用户名: 密码: 验证码:
滚动轴承的性能退化特征提取及评估方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的进步和工业需求的发展,各类先进生产设备一方面不断向复杂、高速、高效、轻型、微型或大型的方向发展,另一方面却又面临更加苛刻的工作和运行环境。一旦设备的关键部件发生故障,就可能破坏整台设备甚至影响整个生产过程,造成巨大经济损失,还可能导致灾难性的人员伤亡并产生严重的社会影响。因此,如何有效评估设备的运行状态,从而能够及时采取措施以防止灾难性事故的发生是当前迫切需要解决的问题。
     一般来说,机械设备在使用过程中总会经历由正常到退化直至失效的过程,而这期间通常都要经过一系列不同的性能退化状态。因此,如果能够在设备性能退化过程中监测到设备性能退化的程度,那么就可以有针对性地组织生产和制定合理的维修计划,做到既能防止设备异常失效的发生,又能实现生产效率的最大化。设备性能退化评估正是基于这一设想而提出的一种主动维护技术,它侧重于对设备全寿命周期中性能衰退程度的度量,而不过多的注重某一时间点的故障类别诊断,因此,与现有的故障诊断技术在理念上和方法上都有很大的不同。本文以滚动轴承为对象,深入开展了设备性能退化评估框架下的特征提取和评估方法的研究,包括以下几个方面的内容:
     (1)从理论分析与工程应用的角度出发,阐述了论文的选题背景和研究意义。分析了信号分析与处理技术、模式识别技术以及设备性能退化评估与预测等方面的国内外发展现状,总结了目前研究中需要解决的问题,确立了本论文的研究内容。
     (2)介绍了为本文研究提供数据支撑的滚动轴承加速疲劳寿命试验。一方面,从对初始性能退化的敏感性和对全退化过程的一致性角度,分析了常规指标对滚动轴承性能退化的反映能力,结果表明常规指标存在对初始退化不敏感的缺点。另一方面,也检验了试验数据的可信性。
     (3)针对滚动轴承所具有的二阶循环平稳特性,提出了谱相关密度切片能量谱分析方法,它把滚动轴承五个特征频率处的谱相关密度切片在循环频率-谱相关能量的二维空间进行表达。对滚动轴承退化过程进行的循环平稳分析表明,该方法既能直观反映性能的退化,又能揭示引起不断退化的主要损伤部位。
     (4)研究了针对设备性能退化评估的特征提取方法。滚动轴承正常状态下的振动信号近似为随机分布,而随着故障的不断加深,振动信号的随机成分的比例不断下降,而复杂度可以很好的反映出信号中随机成分比例的变化。因此,以复杂度度量方法为手段,研究了多种复杂度度量方法对滚动轴承性能退化程度的量化反映能力,针对近似熵和样本熵直接从原始时域空间进行度量而无法很好的反映各退化阶段的不足,提出了包络近似熵和包络样本熵,从而实现从包络域对信号进行复杂性的度量。通过理论模型仿真、不同损伤程度实验数据、全寿命周期的实验数据三个方面,对各个复杂度指标进行了对比、总结。结果表明,复杂度指标能够更敏感的捕捉到滚动轴承的初始退化,是对现有常规指标的有益补充。
     (5)针对现有性能退化评估方法存在的问题,在提出并分析了基于模糊C均值和基于支持向量数据描述的性能退化评估方法的基础上,提出了二者相结合的评估方法。它利用支持向量数据描述获得正常状态的聚类中心,结合失效状态数据,通过模糊C均值获得退化过程中各时刻隶属于正常状态的隶属度,以此作为退化指标。这种混合评估方法有机融合了两种算法的优点,解决了单独依赖其中一种算法的主要问题,具有对数据完备性要求低、受人为设定参数影响小、评估结果可解释性强的特点。通过对滚动轴承全寿命周期的研究,验证了该方法的有效性。
With the growth of technology and the development of industry requirement, equipments are being developed to the direction of hugeness, distribution, high speed, automation and complexity, and at the same time, their running condition is more and more rigorous. Once the key parts occur fault, the whole equipment may be destroyed even whole production efficiency will be affected and catastrophic accidents will occur. So, the key issue to be resolved is how to assess efficiently equipment’s performance and make proper maintenance strategy. Generally speaking, equipment always experiences the process of from normal state
     to failure, and this process is a continuous process. If the equipment performance degradation can be monitored, it would be possible to make proper maintenance strategy, so not only urgent broken can be prevented but also production efficiency can be maximized. Equipment performance degradation assessment is proposed based on the above idea. It emphasized particularly on the performance assessment through the whole lifetime, not on the fault classification at some time. So, it is different from the traditional fault diagnosis technology. Taking rolling element bearing as the research object, this paper has researched the feature extraction and assessment methods for the equipment performance degradation assessment. The main contents are as follows:
     (1) From the viewpoint of theoretical analysis and engineering application, this paper’s background and significance of the present study are elucidated. A state of the art review is thoroughly completed, which consists of signal analysis and processing, pattern recognition and performance degradation assessment technologies. The issuses to be resoloved are summerized and the research contents of this paper are established.
