用户名: 密码: 验证码:
牙鲆性腺分化发育及类固醇激素T和E2对性腺分化的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用组织学手段研究了牙鲆性腺在分化、发育和成熟过程中的变化。然后,通过放射性免疫方法(RIA)测定了牙鲆仔稚幼鱼全组织匀浆液中的性类固醇激素—睾酮(T)和雌二醇(E2)的含量,并结合牙鲆血清中T和E2含量的年周期测定,从内分泌学水平探讨了T和E2在其性腺分化、发育和成熟过程中水平的变化规律。同时,采用高温和雌性激素对性腺未分化的普通和雌核发育牙鲆仔稚鱼进行诱导处理,获得了较高比例的雄性鱼/假雄鱼或100%雌性鱼;并研究了这些外界环境因子对牙鲆性腺分化、性别比率及体内T和E2水平的影响,藉此探讨了牙鲆性别决定与性腺分化的细胞学和内分泌学机制。
     对牙鲆仔稚幼鱼性腺的组织切片观察发现,培育水温18~20℃下,孵化后第45天、平均全长<22.0±2.8 mm的牙鲆,其性腺分化尚未开始,属于原始性腺;在孵化后70日龄、平均全长为38.0±1.7 mm左右,部分个体中观察到卵巢的雏形,其余个体的性腺在此阶段以及之后的一段时间内变化并不明显;到了第110天、平均全长达到86.5±5.9 mm时,雌性个体卵巢出现了卵原细胞向卵母细胞的转变,标志着卵巢分化的结束。在90日龄、平均全长为63.5±3.4 mm的雄性牙鲆中,精原细胞快速增殖,并观察到了输精管结构;进一步的细胞学分化则出现在100日龄、平均全长为76.0±8.6 mm的个体中,此时可以看到精小叶的形成;在平均全长为140.0±15.2 mm时,精巢中出现初级精母细胞,标志着性腺分化的基本完成。
     对牙鲆仔稚幼鱼全组织匀浆和成鱼血清中的T和E2水平的比较发现,在全长为6 mm左右的仔鱼中T和E2含量均较高。随后,在性腺分化过程中T含量大大降低,E2的含量急剧增高,而性腺分化后期E2含量又降到较低的水平。在雄性牙鲆成鱼中,从精巢第Ⅲ期开始,T含量随着精巢的发育而增加,到了精巢第Ⅴ期性腺发育成熟并排精后,又降低到较低的水平;E2含量在从精巢第Ⅲ期发育至精巢第Ⅴ期过程中略呈降低的趋势,但是总体上来说没有明显的差异。在雌性牙鲆成鱼中,卵巢从第Ⅱ期到第Ⅳ期的过程中,T水平逐渐升高,在第Ⅴ期时则明显降低;而E2含量在卵巢第Ⅱ期时保持较低的水平,随着卵巢的发育,E2含量逐渐增高,在卵巢第Ⅳ期时达到最高水平,在第Ⅴ期产卵后又有所降低。在雌雄个体中T和E2均呈现周期性的变化。5月份随着水温的升高,雄性个体T和E2含量显著上升;到了9月份又逐渐下降至最低值。雌性个体E2含量自3月份开始增高,在5月份急剧升高,并在6月份达到最高值;在7月份的时候,E2突然降低,而到了8月份又有所回升;9月份之后E2逐渐降低并在1月份左右降到最低;而T的含量分别在2月份和6月份出现两次高峰。
     温度诱导牙鲆幼鱼性腺分化的结果表明,牙鲆中存在明显的TSD机制,即其性腺分化因饲育水温的不同而变化:在一定温度范围内,随着饲育温度的增加,牙鲆的雄性比例逐渐增高,常温对照组和21℃组中的雄性比例分别为51.62%、60.00%,而在24℃和28℃高温组中,雄性比例显著高于对照组,分别达到73.33%和87.27%。T和E2含量测定显示,在性腺分化时期,高温和对照组中T含量没有明显的变化,而温度处理组中的E2水平则低于对照组,特别是在28℃高温组,其E2水平显著低于对照组(P<0.05)。外源E2处理性腺未分化的牙鲆幼鱼的结果也表明,牙鲆的死亡率与雌性化比率均为雌性激素剂量依赖型的。随着外源E2剂量的增加,雌性比率增加,但同时死亡率也增高。此期间T和E2水平比较发现,在性腺分化时期,对照组中的T含量稍高于雌激素处理组;而对照组中的E2含量高于0.2 ppm和2 ppm两个低剂量组,却低于20 ppm和100 ppm两个高剂量组。
     同时,还对人工诱导培育的雌核发育牙鲆和性反转牙鲆进行了性腺发育观察,在所观察的雌核发育牙鲆个体中,其雌性比例为83.33%,而高温28℃饲育群体中的雄性比例(即假雄鱼比例)为91.67%;在雌性个体中,也有一定比例的个体性腺发育不正常,有的性腺发育较小,有的则缺少部分性腺。进一步对雌核发育成体的血清中T和E2含量进行测量,发现在普通牙鲆个体中T含量显著低于雌核发育个体,而E2含量则高于雌核发育牙鲆;在雌核发育牙鲆中,性腺发育不正常的个体比性腺发育正常的个体中的T含量稍高,而E2含量则显著低于正常雌核发育牙鲆个体和普通牙鲆个体(P< 0.05)。
Histological changes during gonadal differentiation, development and maturation were observed in Paralichthys olivaceus. Combined with RIA analysis of T and E2 levels in whole body extract of larvae and juvenile, and also in serum, we discussed changes of T and E2 concentrations during gonadal differentiation, development and maturation in endocrine level. Then, by treating undifferentiated normal diploid and gynogenetic fish with high temperature and E2, respectively, we obtained flounder stock with high percentage of male or femal, and studied effects of temperature and exougenous sex steroids estradio-17β(E2) on growth, gonadal differentiation, sex ratios and levels of T and E2. Mechanisms of sex determination and gonadal differentiation in viewpoint of endocrine were also discussed.
