, addition of pore-former and a new method to fabricate a dual-catalyst GDE.
     3) A series experiments were conducted to explore the factors that cause the decline of GDE performance. The results indicated that the migration of electrolyte was the primary cause. Further investigations were carried out on the motivation of migration and the mechanism of decline cause by migration.
     4) Simplification was made to describe the porous structure of GDE mathematically. A model considering the ORR mechanism and the mass transport process of species was built to simulate the operation of GDE. The numerical results showed the impact of oxygen dissolved boundary condition on the evolution of functions such as concentrations and transfer current and the effect of environmental conditions and the variation of parameters on the electrode performance. These results can be used as references to understand the chemical and physical processes occurred inside the electrode and the optimization of design.
引文
[1]Mohamad A. A. Zn/gelled 6M KOH/O2 zinc-air battery[J]. Journal of Power Sources Special issue including selected papers from the 3rd International Conference on Materials for Advanced Technologies (ICMAT 2005, Singapore, Malaysia) and the Summer School on Synthesis of Nanostructured Materials for Polymer Batteries (August 2005, Poland) together with regular papers,2006,159(1):752-757.
    [2]Shivkumar R., Paruthimal Kalaignan G., Vasudevan T. Effect of additives on zinc electrodes in alkaline battery systems[J]. Journal of Power Sources,1995,55(1):53-62.
    [3]Cho Yung-Da, Fey George Ting-Kuo. Surface treatment of zinc anodes to improve discharge capacity and suppress hydrogen gas evolution[J]. Journal of Power Sources Selected papers from the:INTERNATIONAL BATTERY MATERIALS ASSOCATION 2007 CONFERENCE. In Memoriam of Juergen Besenhard,2008,184(2):610-616.
    [4]Chakkaravarthy C., Waheed A. K. Abdul, Udupa H. V. K. Zinc--air alkaline batteries--A review[J]. Journal of Power Sources,1981,6(3):203-228.
    [5]Sapkota Prabal, Kim Honggon. Zinc-air fuel cell, a potential candidate for alternative energy[J]. Journal of Industrial and Engineering Chemistry,2009,15(4):445-450.
    [6]Zhang X. Gregory. Fibrous zinc anodes for high power batteries[J]. Journal of Power Sources Special issue including selected papers presented at the Second International Conference on Polymer Batteries and Fuel Cells together with regular papers, 2006,163(1):591-597.
    [7]Masri M. N., Mohamad A. A. Effect of adding potassium hydroxide to an agar binder for use as the anode in Zn-air batteries[J]. Corrosion Science,2009,51(12):3025-3029.
    [8]Lee Chang Woo, Sathiyanarayanan K., Eom Seung Wook, Novel alloys to improve the electrochemical behavior of zinc anodes for zinc/air battery[J]. Journal of Power Sources Special issue including selected papers presented at the International Workshop on Molten Carbonate Fuel Cells and Related Science and Technology 2005 together with regular papers, 2006,160(2):1436-1441.
    [9]朱梅,徐献芝,苏润,等.碱性锌空气电池的新发展[J].2004:3.
    [10]褚有群,马淳安,等.碱性锌空气电池的研究进展[J].2002:4.
    [11]李芬,徐献芝,朱梅,等.锌空气电池的发展现状及趋势[J].2007:4.
    [12]赖延清.碱性锌-空气电池的研究发展现状[J].电源技术,2003(02).
    [13]叶红齐,李艳红,赖延清.碱性锌-空气电池的研究发展现状[J].电源技术,2003,27(002):118-120.
    [14]李升宪,周贵茂,艾新平,等.圆柱型锌空气电池研究[J].电化学,2000,6(003):341-344.
    [15]于东生,周震涛,刘煦,等.圆柱型一次锌空气电池的研究[J].
    [16]李会娟.小型锌空气电池的研究[D].哈尔滨工程大学,2004.
    [17]Kempton Willett, Letendre Steven E. Electric vehicles as a new power source for electric utilities[J]. Transportation Research Part D:Transport and Environment,1997,2(3):157-175.
    [18]Goldstein Jonathan, Brown Ian, Koretz Binyamin. New developments in the Electric Fuel Ltd. zinc/air system[J]. Journal of Power Sources,1999,80(1-2):171-179.