     (2) Rolling element bearing accelerated life test, which has provided data for this research, is presented. On the on hand, eight general indices’reflection capabilities of rolling element bearing performance degradation are analyzed from the sensitivity and consistency, the results show that these indices are not sensitive to initial degradation. On the other hand, the data’s credibility is proved.
     (3) Spectral correlation density slice power spectrum is proposed, which is based on the rolling element bearing’s cyclostationary characteristic. Bearings’degradation is researched using this method, and the results show that it not only can intuitionistic reflect performance degradation, but also can reveal the dominant defect position.
     (4) Feature extraction methods for equipment performance degradation assessment are researched. The vibration signal of normal bearing is close to random distribution, while with the defect’s deterioration, the proportion of random in vibration signal will decline. Complexity just right can reflect this change. In this paper, the complexity measurement is used as a means, multi-methods’capabilities of reflecting bearing’s degradation are researched, and envelope approximate entropy and envelope sample entropy are proposed to resolve the problem of approximate entropy and sample entropy, which measure signal’s complexity in the time-domain directly, can’t reflect bearings’degradation well. These indices are compared through theoretical model, different defect degree experiment and whole life time experiment. The results show that complexity can reflect initial degradation more sensitive than general indices.
     (5) The performance degradation assessment methods respectively based on fuzzy c-means and support vector data description are proposed aiming for the problem of existing methods, and through analyzing these two methods, a new method combining them is proposed. It utilizes support vector data description to obtain the clustering center of normal state, combining failure data, the subjection to normal state is computed using fuzzy c-means, which is used as the degradation index. This hybrid method combines the merits of the two algorithms and resolves the main problems of relying on one algorithm solely. It holds some specialties such as low requirement for data’s maturity, unsusceptible to parameters and results with excellent interpretability. The validity is shown by applying it to bearings’whole lifetime.
引文
[1]陈进,机械设备故障诊断技术及其应用. 1999,上海:上海交通大学出版社.
    [2]黄文虎,夏松波,刘瑞岩,设备故障诊断原理、技术及应用. 1996,北京:科学出版社.
    [3]徐敏,设备故障诊断手册. 1998,西安:西安交通大学出版社.
    [4] Lee, J. Intelligent Maintenance Systems (IMS) Technologies. www.imscenter.net.
    [5] Djurdjanovic, D., J. Lee,J. Ni, Watchdog Agent--an infotronics-based prognostics approach for product performance degradation assessment and prediction. Advanced Engineering Informatics, 2003, 17(3-4): 109-125.
    [6] Mitchell, J.S., The history of condition monitoring and condition based maintenance. Sound and Vibration, 1999, 33(11): 21-28.
    [7] RH, B. A review of rolling element bearing monitoring techniques in Condition monitoring of machinery seminar 1985. England London.
    [8] K.F.Martin, A review by discussion of condition monitoring and fault-diagnosis in machine-tools. International Journal of Machine Tools and Manufacture, 1994, 34: 527-551.
    [9] K.Fodor, I., A survey of dimension reduction techniques. 2002.
    [10] Neild, S.A., P.D. McFadden,M.S. Williams, A review of time-frequency methods for structural vibration analysis. Engineering Structures, 2003, 25(6): 713-728.
    [11] Jardine, A.K.S., D.M. Lin,D. Banjevic, A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical Systems and Signal Processing, 2006, 20(7): 1483-1510.
    [12] D.Dyer,R.M.Stewart, Detection of rolling element bearing damage by statistical vibration analysis. Journal of Mechanical Design, 1978, 100: 229-235.
    [13] McFadden, P.D.,J.D. Smith, Vibration monitoring of rolling element bearing by high frequency resonance technique-a review. Tribology International, 1984, 17(1): 3-10.
    [14] McFadden, P.D.,M.M. Toozhy, APPLICATION OF SYNCHRONOUS AVERAGING TO VIBRATION MONITORING OF ROLLING ELEMENT BEARINGS. Mechanical Systems and Signal Processing, 2000, 14(6): 891-906.
    [15] N.Tandon, A comparision of some vibration parameters for the condition monitoring of rolling element bearings. Journal of the International Measurement Confederation, 1994, 12(3): 285-289.
    [16] H.R.Martin,F.Honarvar, Application of statistical moments to bearing failure detection. Applied Acoustics, 1995, 44: 67-77.