     Histological observation found that when fish were reared at temperature of 18-20℃, gonad remained undifferentiated till the 45th day post hatching (D45). When larvae reached about 38.0±1.7 mm of mean total length (TL) on the D70, ovarian cavity was observed in presumptive ovary. On the D110, when mean total length reached about 86.5±5.9 mm, ovarian cavity grew bigger, and oocytes were firstly detected. Differentiation of testis was firstly observed in juvenile flounder with mean total length of 63.5±3.4 mm on the D90 when spermatogenous cell proliferated rapidly and spermaduct formed. Seminal lobule appeared on the D100 when juveniles reached about 76.0 mm of total length. And when flounders reached total length about 140.0 mm, appearance of spermatocyte indicated the completion of gonadal sex differentiation.
     Analysis of T and E2 levels in whole body extract from larvae and juvenile, and also in serum in Paralichthys olivaceus, showed that concentrations of T and E2 were higher than those in larvae with the total length of 6 mm. Then, T levels decreased with the process of gonadal differentiation, but E2 levels increased sharply during period of gonadal differentiation and decreased to a lower level thereafter. In male, from tesits stageⅢ, T levels in serum increased with the development of gonad, and finally, it dropped again at the stageⅤafter maturation of testis and spermiation. E2 levels decreased with the development of male gonad from the stageⅡto the stageⅤ, but had no significant difference in general. In female, both T and E2 levels increased gradually with the development of ovary and peaked at the stageⅣ, and then dropped after ovulation. Both levels of T and E2 have an annual cycle. In male, levels of T and E2 increase sharply with the increase of temperature from May, and then it begin to drop in September. In female, E2 increased from March and peaked in June and August, and then dropped, too. As to levels of T, it also had two peaks, one in Feberary and the other in June.
     Result of temperature treatment showed that there is mechanism of TSD in Paralichthys olivaceus, and ratios of male increased with the increase of temperature. The percentage of male in control, 21℃and 24℃were 51.62%, 60.00% and 73.33%, respectively. And in the groups with high temperature of 28℃, significantly high ratios of male compared to control were observed (87.27%). Analysis of T and E2 levels suggested that there were no obvious difference among control and different temperature treated groups in T levels, but E2 levels in temperature treated groups were lower than that of in control. Especially, E2 levels in high temperature groups of 28℃were significantly lower than that in control groups (P<0.05). By treating gonadal undifferentiated fish with different dose of E2, we found that both mortality and ratios of female were doze-depended. With the increase of dose of E2 in feed, percentage of female was increased in Paralichthys olivaceus. Analysis of T and E2 levels showed that level of T were lower than that in E2 treated group. But as to E2, levels were lower than those in the treatment groups with doze of 0.2 ppm and 2 ppm, but higher than those in the treatment groups with dose of 20 ppm and 100 ppm.
     In the meantime, we compared gonadal development conditions of gynogenetic flounder. The ratio of female in gynogenetic flounder was 83.33%, and the ratio of XX male in gynogenetic flounder treated with high temperature of 28℃was 91.67%. In the gynogenetic flounders, a certain proportion of individuals had abnormal gonad, some of the gonad grew small and some even lost part of it. Further studies on T and E2 levels in serum showed that gynogenetic individuals had higher T levels and lower E2 levels than those normal diploid groups. And also, higher T level and lower E2 level was observed in flounder with abnormal gonad when compared with control and gynogenetic flounder.