    [19]99/01279 High output button type air zinc batteries:Ishihara, N. Jpn. Kokai Tokkyo Koho JP 10 172,579 [98 172,579] (Cl. H01M4/96),26 Jun 1998, Appl.96/336,622,17 Dec 1996, 3 pp. (In Japanese)[J]. Fuel and Energy Abstracts,1999,40(2):129.
    [20]Richter Andrea, Richter Silke, Recknagel Sebastian. Investigation on the heavy-metal content of zinc-air button cells[J]. Waste Management,2008,28(8):1493-1497.
    [21]周震涛,周晓斌.聚四氟乙烯在锌—空气电池中的应用[J].工程塑料应用,2001,29(001):23-25.
    [22]满开美,王刚,张富兴.车用燃料电池发展的研究[J].城市车辆,2008(9):38-40.
    [23]张文保.电动自行车用电池和燃料电池现状[J].2004:5.
    [24]朱梅,徐献芝,宋辉,等.锌空气电池在电动自行车上的应用前景[J].2007:3.
    [25]Sapkota Prabal, Kim Honggon. Zinc-air fuel cell, a potential candidate for alternative energy[J]. Journal of Industrial and Engineering Chemistry,2009,15(4):445-450.
    [26]查全性.电极过程动力学导论[M].科学出版社,1976.
    [27]Bidault F., Brett D. J. L., Middleton P. H., A new application for nickel foam in alkaline fuel cells[J]. International Journal of Hydrogen Energy4th Dubrovnik Conference,4th Dubrovnik Conference,2009,34(16):6799-6808.
    [28]Bidault F., Brett D. J. L., Middleton P. H., An improved cathode for alkaline fuel cells[J]. International Journal of Hydrogen Energy,2010,35(4):1783-1788.
    [29]Neburchilov Vladimir, Wang Haijiang, Martin Jonathan J., A review on air cathodes for zinc-air fuel cells[J]. Journal of Power Sources,2010,195(5):1271-1291.
    [30]Li Neng, Xu Xiang, Luo Dan,. Electrocatalytic activities of REMn2O5 (RE= Dy, Ho, Er, Tm, Yb, and Lu) and ErO.76Zr 0.11Ca0.13Mn2O5 for oxygen reduction in alkaline solution[J]. Journal of Power Sources,2004,126(1-2):229-235.
    [31]ZHOU De-bi, L Xin-kun, LIU Dan-ping. Electro-catalytic effect of manganese oxide on oxygen reduction at teflonbonded carbon electrode[J]. Transactions of Nonferrous Metals Society of China,2006,16(1):217-222.
    [32]Chang Yun-Min, Wu Pu-Wei, Wu Cheng-Yeou, Synthesis of La0.6Ca0.4Co0.8Ir0.2O2 perovskite for bi-functional catalysis in an alkaline electrolyte[J]. Journal of Power Sources, 2009,189(2):1003-1007.
    [33]Lima F. H. B., Calegaro M. L., Ticianelli E. A. Electrocatalytic activity of manganese oxides prepared by thermal decomposition for oxygen reduction[J]. Electrochimica Acta, 2007,52(11):3732-3738.
    [34]Yang J., Xu J. J. Nanoporous amorphous manganese oxide as electrocatalyst for oxygen reduction in alkaline solutions[J]. Electrochemistry Communications,2003,5(4):306-311.
    [35]Kanungo S. B., Parida K. M., Sant B. R. Studies on MnO2--Ⅲ. The kinetics and the mechanism for the catalytic decomposition of H2O2 over different crystalline modifications of MnO2[J]. Electrochimica Acta,1981,26(8):1157-1167.
    [36]Maja Mario, Orecchia Claudio, Strano Morela, Effect of structure of the electrical performance of gas diffusion electrodes for metal air batteries[J]. Electrochimica Acta, 2000,46(2-3):423-432.
    [37]Wang T., Kaempgen M., Nopphawan P., Silver nanoparticle-decorated carbon nanotubes as bifunctional gas-diffusion electrodes for zinc-air batteries[J]. Journal of Power Sources, 2010,195(13):4350-4355.
    [38]Neburchilov V., Wang H., Martin J. J., A review on air cathodes for zinc-air fuel cells[J]. Journal of Power Sources,2010,195(5):1271-1291.
    [39]Wroblowa H. S., Yen-Chi-Pan, Razumney G. Electroreduction of oxygen a new mechanistic criterion[J]. Journal of Electroanalytical Chemistry,1976,69(2):195-201.