    [17] Honarvar, F.,H.R. Martin, New statistical moments for diagnostics of rolling element bearings. Journal of Manufacturing Science and Engineering-Transactions of the ASME, 1997, 119(3): 425-432.
    [18]张贤达,保铮,非平稳信号分析与处理. 1998,北京:国防工业出版社.
    [19]杨福生,小波变换的工程分析与应用. 1999,北京:科学出版社.
    [20]何正嘉,訾艳阳,孟庆丰,赵纪元,机械设备非平稳信号的故障诊断原理及应用. 2001,北京:高等教育出版社.
    [21] Lin, J.,L.S. Qu, Feature extraction based on Morlet wavelet and its application for mechanical fault diagnosis. Journal of Sound and Vibration, 2000, 234(1): 135-148.
    [22] Altmann, J.,J. Mathew, Multiple band-pass autoregressive demodulation for rolling-element bearing fault diagnosis. Mechanical Systems and Signal Processing, 2001, 15(5): 963-977.
    [23] Tse, P.W., Y.H. Peng,R. Yam, Wavelet analysis and envelope detection for rolling element bearing fault diagnosis - Their effectiveness and flexibilities. Journal of Vibration and Acoustics-Transactions of the ASME, 2001, 123(3): 303-310.
    [24] Sun, Q.,Y. Tang, Singularity analysis using continuous wavelet transform for bearing fault diagnosis. Mechanical Systems and Signal Processing, 2002, 16(6): 1025-1041.
    [25]徐敏强,王日新,张嘉钟,基于梳状小波的旋转机械振动信号降噪方法的研究.振动工程学报, 2003, 15(1): 90-92.
    [26] Chow, T.W.S.,S. Hai, Induction machine fault diagnostic analysis with wavelet technique. IEEE Transactions on Industrial Electronics, 2004, 51(3): 558-565.
    [27] Tse, P.W., W.X. Yang,H.Y. Tam, Machine fault diagnosis through an effective exact wavelet analysis. Journal of Sound and Vibration, 2004, 277(4-5): 1005-1024.
    [28] Huang, N.E., Z. Shen,S.R. Long, A new view of nonlinear water waves: The Hilbert spectrum. Annual Review of Fluid Mechanics, 1999, 31: 417-457.
    [29]程军圣,于德介,杨宇,基于EMD的能量算子解调方法及其在机械故障诊断中的应用.机械工程学报, 2004, 40(8): 115-118.
    [30] Li, H., H.Q. Zheng,L.W. Tang, Hilbert-Huang transform and its application in gear faults diagnosis. Advances in Abrasive Technology VIII, 2005, 291-292: 655-660.
    [31] Cheng, J.S., D.J. Yu,Y. Yang, A fault diagnosis approach for roller bearings based on EMD method and AR model. Mechanical Systems and Signal Processing, 2006, 20(2): 350-362.
    [32] Peng, Z.K., P.W. Tse,F.L. Chu, A comparison study of improved Hilbert-Huang transform and wavelet transform: Application to fault diagnosis for rolling bearing. Mechanical Systems and Signal Processing, 2005, 19(5): 974-988.
    [33] Gardner, W.A., The spectral correlation theory of cyclostationary. Signal Processing Magazine, 1986, 11: 13-36.
    [34] Gander, W.A., Exploitation of spectral redundancy in cyclostationary signals. IEEE Signal Processing Magazine, 1991, 8(2): 14-36.
    [35] Goran, D.,Zivanovic, Degrees of cyclostationarity and their application to signal detection and estimation. Signal Processing, 1991, 22: 287-297.
    [36] Spooner, C.M.,W.A. Gardner, The cumulant theory of cyclostationary time-series, part 2: development and applications. IEEE Transaction on Signal Processing, 1994, 42(12): 3409-3429.
    [37] Frederick, T.J., Time-Frequency estimation for cyclostationary signals.Ph.D,Boca Raton, Florida: Florida Atlantic University,1997.
    [38] Adlard, J.F., Frequency Shift Filtering for Cyclostationary Signals. Ph.D, Department of Electronics University of York,2000.
    [39] Roberts, R.S.,W.A. Brown, Computationally efficient algorithms for cyclic spectral analysis. Signal Processing, 1991, 4: 38-49.
    [40] Yeung, G.K.,W.A. Gardner, Search efficient methods of detection of cyclostatioanry signals. IEEE transaction on Signal Processing, 1996, 5(44): 1214-1223.
    [41] McFadden, P.D.,J.D. Smith, Model for the vibration produced by a single point defect in a rolling element bearing. Journal of Sound and Vibration, 1984, 96(1): 69-82.
    [42] C.S.SUNNERSJO, ROLLING BEARING VIBRATIONS-THE EFFECTS OF GEOMETRICAL IMPERFECTIONS AND WEAR. Journal of Sound and Vibration, 1985, 98(4): 455-474.