引文
常重杰,余其兴.大鳞副泥鳅ZZ/ZW型性别决定的细胞遗传学证据.遗传,1997,19(3):17-19
    陈玉琳,胡秀敏,朱雅珠.莫桑比克罗非鱼幼鱼的性腺发育与分化.水产学报,1980,4(4):313-318
    陈云贵,叶鼎,宋平等.金鱼配子发生中vasa基因的表达和分布特征.动物学研究,2005,26(2):179-183
    邓思平,陈松林,刘本伟等.半滑舌鳎脑芳香化酶基因cDNA克隆及表达分析.动物学研究,2008,29(1):17-24
    邓思平,陈松林,田永胜等.半滑舌鳎的性腺分化和温度对性别决定的影响.中国水产科学,2007,14(5):714-718
    胡则辉,徐君卓.人工诱导海水鱼类雌核发育的研究进展.海洋渔业,2007,29(1):78-83
    林浩然.鱼类内分泌学研究的动向.水生生物学集刊,1984,8(3):363-370
    林浩然. 1999.鱼类生理学.广东高等教育出版社. 43-53
    刘筠.中国养殖鱼类繁殖生物学.北京:农业出版社,1993
    刘少军.革胡子鲶原始生殖细胞的起源、迁移及性腺分化.水生生物学报,1991,15(1):1-7
    楼允东.鱼类育种学.北京:中国农业出版社,1999.
    吕道远,宋平,陈云贵等.黄鳝性腺自然性逆转过程中vasa基因的表达分析.动物学报,2005,51(3):469-475
    马学坤,柳学周,温海深等.半滑舌鳎性腺分化的组织学观察.海洋水产研究,2006,27(2):55-61
    宋海霞.养殖牙鲆垂体——性腺轴的生理功能及其调节研究.中国海洋大学硕士学位论文,2005
    宋海霞,温海深.养殖牙鲆卵巢发育及其调控的组织学研究.海洋湖沼通报,2005,4:75-83
    宋卉,王树迎.鱼类原始生殖细胞的研究进展.动物医学进展,2004,25(5):22-23
    宋卉,王树迎,彭克美.泰山螭霖鱼原始生殖细胞的发生及性腺分化规律的研究.动物医学进展,2005,26(12):62-67
    隋娟,张志峰,邵明瑜等.刺参vasa-like基因克隆及其在组织中的表达分析.中国水产科学,2008,15(3):407-413
    孙朝徽,刘海金,司飞等.养殖牙鲆性腺分化的组织学观察.大连水产学院学报,2008,23(6):451-454
    孙大江,曲秋芝,王丙乾等.施氏鲟不同年龄性腺发育与性类固醇激素浓度关系.中国水产科学,2004,11(4):307-312
    孙远东,谭立军,唐新科等.鱼类性别决定及其基因的研究进展.安徽农业科学,2008,36(18):7691-7692
    唐永凯,李建林,陈文华等.奥利亚罗非鱼卵巢芳香化酶基因的克隆及其表达.中国水产科学,2008,15(5):729-737
    田永胜,陈松林,严安生等.牙鲆的胚胎发育.水产学报,2004,28(6):609-615
    童金苟,朱嘉濠,关海山.鱼类性别决定的遗传基础研究概况.水产学报,2003,27(2):169-176
    王德寿,吴天利,张耀光.鱼类性别决定及其机制的研究进展.西南师范大学学报(自然科学版),2000,25(3):296-304
    王开顺.石鲽Kareius bicoloratus性腺发生、分化及发育的周年变化.中国海洋大学硕士学位论文,2004
    王念民,孙大江,曲秋芝等.温度对鱼类性别分化和性别决定的影响.水产学杂志,2007,20(2):91-93
    王新成.全雌牙鲆种苗培育技术.海洋科学,1994,6:63
    王新成,尤锋,倪高田等.石鲽与牙鲆人工杂交的研究.海洋科学,2003,27(3):1-4
    王文君,王开顺,邵明瑜等.石鲽仔、幼鱼性腺发育的组织学观察.中国水产科学,2007,14(5):843-848
    文爱韵,尤锋,徐永立等.鱼类性别决定与相关基因研究进展.海洋科学,2008,32(1):74-80
    温海深,宋海霞.注射外源激素对养殖牙鲆精巢发育的影响.中国海洋大学学报,2007,37(2):229-234
    温海深,宋海霞,杨立廷等.外源激素对养殖牙鲆血浆睾酮和雌二醇含量的影响研究,2006,28(4):115-120
    许建和.牙鲆和大黄鱼染色体组操作研究.中国科学院研究生院博士学位论文,2005
    杨洁,吴宏达,范兆廷.鱼类性别决定机制的研究进展.渔业经济研究,2007,3:14-19
    尤锋,许建和,倪静等.牙鲆同质雌核发育人工诱导研究.高技术通讯,2008,18(8):874-880
    余先觉,周敦,李渝成等.中国淡水鱼类染色体.北京:科学出版社,1989,1-9
    张修月,焦保卫,吴天利等.南方鲶性腺分化的组织学观察.动物学杂志,2005,40(1):41-48、
    张照斌,牛翠娟,朱华等.室内饲育西伯利亚鲟的血清性类固醇激素的周年变化.北京师范大学学报(自然科学版),2003,39(4):519-524
    赵会宏,刘晓春,刘付永忠等.斜带石斑鱼雌鱼卵巢发育与血清性类固醇激素的生殖周期变化.中山大学学报(自然科学版),2003,42(6):56-63
    Andreata AA, Almeida-Toledo FD, Oliverira C et al. Chromosome studies in Hypoptopomatinae (Pisces, Siluriformes, Loricariidae). Cyto Cell Genet, 1993, 63: 215-220
    Arai K. Genetic improvement of aquaculture finfish species by chromosome manipulation techniques in Japan. Aquaculture, 2001, 197: 205-228
    Asturiano JF, Sorbera LA, Ramos J, et al. Hormonal regulation of the European sea bass reproductive cycle: an individualized female approach. Journal of Fish Biology, 2000, 56: 1155-1172
    Azaza MS, Dhra?ef MN, Kra?em MM. Effects of water temperature on growth and sex ratio of juvenile Nile tilapia Oreochromis niloticus (Linnaeus) reared in geothermal waters in southern Tunisia. Journal of Thermal Biology, 2008, 33: 98-105
    Baras E, Jacobs B, Mélard C. Effect of water temperature on survival, growth and phenotypic sex of mixed (XX-XY) progenies of Nile tilapia Oreochromis niloticus.Aquaculture, 2001, 192: 187-199
    Baroiller JF, Chourrout D, Fostier A, et al. Temperature and sex chromosomes govern sex ratios of the mouthbrooding cichlid fish Oreochromis niloticus. J Exp Zool, 1995, 273: 216-223
    Baroiller JF, Guiguen Y, Fostier A. Endocrine and environmental aspects of sex differentiation in fish. Cell Mol Life Sci, 1999, 55: 910–931
    Baroiller JF, D’Cotta H. Environment and sex determination in farmed fish. Comparative Biochemistry and Physiology part C, 2001, 130: 399-409