    [40]Cheng Hsu-Hsiang, Tan Chung-Sung. Reduction of CO2 concentration in a zinc/air battery by absorption in a rotating packed bed[J]. Journal of Power SourcesSpecial issue including selected papers from the International Power Sources Symposium 2005 together with regular papers,2006,162(2):1431-1436.
    [41]Tomantschger K., Findlay R., Hanson M., Degradation modes of alkaline fuel cells and their components[J]. Journal of Power Sources,1992,39(1):21-41.
    [42]Zhang Y., Zhang H., Zhu X., Fabrication and characterization of a PTFE-reinforced integral composite membrane for self-humidifying PEMFC[J]. Journal of Power Sources, 2007,165(2):786-792.
    [43]Wagner N., Schulze M., Gulzow E. Long term investigations of silver cathodes for alkaline fuel cells[J]. Journal of Power Sources,2004,127(1-2):264-272.
    [44]Wagner N., Schulze M., Gulzow E. Long term investigations of silver cathodes for alkaline fuel cells[J]. Journal of Power Sources,2004,127(1-2):264-272.
    [45]Ioselevich A., Kornyshev A. A., Lehnert W. Statistical geometry of reaction space in porous cermet anodes based on ion-conducting electrolytes patterns of degradation[J]. Solid State Ionics,1999,124(3):221-237.
    [46]Roche I., Chainet E., Chatenet M., Carbon-supported manganese oxide nanoparticles as electrocatalysts for the Oxygen Reduction Reaction (ORR) in alkaline medium:Physical characterizations and ORR mechanism[J]. Journal of Physical Chemistry C, 2007,111(3):1434-1443.
    [47]Lee S., Choi B., Hamasuna N., Characterization of MnO2 positive electrode for Fuel Cell/Battery (FCB)[J]. Journal of Power Sources,2008,181(1):177-181.
    [48]Mao L., Sotomura T., Nakatsu K., Electrochemical characterization of catalytic activities of manganese oxides to oxygen reduction in alkaline aqueous solution[J]. Journal of the Electrochemical Society,2002,149(4).
    [49]Qu D. Investigation of oxygen reduction on activated carbon electrodes in alkaline solution[J]. Carbon,2007,45(6):1296-1301.
    [50]Calegaro M. L., Lima F. H. B., Ticianelli E. A. Oxygen reduction reaction on nanosized manganese oxide particles dispersed on carbon in alkaline solutions[J]. Journal of Power Sources,2006,158(1):735-739.
    [51]Ominde N., Bartlett N., Yang X. Q., The effect of oxygen reduction on activated carbon electrodes loaded with manganese dioxide catalyst[J]. Journal of Power Sources, 2008,185(2):747-753.
    [52]Cao Y. L., Yang H. X., Ai X. P., The mechanism of oxygen reduction on MnO2-catalyzed air cathode in alkaline solution[J]. Journal of Electroanalytical Chemistry, 2003,557:127-134.
    [53]Kolyagin G. A., Kornienko V. L. Double layer capacitance of gas-diffusion electrodes made of acetylene black and expanded natural graphites and evaluation of the surface area wetted by the electrolyte[J]. Russian Journal of Applied Chemistry,2007,80(8):1341-1345.
    [54]Chan D. S., Wan C. C. Effect of structure on porous gas-diffusion electrodes for phosphoric acid fuel cells[J]. Journal of Power Sources,1994,50(3):261-281.
    [55]Kolyagin G. A., Kornienko V. L., Kuznetsov B. N.,. Electrical Conductivity of Hydrophobized Electrodes Fabricated from Thermally Expanded Graphite and Their Activity in Electroreduction of Oxygen[J]. Russian Journal of Applied Chemistry, 2005,78(10):1625-1630.
    [56]Motoo Satoshi, Watanabe Masahiro, Furuya Nagakazu. Gas diffusion electrode of high performance[J]. Journal of Electroanalytical Chemistry,1984,160(1-2):351-357.
    [57]Fang Zhen-qian, Hu Ming, Liu Wen-xi, Preparation and electrochemical property of three-phase gas-diffusion oxygen electrodes for metal air battery[J]. Electrochimica Acta, 2006,51(26):5654-5659.
    [58]Lysenko V. A. Current trends in the design of gas-diffusion layers for fuel cells[J]. Fibre Chemistry,2008,40(3):226-233.