    [43] McFadden, P.D.,J.D. Smith, The vibration produced by multiple point defects in a rolling element bearing. Journal of Sound and Vibration, 1985, 98(2): 263-273.
    [44] Su, Y., M.H. Lin,M.S. LEE, The effects of surface irregularities on roller bearing vibrations. Journal of Sound and vibration, 1999, 12(2): 225-242.
    [45] Ho, D.,R.B. Randall, Optimisation of bearing diagnostic techniques using simulated and actual bearing fault signals. Mechanical Systems and Signal Processing, 2000, 14(5): 763-788.
    [46] Antoni, J.,R.B. Randall, A stochastic model for simulation and diagnostics of rolling element bearings with localized faults. Journal of Vibration and Acoustics-Transactions of the ASME, 2003, 125(3): 282-289.
    [47] Kiral, Z.,H. Karagulle, Simulation and analysis of vibration signals generated by rolling element bearing with defects. Tribology International, 2003, 36(9): 667-678.
    [48] Antoni, J., F. Bonnardot, A. Raad,M. El Badaoui, Cyclostationary modelling of rotating machine vibration signals. Mechanical Systems and Signal Processing, 2004, 18(6): 1285-1314.
    [49] Bouilaut, L.,M. Sidahmed, Cyclostationary and bilinear approaches for gears vibrating signals. Key Engineering Materials, 1999, 176: 354-362.
    [50] Capdessus, C., M. Sidahmed,J.L. Lacoume, Cyclostationary processes: application in gear faults early diagnosis. Mechanical System and Signal Processing, 2000, 14(3): 371-385.
    [51] Bouillaut, L.,M. Sidahmed, Cyclostatioanry approach and bilinear approach: comparison, applications to early diagnosis helicopter gearbox and classification method bsed on HOCS. Mechanical Systems and Signal Processing, 2001, 15(5): 923-943.
    [52] Randall, R.B., Detection and diagnosis of incipient bearing failure in helicopter gearboxes. Engineering Failure Analysis, 2004, 11(2): 177-190.
    [53] Antoni, J.,R.B. Randall, On the use of the cyclic power spectrum in rolling element bearings diagnostics. Journal of Sound and Vibration, 2005, 281(1-2): 463-468.
    [54] Bi, G., Jin Chen, Jun He, Fuchang Zhou, Application of Degree of Cyclostationarity in Rolling Element Bearing Diagnosis. Key Engineering Material, 2005, 293-294: 347-354.
    [55] Antoni, J., Cyclic spectral analysis of rolling-element bearing signals: Facts and fictions. Journal of Sound and Vibration, 2007, 304(3-5): 497-529.
    [56] Antoni, J., Cyclic spectral analysis in practice. Mechanical Systems and Signal Processing, 2007, 21(2): 597-630.
    [57] Antoni, J.,R.B. Randall, Differential diagnosis of gear and bearing faults. Journal of Vibration and Acoustics-Transactions of the ASME, 2002, 124(2): 165-171.
    [58]毕果,基于循环平稳的滚动轴承及齿轮微弱故障特征提取应用研究.博士学位论文,上海:上海交通大学,2007.
    [59]周福昌,基于循环平稳信号处理的滚动轴承故障诊断方法研究.博士学位论文,上海:上海交通大学,2006.
    [60] Antoni, J.,R.B. Randall, Unsupervised noise cancellation for vibration signals: part I-evaluation of adaptive algorithms. Mechanical Systems and Signal Processing, 2004, 18(1): 89-101.
    [61] Antoni, J.,R.B. Randall, Unsupervised noise cancellation for vibration signals: part II-a novel frequency-domain algorithm. Mechanical Systems and Signal Processing, 2004, 18(1): 103-117.
    [62] Randall, R.B., Applications of spectral kurtosis in machine diagnostics and prognostics. Damage Assessment of Structures VI, 2005, 293-294: 21-32.
    [63] Sawalhi, N.,R.B. Randall. Spectral kurtosis optimization for rolling element bearings. in Proceedings of the Eighth International Symposium on Signal Processing and Its Applications. 2005: 839 - 842
    [64] Antoni, J., The spectral kurtosis: a useful tool for characterising non-stationary signals. Mechanical Systems and Signal Processing, 2006, 20(2): 282-307.
    [65] Antoni, J.,R.B. Randall, The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines. Mechanical Systems and Signal Processing, 2006, 20(2): 308-331.
    [66] Antoni, J., Fast computation of the kurtogram for the detection of transient faults. Mechanical Systems and Signal Processing, 2007, 21(1): 108-124.
    [67] Pakrashi, V., B. Basu,A. O' Connor, Structural damage detection and calibration using a wavelet-kurtosis technique. Engineering Structures, 2007, 29(9): 2097-2108.