    Baron D, Fostier A, Breton B, et al. Androgen and estrogen treatments alter steady state messengers RNA (mRNA) levels of testicular steroidogenic enzymes in the rainbow trout, Oncorhynchus mykiss. Molecular Reproduction and Development, 2005, 71: 471–479
    Baron D, Houlgatte R, Fostier A, et al. Expression profiling of candidate genes during ovary-to-testis trans-differentiation in rainbow trout masculinized by androgens. General and Comparative Endocrinology, 2008, 156: 369-378
    Borg B. Androgens in teleost fishes. Comparative Biochemistry and Physiology, 1994, 109C: 219-245
    Chang, CF, Lan SC, Chou HY. Gonadal histology and plasma sex steroids during sex differentiation in grey mullet, Mugil cephalus. Journal of Experimental Zoology. 1995, 272: 395-406
    Chang XT, Nakamura M, Kobayashi T, et al. Immunocytochemical localization of steroidogenic enzymes in gonads during sex differentiation in tilapia. Journal of Reproduction and Development, 1997, 43: 73–74
    Colburn HR, Nardi GC, Borski RJ, et al. Induced meiotic gynogenesis and sex differentiation in summer flounder (Paralichthys dentatus). Aquaculture, 2009, 289: 175-180
    Conover DO, Heins SW. Adaptive variation in environmental and genetic sex determination in a fish. Nature, 1987, 326: 496-498
    Crews D. Sex determination: where environment and genetics meet. Evolution andDevelopment, 2003, 5(1): 50-55
    Crews D. Temperature-dependent sex determination: the interplay of steroid hormones and temperature. Zool Sci, 1996, 13: 1–13
    D’Cotta H, Guiguen Y, Govoroun M, et al. Aromatase gene expression in temperature-induced gonadal sex differentiation of tilapia Oreochromis niloticus. In: Proceedings of the Sixth International Symposium on the Reproductive Physiology of Fish, 2000, 197–199. Edited by B Norberg, OS Kjesbu, GL Taranger, E Andersson and SO Stefansson. Fish Symp 99, Bergen, Norway.
    D’Cotta H, Fostier A, Guiguen Y, et al. Aromatase plays a key role during normal and temperature-induced sex differentiation of tilapia Oreochromis niloticus. Mol Reprod Dev, 2001a, 59: 265–276
    D’Cotta H, Fostier A, Guiguen Y, et al. Search for genes involved in the temperature-induced gonadal sex differentiation in the tilapia, Oreochromis niloticus. Journal of Experimental Zoology, 2001b, 290: 574-585
    Deng SP, Chen SL, Xu JY, et al. Molecular cloning, characterization and expression analysis of gonadal P450 aromatase in the half-smooth tongue-sole, Cynoglossus Semilaevis. Aquaculture, 2009, 287: 211-218
    Desprez D, Mélard C. Effect of ambient water temperature on sex determination in the blue tilapia, Oreochromis aureus. Aquaculture, 1998, 162: 79-84
    Devlin RH, Nagahama Y. Sex determination and sex differentiation in fish: an overview of genetic, Physiological, and environmental influences. Aquaculture, 2002, 208: 191-364
    Du JL, Lin BY, Lee YH, et al. Estradiol, aromatase and steroid receptors involved in the sex change of protandrous black porgy, Acanthopagrus schlegeli. Fish Physiology and Biochemistry, 2003, 28: 131-133
    Estay F, Diaz A, Pedrazza R, et al. Oogenesis and plasma levels of sex steroids in cultured females of Brown Trout (Salmo trutta Linnaeus, 1758) in Chile. Journal of Experimental Zoology. 2003, 298A: 60-66
    Feist G, Schreck CB, Fitzpatrick MS, et al. Sex steroid profiles of coho salmon (Oncorhynchus kisulch) during early development and sexual differentiation. GenComp Endocrinol, 1990, 80: 299-313
    Felip A, Piferrer F, Zanuy S, et al. Comparative growth performance of diploid and triploid European sea bass over the first four spawning seasons. Journal of Fish Biology, 2001, 58: 76-88