    [59]Perry M. L., Newman J., Cairns E. J. Mass transport in gas-diffusion electrodes:A diagnostic tool for fuel-cell cathodes[J]. Journal of the Electrochemical Society, 1998,145(1):5-15.
    [60]Weber A. Z., Newman J. Modeling transport in polymer-electrolyte fuel cells[J]. Chemical Reviews,2004,104(10):4679-4726.
    [61]Newman John, Tiedemann William. POROUS-ELECTRODE THEORY WITH BATTERY APPLICATIONS.[J]. AIChE Journal,1975,21(1):25-41.
    [62]Maja M., Orecchia C., Strano M., Effect of structure of the electrical performance of gas diffusion electrodes for metal air batteries[J]. Electrochimica Acta,2000,46(2-3):423-432.
    [63]Ominde Narah, Bartlett Nick, Yang Xiao-Qing, Investigation of the oxygen reduction reaction on the carbon electrodes loaded with MnO2 catalyst[J]. Journal of Power Sources, 2010,195(13):3984-3989.
    [64]Kolyagin G. A., Kornienko V. L. Estimate of polarization components in oxygen reduction process on expanded natural graphites and acetylene carbon black in acid and alkaline electrolytes[J]. Russian Journal of Electrochemistry,2009,45(8):929-933.
    [65]Appleby A. J., Savy M. Kinetic of oxygen reduction reactions involving catalytic decomposition of hydrogen peroxide Application to porous and rotating ring-disk electrodes[J]. Journal of Electroanalytical Chemistry,1978,92(1):15-30.
    [66]Roche I., Chainet E., Chatenet M., Carbon-Supported Manganese Oxide Nanoparticles as Electrocatalysts for the Oxygen Reduction Reaction (ORR) in Alkaline Medium:Physical Characterizations and ORR Mechanism[J]. The Journal of Physical Chemistry C, 2007,111(3):1434-1443.
    [67]Lundblad Anders, Schwartz Stephan, Bergman Bill. Effect of sintering procedures in development of LiCoO2-cathodes for the molten carbonate fuel cell[J]. Journal of Power Sources,2000,90(2):224-230.
    [68]Choi Byung-Woo, Chung Su-Jin, Shin Dong-Ryul. Microstructure of PTFE and acid absorption behavior in PTFE-bonded carbon electrodes[J]. International Journal of Hydrogen Energy,1996,21(7):541-546.
    [69]Ominde Narah, Bartlett Nick, Yang Xiao-Qing, The effect of oxygen reduction on activated carbon electrodes loaded with manganese dioxide catalyst[J]. Journal of Power Sources, 2008,185(2):747-753.
    [70]Lima F. H. B., Calegaro M. L., Ticianelli E. A. Investigations of the catalytic properties of manganese oxides for the oxygen reduction reaction in alkaline media[J]. Journal of Electroanalytical Chemistry,2006,590(2):152-160.
    [71]Giordano N., Passalacqua E., Alderucci V., Morphological characteristics of PTFE bonded gas diffusion electrodes[J]. Electrochimica Acta,1991,36(5-6):1049-1055.
    [72]Tomantschger Klaus, Kordesch Karl V. Structural analysis of alkaline fuel cell electrodes and electrode materials[J]. Journal of Power Sources,1989,25(3):195-214.
    [73]Gharibi Hussien, Mirzaie Rasol Abdullah. Fabrication of gas-diffusion electrodes at various pressures and investigation of synergetic effects of mixed electrocatalysts on oxygen reduction reaction[J]. Journal of Power Sources,2003,115(2):194-202.
    [74]王洪红,潘牧,唐浩林.PTFE和Nafion在PEMFC催化层中的应用[J].电池,2007,37(2):158-160.
    [75]Moreira J., Ocampo A. L, Sebastian P. J., Influence of the hydrophobic material content in the gas diffusion electrodes on the performance of a PEM fuel cell[J]. International Journal of Hydrogen Energy,2003,28(6):625-627.
    [76]Park S., Lee J. W., Popov B. N. Effect of PTFE content in microporous layer on water management in PEM fuel cells[J]. Journal of Power Sources,2008,177(2):457-463.
    [77]Giorgi L., Antolini E., Pozio A., Influence of the PTFE content in the diffusion layer of low-Pt loading electrodes for polymer electrolyte fuel cells[J]. Electrochimica Acta, 1998,43(24):3675-3680.