    [68] Yong, X.A., A further study of the kurtosis-based method for bearing diagnostics. Mechanical Systems and Signal Processing, 2007, 21(1): 593-595.
    [69] Gonzalez de la Rosa, J.J.,A.M. Munoz, Higher-order cumulants and spectral kurtosis for early detection of subterranean termites. Mechanical Systems and Signal Processing, 2008, 22(2): 279-294.
    [70] Logan, D.,J. Mathew, USING THE CORRELATION DIMENSION FOR VIBRATION FAULT DIAGNOSIS OF ROLLING ELEMENT BEARINGS--I. BASIC CONCEPTS. Mechanical Systems and Signal Processing, 1996, 10(3): 241-250.
    [71] Logan, D.B.,J. Mathew, USING THE CORRELATION DIMENSION FOR VIBRATION FAULT DIAGNOSIS OF ROLLING ELEMENT BEARINGS--II. SELECTION OF EXPERIMENTAL PARAMETERS. Mechanical Systems and Signal Processing, 1996, 10(3): 251-264.
    [72] Jiang, J.D., J. Chen,L.S. Qu, THE APPLICATION OF CORRELATION DIMENSION IN GEARBOX CONDITION MONITORING. Journal of Sound and Vibration, 1999, 223(4): 529-541.
    [73] Craig, C., R.D. Neilson,J. Penman, THE USE OF CORRELATION DIMENSION IN CONDITION MONITORING OF SYSTEMS WITH CLEARANCE. Journal of Sound and Vibration, 2000, 231(1): 1-17.
    [74]汪慰军,陈进,吴昭同,关联维数在大型旋转机械故障诊断中的应用.振动工程学报, 2000, 13: 229-234.
    [75]傅瑜,冯象初,徐国华,钻头不同磨损期振动信号的分维特征.西安电子科技大学学报(自然科学版), 2001, 28: 242-244
    [76]刘天雄,华宏星,李中付,等,基于分形几何状态监测方法的应用研究.机械工程学报, 2001, 37(5): 100-104.
    [77]滕丽娜,刘天雄,佟德纯,陈兆能,关联维数在设备状态监测中的应用研究.振动工程学报, 2002, 15(4): 399-403.
    [78] Rolo-Naranjo, A.,M.-E. Montesino-Otero, A method for the correlation dimension estimation for on-line condition monitoring of large rotating machinery. Mechanical Systems and Signal Processing, 2005, 19(5): 939-954.
    [79]侯荣涛,闻邦春,周飙,基于现代非线性理论的汽轮发电机组故障诊断技术研究.机械工程学报, 2005, 41(2): 142-147.
    [80] Yang, J., Y. Zhang,Y. Zhu, Intelligent fault diagnosis of rolling element bearing based on SVMs and fractal dimension. Mechanical Systems and Signal Processing, 2007, 21(5): 2012-2024.
    [81] Zhu, H., S. Ge, X. Cao,W. Tang, The changes of fractal dimensions of frictional signals in the running-in wear process. Wear, 2007, 263(7-12): 1502-1507.
    [82]刘红星,林京,屈梁生, FFT谱熵及其在机械诊断中的应用.中国机械工程, 1997, 4(E6.10): 157-159.
    [83] Qu, L.S., L.M. Li,J. Lee, Enhanced diagnostic certainty using information entropy theory. Advanced Engineering Informatics, 2003, 17(3-4): 141-150.
    [84]谢平,故障诊断中信息熵特征提取及融合方法研究.博士论文,秦皇岛:燕山大学,2006.
    [85]申弢,黄树红,韩守木,杨叔子,旋转机械振动信号的信息熵特征.机械工程学报, 2001, 37(6): 94-98.
    [86]胥永刚,李凌均,何正嘉,近似熵及其在机械设备故障诊断中的应用.信息与控制, 2002, 31(6): 547-551.
    [87]胥永刚,何正嘉,分形维数和近似熵用于度量信号复杂性的比较研究.振动与冲击, 2003, 22(3): 25-27+5.
    [88]吕勇,徐金梧,李友荣,递归图和近似熵在设备故障信号复杂度分析中的应用.机械强度, 2006, 28(3): 317-321.
    [89] Yan, R.Q.,R.X. Gao, Approximate Entropy as a diagnostic tool for machine health monitoring. Mechanical Systems and Signal Processing, 2007, 21(2): 824-839.
    [90]杨福生,廖旺才,近似熵:一种适用于短数据的复杂性度量.中国医疗器械杂志, 1997, 21(5): 283-286.
    [91] Pincus, S.M., Approximate Entropy - a Complexity Measure for Biological Time-Series Data. Proceedings of the 1991 IEEE Seventeenth Annual Northeast Bioengineering Conference, 1991: 35-36+282.