    Fitzpatrick MS, Gale WL, Schreck CB. Binding characteristics of an androgen receptor in the ovaries of coho salmon, Oncorhynchus kisulch. Gen Comp Endocrinol, 1994, 95: 399-408
    Fitzpatrick MS, Pereira CB, Schreck CB. In vitro steroid secretion during early development of mono-sex rainbow trout: sex differences, onset of pituitary control, and effects of dietary steroid treatment. General and Comparative Endocrinology, 1993, 91: 199-215
    Fostier A, Jalabert B. Steroidogenesis in rainbow trout (Salmo gairdneri) at various preovulatory stages: changes in plasma hormone levels and in vivo and in vitro response of the ovary to salmon gonadotropin. Fish Physiology and Biochemistry, 1986, 2: 87-99
    Francis RC. The effects of bidirectional selection for social dominance on agonistic behavior and sex ratios in the paradise fish (Macropodus opercularis). Behavior, 1984, 90: 25-45
    Fujioka K. Survival, growth and sex ratios of gynogenetic diploid honmoroko. Journal of Fish Biology, 1998, 52: 430-442
    Fukada S, Tanaka M, Lwaya M. The Sox gene family and its expression during embryogenesis in the teleost fish, medaka (Oryzias latipes). Dev Growth Differ, 1995, 37: 379—385
    Godwin J, Luckenbach JA, Borski RJ. Ecology meets endocrinology: environmental sex determination in fishes. Evol Dev, 2003, 5: 40-49
    Goto-Kazeto R, Abe Y, Masai K, et al. Temperature-dependent sex differentiation in goldfish: Establishing the temperature-sensitive period and effect of constant and fluctuating water temperatures. Aquaculture, 2006, 254: 617-624
    Govoroun M, McMeel OM, Mecherouki H, et al. 17beta-Estradiol treatment decreases steroidogenic enzyme messenger ribonucleic acid levels in the rainbow trout testis. Endocrinology, 2001, 142: 1841–1848
    Guan G, Kobayashi T, Nagahama Y. Sexually dimorphic expression of two types of DM (Doublesex/Mab-3)-domain genes in a teleost fish, the tilapia (Oreochromis niloticus). Biochem Biophys Res Commun, 2000, 272(3): 662-666
    Guiguen Y, Baroiller JF, Ricordel MJ, et al. Involvement of estrogens in the process of sex differentiation in two fish species: the rainbow trout (Oncorhynchus mykiss) and a tilapia (Oreochromis niloticus). Mol Reprod Develop, 1999, 54: 154-162
    Hamaguchi S. A light- and electron-microscopic study on the migration of priordial germ cells in teleost, Oryzias latipes. Cell Tissue Res, 1982, 227: 139-151
    Hendry CI, Martin-Robichaud DJ, Benfey TJ. Gonadal sex differentiation in Atlantic halibut. Journal of Fish Biology, 2002, 60: 1431-1442
    Higashino T, Miura T, Muria C, et al. Histological studies on early oogenesis in barfin flounder (Verasper moseri). Zoological science, 2002, 19: 557-563
    Hines GA, Boots LR, Wibbels T, et al. Steroid levels and steroid metabolism in relation to early gonadal development in the tilapia Oreochromis niloticus (Teleostei: Cyprinoidei). General and Comparative Endocrinology, 1999, 114(2): 235-248
    Hines GA, Watts SA. Non-steroidal chemical sex manipulation of tilapia. Journal of the World Aquaculture Society, 1995, 26: 98-102
    Hirai N, Nanba A, Koshio M, et al. Feminization of Japanese medaka (Oryzias latipes) exposed to 17-βestradiol: Formation of testis–ova and sex-transformation during early-ontogeny. Aquatic Toxicology, 2006, 77: 78-86
    Hughes V, Benfey TJ, Martin-Robichaud DJ. Effect of rearing temperature on sex ration in juvenile Atlantic halibut, Hippoglossus hippoglossus. Environ Biol Fish, 2008, 81: 415-419
    Hunter GA, Donaldson EM. Hormonal sex control and its application to fish culture.In: Fish Physiology Vol. IX, part B Behaviour and Fertility Control, 1983, 223-303. Edited by W S Hoar, J D Randall and E M Donaldson. Academic Press, New York.