    [78]陈颖,王浩,王昌松,等.粗糙PTFE;涂层表面结构对乙醇/水混合溶液润湿性的影响[J].物理化学学报,2007,23(8):1168-1172.
    [79]陈晓东,下建祺.利用乙醇等离子体对PTFE进行表面改性[J].辐射研究与辐射工艺学报,1998,16(4):209-212.
    [80]Hampson N. A., McNeil A. J. S. ELECTROCHEMISTRY OF POROUS ELECTRODES: FLOW-THROUGH AND THREE-PHASE ELECTRODES.[J]. Electrochemistry, 1984,9:1-65.
    [81]Burchardt T. An evaluation of electrocatalytic activity and stability for air electrodes[J]. Journal of Power Sources,2004,135(1-2):192-197.
    [82]Khalidi A., Lafage B., Taxil P., Electrolyte and water transfer through the porous electrodes of an immobilised-alkali hydrogen-oxygen fuel cell[J]. International Journal of Hydrogen Energy,1996,21(1):25-31.
    [83]Park Gu-Gon, Sohn Young-Jun, Yang Tae-Hyun, Effect of PTFE contents in the gas diffusion media on the performance of PEMFC[J]. Journal of Power SourcesSelected papers presented at the Eighth Grove Fuel Cell Symposium,2004,131(1-2):182-187.
    [84]Yang Chun-Chen. Preparation and characterization of electrochemical properties of air cathode electrode[J]. International Journal of Hydrogen Energy,2004,29(2):135-143.
    [85]欧秀芹,梁广川,梁秀红.烧结对空气电极的寿命及微孔结构的影响[J].功能材料,2006,37(4):663-667,670页.
    [86]李芬,徐献芝,朱梅,等.催化层位置对气体扩散电极性能的影响[J].应用化学,2008,25(6).
    [87]庄俊峰,雷声,刘金成.锌-空气电池空气电极研究:化学与物理电源学术年会,广东惠州,2002[C].
    [88]梁翾翾,小平.聚四氟乙烯热裂解研究[J].2008:5.
    [89]Zhao Jishi, He Xiangming, Wang Li, Addition of NH4HCO3 as pore-former in membrane electrode assembly for PEMFC[J]. International Journal of Hydrogen EnergyFuel Cells, 2007,32(3):380-384.
    [90]Tang Haolin, Wang Shenlong, Pan Mu, Porosity-graded micro-porous layers for polymer electrolyte membrane fuel cells[J]. Journal of Power Sources,2007,166(1):41-46.
    [91]Alcaide F., Brillas E., Cabot P. L. Impedance study of the evolution of a HO2-generating hydrophobic gas diffusion electrode[J]. Electrochemistry Communications, 2002,4(10):838-843.
    [92]Kaisheva A., Iliev I. APPLICATION OF CARBON-BASED MATERIALS IN METAL-AIR BATTERIES:RESEARCH, DEVELOPMENT, COMMERSIALIZATION[J]. New Carbon Based Materials for Electrochemical Energy Storage Systems:Batteries, Supercapacitors and Fuel Cells,:117-136.
    [93]Xu R., Wang X., Wang D., Surface structure effects in nanocrystal MnO2 and Ag/MnO2 catalytic oxidation of CO[J]. Journal of Catalysis,2006,237(2):426-430.
    [94]Wang S., Xie J., Zhang T., Silver decorated γ-manganese dioxide nanorods for alkaline battery cathode[J]. Journal of Power Sources,2009,186(2):532-538.
    [95]Zhang G. Q., Zhang X. G., Wang Y. G. A new air electrode based on carbon nanotubes and Ag-MnO2 for metal air electrochemical cells[J]. Carbon,2004,42(15):3097-3102.
    [96]Gharibi H., Mirzaie R. A., Shams E.,. Preparation of platinum electrocatalysts using carbon supports for oxygen reduction at a gas-diffusion electrode[J]. Journal of Power Sources, 2005,139(1-2):61-66.
    [97]陈献宇.碱性锌锰电池的工作原理及研究进展[J].湖南有色金属,2001(z1):37-39.
    [98]Matsuki K., Kamada H. Oxygen reduction electrocatalysis on some manganese oxides[J]. Electrochimica Acta,1986,31(1):13-18.
    [99]王善拔.混凝土盐类结晶破坏的理论与实践[J].水泥,2008(5):3-6.