    [92] Pincus, S.M. Approximate entropy (ApEn) as a regularity measure. in Applications of Nonlinear Dynamics to Developmental Process Modeling. 1998: 243-268+321.
    [93] Bruhn, J., H. Ropcke,A. Hoeft, Approximate entropy as an electroencephalographic measure of anesthetic drug effect during desflurane anesthesia. Anesthesiology, 2000, 92(3): 715-726.
    [94] Richman, J.S.,J.R. Moorman, Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 2000, 278(6): H2039-H2049.
    [95] Hudetz, A.G., J.D. Wood,J.P. Kampine, Cholinergic reversal of isoflurane anesthesia in rats as measured by cross-approximate entropy of the electroencephalogram. Anesthesiology, 2003, 99(5): 1125-1131.
    [96]刘慧,和卫星,陈晓平,生物时间序列的近似熵和样本熵方法比较.仪器仪表学报, 2004, 25(4): 806-807+812.
    [97]沈恩华,脑电的复杂度分析.博士论文,上海:复旦大学,2004.
    [98] Manickam, K., C. Moore, T. Willard,N. Slevin, Quantifying aberrant phonation using approximate entropy in electrolaryngography. Speech Communication, 2005, 47(3): 312-321.
    [99] Pincus, S.M., Approximate entropy as a measure of irregularity for psychiatric serial metrics. Bipolar Disorders, 2006, 8(5): 430-440.
    [100] Ahmad, S.A.,P.H. Chappell, Moving approximate entropy applied to surface electromyographic signals. Biomedical Signal Processing and Control, 2008, 3(1): 88-93.
    [101]陈伟婷,基于熵的表面肌电信号特征提取研究.博士论文,上海:上海交通大学,2008.
    [102]庄建军,等,两种熵测度在量化设计运动员短时心率变异性信号复杂度上的一致性.物理学报, 2008, 57(5): 2805-2811.
    [103]虞和济,陈长征,张省,基于神经网络的智能诊断.振动工程学报, 2000, 13(2): 202-209.
    [104]许锋,鲍明,苏向辉,刘俊标, p-范数模糊推理神经网络及其在滚动轴承诊断中的应用.振动工程学报, 2001, 14(1): 19-22.
    [105]徐永成,温熙森,易晓山,陶利民,新型ART-2A算法及其在BIT故障诊断中的应用.振动工程学报, 2002, 15(2): 167-172.
    [106]叶志锋,孙健国,基于概率神经网络的发动机故障诊断.航空学报, 2002, 23(2): 155-157.
    [107] Crupi, V., E. Guglielmino,G. Milazzo, Neural-network-based system for novel fault detection in rotating machinery. Journal of Vibration and Control, 2004, 10(8): 1137-1150.
    [108]杨世锡,焦卫东,吴昭同,基于独立分量分析特征提取的复合神经网络故障诊断法.振动工程学报, 2004, 17(4): 438-442.
    [109] Samanta, B., K.R. Al-Balushi,S.A. Al-Araimi, Artificial neural networks and genetic algorithm for bearing fault detection. Soft Computing, 2006, 10(3): 264-271.
    [110] Yu, Y., YuDejie,J.S. Cheng, A roller bearing fault diagnosis method based on EMD energy entropy and ANN. Journal of Sound and Vibration, 2006, 294(1-2): 269-277.
    [111]陈恬,孙健国,郝英,基于神经网络和证据融合理论的航空发动机气路故障诊断.航空学报, 2006, 27(6): 1014-1017.
    [112]马笑潇,黄席樾,柴毅,基于SVM的二叉树多类分类算法及其在故障诊断中的应用.控制与决策, 2003, 18(3): 272-284.
    [113]段江涛,等,基于支持向量机的机械系统多故障分类方法.农业机械学报, 2004, 35(4): 144-147.
    [114]王红军,张建民,徐小力,基于支持向量机的机械系统状态组合预测模型研究.振动工程学报, 2006, 19(2): 242-245.
    [115] Abbasion, S., A. Rafsanjani, A. Farshidianfar,N. Irani, Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine. Mechanical Systems and Signal Processing, 2007, 21(7): 2933-2945.
    [116] Hu, Q., Z.J. He, Z.S. Zhang,Y.Y. Zi, Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble. Mechanical Systems and Signal Processing, 2007, 21(2): 688-705.
    [117] Widodo, A.,B.S. Yang, Support vector machine in machine condition monitoring and fault diagnosis. Mechanical Systems and Signal Processing, 2007, 21(6): 2560-2574.
    [118] Tax, D.M.J.,R.P.W. Duin, Support vector domain description. Pattern Recognition Letters, 1999, 20(11-13): 1191-1199.