    Ito M, Ishikawa M, Suzuki S.A rainbow trout SRY-type gene expressed in pituitary glands. FEBS Lett, 1995, 377: 37-40
    Jiang JQ, Kobayashi T, Ge W, et al. Fish testicular 11 beta-hydroxylase: cDNA cloning and mRNA expression during spermatogenesis. FEBS Lett., 1996. 397, 250–252
    Kallman KD. A new look at sex determination in Poeciliid fishes. In: Truner BJ Evolutionary genetics of fishes. New York: Plenum Press, 1983, 95-171
    Kim DS, Nam YK, Jo JY. Effect of oestradiol-17βimmersion treatment on sex reversal of mud loach, Misgurnus mizolepis (Günther). Aquaculture Research, 1997, 28: 941-946
    Kime DE, Hyder M. The effect of temperature and gonadaotropin on testicular steroidogenesis in Sarotherodon (Tilapia) mossambicus in vitro. Gen Comp Endocrinol, 1983, 50(1): 105-115
    Kime DE, Manning NJ. Maturational and temperature effects on steroid hormone production by tests of the carp, Cyprinus carpio. Aquaculture, 1986, 54: 44-55
    Kitano T, Takamune K, Kobayashi T, et al. Suppression of P450 aromatase gene expression in sex-reversed males produced by rearing genetically female larve at a high water tempertature during a period of sex differentiation in the Japanese flounder (Paralichthys olivaceus). J. Mol. Endocrinol, 1999, 23: 167-176
    Kitano T, Takamune K, Nagahama Y, et al. Aromatase inhibitor and 17α-methyltestosterone cause sex-reversal from genetical females to phenotypic males and suppression of P450 aromatase gene expression in Japanese flounder (Paralichthys olivaceus). Mol Reprod Dev, 2000, 56: 1-5
    Kobayashi T, Kajiura-Kobayashi H, Nagahama Y. Induction of XY sex reversal by estrogen involves altered gene expression in a teleost, tilapia. Cytogenet. Genome Res., 2003, 101: 289-294
    Kojima Y, Bhandari RK, Kobayashi Y, et al. Sex change of adult initial-phase male wrasse, Halichoeres trimaculatus by estradiol-17βtreatment. General and Comparative Endocrinology, 2008, 156: 628-632
    Komen J, Bongers ABJ, Richter CJJ, et al. Gynogenesis in common carp (Cyprinus carpio):Ⅱ. The production of homozygous gynogenetic clones and F1 hybrids. Aquaculture, 1991, 92: 127-142
    Koumoundouros G, Pavlidis M, Anezaki L, et al. Temperature sex determination in the European sea bass, Dicentrarchus labrax (L., 1758) (Teleostei, Perciformes, Moronidae): critical sensitive ontogenetic phase. J. Exp. Zool., 2002, 292: 573-579
    Koya Y, Watanabe H, Soyano K, et al. Testicular development and serum steroid hormone levels in captive male spotted halibut Verasper variegates. Fisheries science, 2003, 69: 792-798
    Kroon FJ, Munday PL, Pankhurst NW. Steroid hormone levels and bi-directional sex change in Gobiodon histrio. Journal of Fish Biology, 2003, 62: 153-167
    Kucherka WD, Thomas P, Khan IA. Sex differences in circulating steroid hormone levels in the red drum, Sciaenops ocellatus L. Aquaculture Research, 2006, 37: 1464-1472
    Labadie P, Budzinski H. Alteration of steroid hormone profile in juvenile turbot (Psetta maxima) as a consequence of short-term exposure to 17α-ethynylestradiol. Chemosphere, 2006, 64: 1274-1286
    Lee WK, Yang SW. Relationship between ovarian development and serum levels of gonadal steroid hormones, and induction of oocyte maturation and ovulation in the cultured female Korean spotted sea bass Lateolabrax maculates (Jeom-nong-eo). Aquaculture, 2002, 207: 169-183
    Lee YD, Lee TY. Sex differentiation and development of the gonad in the flounder, Paralichthys olivaceus (Temminck et Schlegel). Bulletin of the Marine Research Institute, Cheju National University, 1990, 14: 61-86
    Lorenzi V, Earley RL, Rodgers EW, et al. Diurnal patterns and sex differences in cortisol, 11-ketotestosterone, testosterone, and 17β-estradiol in the bluebanded goby (Lythrypnus dalli). General and Comparative Endocrinology, 2008, 155: 438-446
    Luckenbach JA, Godwin J, Daniels HV, et al. Gonadal differentiation and effects of temperature on sex determination in southern flounder (Paralichthys lethostigma). Aquaculture, 2003, 216: 315-327
    Ma YX, Kouhei M, Minoru U. Seasonal Variations in Plasma Concentrations of Sex Steroid Hormones and Vitellogenin in Wild Male Japanese Dace (Tribolodon hakonensis) Collected from Different Sites of the Jinzu River Basin. Zoological Science, 2005, 22(8): 861-868
    Manning NJ, Kime DE. Temperature regulation of ovarian steroid production in the common carp, Cyprinus carpio, in vitro and in vivo. Gen Comp Endocrinol, 1984, 56: 376-388
    Manning NJ, Kime DE. The effects of temperature on testicular steroid production in the rainbow trout, Salmo gairdneri, in vivo and in vitro. Gene Cop Endocrinol, 1985, 57: 377-382
    Matsuda M, Nagahama Y, Shinomiya A, et al. DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature, 2002, 417: 559-562
    Miura T, Miura C, Ohta T, et al. Estradiol-17βstimulates the renewal of spermatogonial stem cell in male. Biochem Biophys Res Commun, 1999, 264: 230-234
    Nagahama Y, Kagawa H, Young G. Cellular sources of sex steroid in teleost gonad. Can J Fish Aquat Sci, 1982, 39: 56-64
    Nakamura M, Bhandari RK, Higa M. The role estrogens play in sex differentiation and sex changes of fish. Fish Physiology and Biochemistry, 2003, 28: 113-117