    [100]Gouerec P., Poletto L., Denizot J., The evolution of the performance of alkaline fuel cells with circulating electrolyte[J]. Journal of Power Sources,2004,129(2):193-204.
    [101]Sinha P. K., Mukherjee P. P., Wang C. Y. Impact of GDL structure and wettability on water management in polymer electrolyte fuel cells[J]. Journal of Materials Chemistry, 2007,17(30):3089-3103.
    [102]Li Hui, Tang Yanghua, Wang Zhenwei, A review of water flooding issues in the proton exchange membrane fuel cell[J]. Journal of Power Sources,2008,178(1):103-117.
    [103]Bockris JOM, Conway B. E., Yeager E., Comprehensive treatise of electrochemistry[M]. Plenum Press New York,1980.
    [104]Hampson N. A., McNeil AJS. Electrochemistry, Vol.9[Z]. The Royal Society of Chemistry, London,1984.
    [105]Roche Ivan, Scott Keith. Effect of pH and temperature on carbon-supported manganese oxide oxygen reduction electrocatalysts[J]. Journal of Electroanalytical Chemistry, 2010,638(2):280-286.
    [106]Striebel Kathryn A., McLarnon Frank R., Cairns Elton J. Oxygen reduction on Pt in aqueous K2CO3 and KOH[J]. Journal of the Electrochemical Society,1990,137(11):3351-3359.
    [107]Striebel Kathryn A., McLarnon Frank R., Cairns Elton J. Fuel cell cathode studies in aqueous K2CO3 and KOH[J]. Journal of the Electrochemical Society, 1990,137(11):3360-3367.
    [108]Bidault F., Brett D. J. L., Middleton P. H., Review of gas diffusion cathodes for alkaline fuel cells[J]. Journal of Power Sources,2009,187(1):39-48.
    [109]Paillat T., Touchard G. Electrical charges and liquids motion[J]. Journal of Electrostatics, 2009,67(2-3):326-334.
    [110]孔祥言.高等渗流力学[M].中国科学技术大学出版社,1999.
    [111]Quilliet C., Berge B. Electrowetting:A recent outbreak[J]. Current Opinion in Colloid and Interface Science,2001,6(1):34-39.
    [112]Berry S., Kedzierski J., Abedian B. Low voltage electrowetting using thin fluoroploymer films[J]. Journal of Colloid and Interface Science,2006,303(2):517-524.
    [113]Lin Y. Y., Lin C. W., Yang L. J., Micro-viscometer based on electrowetting on dielectric[J]. Electrochimica Acta,2007,52(8 SPEC. ISS.):2876-2883.
    [114]McLean G. F., Niet T., Prince-Richard S., An assessment of alkaline fuel cell technology[J]. International Journal of Hydrogen Energy,2002,27(5):507-526.
    [115]Mao Z., White R. E. Mathematical modeling of a primary zinc/air battery[J]. 1992,139:1105-1114.
    [116]Sunu W. G., Bennion D. N. TRANSIENT AND FAILURE ANALYSES OF THE POROUS ZINC ELECTRODE-1. THEORETICAL[J].1980,127:2007-2016.
    [117]Giner J., Hunter C. The Mechanism of Operation of the Teflon-Bonded Gas Diffusion Electrode:A Mathematical Model[J]. Journal of The Electrochemical Society, 1969,116:1124.
    [118]Viitanen M., Lampinen M. J. A mathematical model and optimization of the structure for porous air electrodes[J]. Journal of Power Sources,1990,32(3):207-231.
    [119]Maja M., Tosco P., Vanni M. A One-Dimensional Model of Gas-Diffusion Electrodes for O2 Reduction[J]. Journal of the Electrochemical Society,2001,148(12).
    [120]Tromans D. Modeling oxygen solubility in water and electrolyte solutions[J]. Industrial and Engineering Chemistry Research,2000,39(3):805-812.
    [121]Tromans Desmond. Oxygen solubility modeling in inorganic solutions:concentration, temperature and pressure effects[J].1998,50(3):279-296.
    [122]陶文铨.数值传热学[J].2001.
    [123]李庆扬,莫孜中,祁力群.非线性方程组的数值解法[M].科学出版社,1987.
    [124]Newman John S., Thomas-Alyea Karen E. Electrochemical Systems[M]. New Jersey: Wiley-Interscience,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700