    [119] Tax, D.M.J., one-class thesis.Delft:Delft university of technology,2001.
    [120] Tax, D.M.J.,R.P.W. Duin, Support vector data description. Machine Learning, 2004, 54(1): 45-66.
    [121]胡桥,张周锁,何正嘉,机械设备运行状态智能评估研究.振动工程学报, 2004, 17(s): 313-316.
    [122]李凌均,等,支持向量数据描述用于机械设备状态评估研究.机械科学与技术, 2005, 24(12): 1426-1429.
    [123] Zhang, J.F., Q.H. Yan, Y.L. Zhang,Z.C. Huang, Novel fault class detection based on novelty detection methods. Intelligent Computing in Signal Processing and Pattern Recognition, 2006, 345: 982-987.
    [124]陶新民,杜宝祥,徐勇,基于HOS奇异值谱的SVDD轴承故障检测方法.振动工程学报, 2008, 21(2): 203-208.
    [125] M, E.H., L.K. A,O. H, Toole wear condition monitoring in drilling operations using hidden Markov models(HMM). International Journal of Machine Tools & Manufacture, 2001, 41(9): 1363-1384.
    [126]冯长建,丁启全,吴昭同,混合SOM和HMM方法在旋转机械升速全过程故障诊断中的应用.中国机械工程, 2002, 13(20): 1711-1714.
    [127] Ge, M., R. Du,Y. Xu, Hidden Markov Model based fault diagnosis for stamping processes. Mechanical Systems and Signal Processing, 2004, 18(2): 391-408.
    [128] Li, Z.N., Z.T. Wu, Y.Y. He,F.L. Chu, Hidden Markov model-based fault diagnostics method in speed-up and speed-down process for rotating machinery. Mechanical Systems and Signal Processing, 2005, 19(2): 329-339.
    [129] Ocak, H.,K.A. Loparo, HMM-based fault detection and diagnosis scheme for rolling element bearings. Journal of Vibration and Acoustics-Transactions of the ASME, 2005, 127(4): 299-306.
    [130] Purushotham, V., S. Narayanan,S.A.N. Prasad, Multi-fault diagnosis of rolling bearing elements using wavelet analysis and hidden Markov model based fault recognition. NDT & E International, 2005, 38(8): 654-664.
    [131] Li, Z.,et al, Fault recognition method for speed-up and speed-down process of rotating machinery based on independent component analysis and Factorial Hidden Markov Model. Journal of Sound and Vibration, 2006, 291(1-2): 60-71.
    [132] Lee, J., Measurement of machine performance degradation using a neural network model. Computers in Industry, 1996, 30(3): 193-209.
    [133] Lei, Z., C. Qixin, J. Lee,F.L. Lewis, PCA-CMAC based machine performance degradation assessment Journal of Southeast University (English Edition), 2005, 21(3): 299-303.
    [134]张蕾,基于数据挖掘的设备性能预测.博士学位论文,上海:上海交通大学,2005.
    [135] Qiu, H., J. Lee, J. Lin,G. Yu, Robust performance degradation assessment methods for enhanced rolling element bearing prognostics. Advanced Engineering Informatics, 2003, 17(3-4): 127-140.
    [136] Huang, R.Q.,et al, Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods. Mechanical Systems and Signal Processing, 2007, 21(1): 193-207.
    [137] Gebraeel, N., M. Lawley, R. Liu,V. Parmeshwaran, Residual life predictions from vibration-based degradation signals: A neural network approach. IEEE Transactions on Industrial Electronics, 2004, 51(3): 694-700.
    [138] Yan, J., M. Ko?,J. Lee, A prognostic algorithm for machine performance assessment and its application. Production Planning and Control, 2004, 15: 796-801.
    [139] Yan, J.H.,J. Lee, Degradation assessment and fault modes classification using logistic regression. Journal of Manufacturing Science and Engineering-Transactions of the ASME, 2005, 127(4): 912-914.
    [140] Ocak, H., K.A. Loparo,F.M. Discenzo, Online tracking of bearing wear using wavelet packet decomposition and probabilistic modeling: A method for bearing prognostics. Journal of Sound and Vibration, 2007, 302(4-5): 951-961.
    [141] Zhou, X.J., L.F. Xi,J. Lee, Reliability-centered predictive maintenance scheduling for a continuously monitored system subject to degradation. Reliability Engineering & System Safety, 2007, 92(4): 530-534.
    [142] Lybeck, N., S. Marble,B. Morton. Validating Prognostic Algorithms: A Case Study Using Comprehensive Bearing Fault Data. in Aerospace Conference, IEEE. 2007. Big Sky Montana: 1-9.
    [143] Janjarasjitt, S., H. Ocak,K.A. Loparo, Bearing condition diagnosis and prognosis using applied nonlinear dynamical analysis of machine vibration signal. Journal of Sound and Vibration, 2008, 317(1-2): 112-126.