    Nakamura M, Kobayashi T, Yashiura Y, et al. Role of endogenous steroid hormones on gonadal sex differentiation in fish. In: Proceeding of the Sixth International Symposium on the Reproductive Physiology of Fish, 2000, 247-249
    Nakamura M, Nagahama Y. Steriod producing cells during ovarian differentiation oftilapia Sarotherodon niloticus. Dev Growth Differ, 1985, 27: 701-708
    Nakamura M, Nagahama Y. Differentiation and development of Leydig cells, and changes of testosterone levels during testicular differentiation in tilapia Oreochromis niloticus. Fish Physiol Biochem, 1989, 7: 211-219
    Nakamura M, Nagahama Y. Ultrastructural study on the differentiation of steroid-producing cells during ovarian differentiation in the amago salmon, Oncorhynchus rhodurus. Aquaculture, 1993. 112: 237-251
    Na-Nakorn U. Comparison of cold and heat shocks to induce diploid gynogenesis in thai walking catfish (Clarias macrocephalus) and performances of gynogens. Aquat. Living Resour., 1995, 8: 333-341
    Nanda I, Konod M, Hornung U, et al. A duplicated copy of DMRT1 in the sex-determining region of the Y-chromosome of the madaka, Oryzias latipes. Proc Natl Acad Sci USA, 2002, 99: 11778-11783
    Ohta K, Mine T, Yamaguchi A, et al. Steroidogenic pathway to estradiol-17 beta synthesis in the ovarian follicles of the protogynous wrasse, Pseudolabrus sieboldi. Zool. Sci., 2001, 18: 937-945
    Park IS, Kim JH, Cho SH, et al. Sex differentiation and hormonal sex reversal in the bagrid catfish Pseudobagrus fulvidraco (Richardson). Aquaculture, 2004, 232, 183-193
    Pavlidis M, Koumoundouros G, Sterioti A, et al. Evidence of temperature-dependent sex determination in the European sea bass (Dicentrarchus labrax L.). Journal of Experimental Zoology, 2000, 287(3): 225-232
    Pifferer F. Endocrine sex control strategies for the feminization of teleost fish. Aquaculture, 2001, 197: 229-281
    Piferrer F, Blázquez M, Navarro L, et al. Genetic, endocrine, and environmental components of sex determination and differentiation in the European sea bass (Dicentrarchus labrax L.). General and Comparative Endocrinology, 2005, 142: 102-110
    Piferrer F, Donaldson EM. The comparative effectiveness of the natural and asynthetic estrogen for the direct feminization of chinook salmon (Oncorhynchus tashawytscha). Aquaculture, 1992, 106: 183-193
    Piferrer F, Zanuy S, Carrillo M, et al. Brief treatment with an aromatase inhibitor during sex differentiation causes chromosomally female salmon to develop as normal, functional males. J Exp Zool, 1994, 270: 255-262
    Prat F, Zanuy S, Carrillo M, et al. Seasonal changes in plasma levels of gonadal steroids of sea bass Dicentrarchus labrax L. General and Comparative Endocrinology, 1990, 78: 361-373
    Rahman MS, Takemura A, Takano K. Correlation between plasma steroid hormone and vitellogenin profiles and lunar periodicity in the female golden rabbitfish, Siganus guttatus. Comparative Biochemistry and Physiology part B, 2000, 127: 113-122
    Romer U, Beisenherz W. Environmental determination of sex in Apistogramma (Cichlidae) and two other freshwater fishes (Teleostei). J Fish Biol, 1996, 48, 714-725
    Rothbard S, Yaron Z. Changes in steroids concentrations during sexual ontogenesis in tilapia. Aquaculture, 1987, 61: 59-74
    Rougeot C, Jacobs B, Kestemont P, et al. Sex control and sex determinism study in Eurasian perch, Perca fluviatilis, by use of hormonally sex-reversed male breeders. Aquaculture, 2002, 121: 81-89
    Rougeot C, Krim A, Mandiki SNM, et al. Sex steroid dynamics during embryogenesis and sexual differentiation in Eurasian perch, Perca fluviatilis. Theriogenology, 2007, 67: 1046-1052
    Rougeot C, Prignon C, Kengne CVN, et al. Effect of high temperature during embryogenesis on the sex differentiation process in the Nile tilapia, Oreochromis niloticus. Aquaculture, 2008, 276: 205-208
    Saillant E, Fostier A, Haffray P, et al. Saline preferundum for European sea bass, Dicentrarchus labrax, Larvae and juveniles: effect of salinity on early developmentand sex determination. J Exp Mar Biol Ecol, 2003, 287: 103-117
    Scholz S, Gutzeit HO. 17α-ethinylestradiol affects reproduction, sexual differentiation and aromatase gene expression of the medaka (Oryzias latipes). Aquat Toxicol, 2000, 50: 367–373
    Shibata K, Takase M, Nakamura M. The DMRT1 expression in sex-reversed gonads of amphibians. General and Comparative Endocrinology, 2002, 127: 231-241
    Shinomiya A, Tanaka M, Kobayashi T, et al. The vasa-like gene, olvas, identifies the migration path of primordial germ cells during embryonic body formation stage in the medaka Oryzias latipes. Dev Growth Differ, 2000, 42: 317-326
    Sisneros JA, Forlano PM, Knapp R, et al. Seasonal variation of steroid hormone levels in an intertidal-nesting fish, the vocal plainfin midshipman. General and Comparative Endocrinology, 2004, 136: 101-116
    Strüssmann CA, Pati?o R. Temperature manipulation of sex differentiation in fish. In: Proceedings of the Fifth International Symposium on the Reproductive Physiology of Fish, 1995, 153–160. Edited by FW Goetz and P Thomas. FishSymp95, Austin, Texas.