    [144] Raad, A., J. Antoni,M. Sidahmed, Indicators of cyclostationarity: Theory and application to gear fault monitoring. Mechanical Systems and Signal Processing, 2008, 22(3): 574-587.
    [145] Williams, T., X. Ribadeneira, S. Billington,T. Kurfess, Rolling element bearing diagnostics in run-to-failure lifetime testing. Mechanical Systems and Signal Processing, 2001, 15(5): 979-993.
    [146]韩捷,张瑞林等,旋转机械故障机理及诊断技术. 1996,北京:机械工业出版社.
    [147] Gardner, W.A., Stationarizable random processes. IEEE Transactions on Information Theory, 1978, 24: 8-22.
    [148]胡广书,数字信号处理——理论、算法于实现. 1997,北京:清华大学出版社.
    [149]王彬,熵与信息. 1994,西安:西北工业大学出版社.
    [150] C.E.Shannon, A mathematical theory of communications. Bell System technical Journal, 1948, 27: 379-423.
    [151] Ziha, K., Event oriented system analysis. Probabilistic Engineering Mechanics, 2000, 15(3): 261-275.
    [152] Ozdemir, S., Measures of uncertainty in power split systems. Mechanism and Machine Theory, 2007, 42(2): 159-167.
    [153]赵贵兵,石炎福,段文峰,从混沌时间序列同事计算关联维和Komogorov熵.计算物理, 1999, 16(3): 309-315.
    [154] Packard, N.H., J.P. Crutchfield, J.D. Farmer,R.S. Shaw, Geometry from a time series. Physical Review Letters, 1980, 45: 712-716.
    [155] F.Takens, Detecting strange attractors in turbulence. Lecture notes in Math, 1981, 898: 366-381.
    [156] Grassberger, P.,I. Procaccia, Characterization of strange attractors. Physical Review Letters, 1983, 50: 346-349.
    [157]马军海,复杂非线性系统的重构技术. 2005,天津:天津大学出版社.
    [158]庞茂,汽车主减速器振动信号非线性特征研究.博士学位,杭州:浙江大学,2006.
    [159]刘秉正,非线性动力学. 2004,北京:高等教育出版社.
    [160] Levy, W.J., E. Pantin, S. Mehta,M. McGarvey, Hypothermia and the approximate entropy of the electroencepbalogram. Anesthesiology, 2003, 98(1): 53-57.
    [161] Noh, G.J.,et al, Electroencephalographic approximate entropy changes in healthy volunteers during remifentanil infusion. Anesthesiology, 2006, 104(5): 921-932.
    [162] Takahashi, T.,et al, Age-related variation in EEG complexity to photic stimulation: A multiscale entropy analysis. Clinical Neurophysiology, 2009, 120(3): 476-483.
    [163]洪波,唐庆玉,杨福生,陈天祥,近似熵、互近似熵的性质、快速算法及其在脑电与认知研究中的初步应用.信号处理, 1999, 15(2): 100-108.
    [164]苗刚,马孝江,任全民,多尺度Hilbert谱熵在故障诊断中的应用.农业机械学报, 2007, 38(3): 176-178+167.
    [165] Vautard, R., P. Yiou,M. Ghil, Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D: Nonlinear Phenomena, 1992, 58(1-4): 95-126.
    [166]杨文献,姜节胜,机械信号奇异熵研究.机械工程学报, 2000, 36(12): 122-126.
    [167]潘玉娜,基于全信息的智能诊断方法及其应用研究.硕士论文,郑州大学,2006.
    [168] Boser, B.E., I.M. Guyon,V.N. Vapnik. A training algorithm for optimal margin classifiers. in Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory. 1992: 144-152.
    [169] C, C.,V.N. Vapnik, Support-vector networks. Machine Learning, 1995, 20: 273-297.
    [170] Moya, M.M., M.W. Koch,L.D. Hostetler. One-class classifier networks for target recognition application. in Proceeding world congress on neural networks for target recognition applications. 1993. Portland, OR: 797-801.
    [171] Ritter,Gallegos, Outliers in statistical pattern recognition and an application to automatic chatomosome classiffication. Pattern Recognition Letters, 1997, 18: 525-539.
    [172] Bishop, C.M., Novelty Detection and Neural-Network Validation. IEEE Proceedings-Vision Image and Signal Processing, 1994, 141(4): 217-222.
    [173] Vapnik, V.N.,统计学习理论的本质. 2000,北京:清华大学出版社.
    [174]边肇棋,张学工,模式识别. 2000,北京:清华大学出版社.
    [175]张学工,关于统计学习理论与支持向量机.自动化学报, 2000, 26(01):32-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700