    Strüssmann CA, Patiňo R. Sex determination, Environmental. In: Encyclopedia of Reproduction. Academic Press, 1999, 4: 402-409
    Strüssmann CA, Saito T, Takashima F. Heat-induced germ cell deficiency in the teleosts Odontesthes bonariensis and Patagonina hatcheri. Comp Biochem Physiol, 1998, 119A (2): 637-644
    Strüssmann CA, Nakamura M. Morphology, endocrinology, and environmental modulation of gonadal sex differentiation in teleost fishes. Fish Physiology and Biochemistry, 2002, 26: 13-29
    Sulikowski JA, Tsang PCW, Huntting Howell W. An annual cycle of steroid hormone concentration and gonad development in the winter skate, Leucoraja ocellata, from the western Gulf of Maine. Marine Biology, 2004, 144: 845-853
    Sulistyo I, Fontaine P, Rinchard J, et al. Reproductive cycle and plasma levels of steroids in male Eurasian perch Perca fluviatilis. Aquat. Living Resour., 2000, 13(2): 99-106
    Suzuki R, Oshiro T, Nakanishi T. Survival, growth and fertility of gynogenetic diploids induced in the cyprinid loach, Misgurnus anguillicaudatus. Aquaculture, 1985, 48: 45-55
    Tabata K. Artificial feminization of hirame Paralichthys olivaceus by administration of beta–estradiol, and estimation of stage of sexual differentiation. Bulletin of Hyogo Prefectual Fisheries Experimenta1 Station, 1989, 26:19-36
    Tabata K. Induction of gynogenetic diploid males and presumption of sex determination mechanisms in the hirame Paralichthys olivaceus. Bulletin of the Japanese Society of Scientific Fisheries, 1991, 57: 845–850
    Tabata K, Gorie S, Nakamura K. Induction of gynogenetic diploid in hirame Paralichthys olivaceus. Nippon Suisan Gakkaishi, 1986, 52(11): 1901-1904
    Tanaka H. Gonadal sex differentiation in flounder, Paralichthys olivaceus. National Research Institute of Aquaculture Bulletin. 1987, 11: 7-19
    Tanaka H. Effects of estradiol-17βon gonadal sex differentiation in flounder, Paralichthys olivaceus. Bulletin of National Research Institute of Aquaculture, 1988, 13: 17–23
    Tessema M, Müller-Belecke A, H?rstgen-Schwark G. Effect of rearing temperature on the sex ratios of Oreochromis niloticus population. Aquaculture, 2006, 258: 270-277
    Trant JM, Gavasso S, Ackers J, et al. Developmental expression of cytochrome P450 aromatase genes (CYP19a and CYP19b) in zebrafish fry (Danio rerio). J Exp Zool, 2001, 290: 475–483
    Traut W, Winking H. Meiotic chromosomes and stages of sex b chromosome evolution in fish: Zebra fish, platy fish and guppy. Chromosome Res, 2001, 9(8): 659-672
    Tricas TC, Maruska KP, Rasmussen LEL. Annual cycles of steroid hormone production, gonad development, and reproductive behavior in the Atlantic Stingray. General and Comparative Endocrinology, 2000, 118: 209-225
    Uchida D, Yamashita M, Kitano T, et al. An aromatase inhibitor or high water temperature induce oocyte apoptosis and depletion of P450 aromatase activity inthe gonads of genetic female zebrafish during sex-reversal. Comparative Biochemistry and Physiology Part A, 2004, 137: 11-30
    Uguz C. Histological evaluation of gonadal differentiation in fathead minnows (Pimephales promelas). Tissue and Cell, 2008, 40: 299-306
    Van den Hurk R, Lambert JGD, Peute J. Steroidogenesis in the gonads of rainbow trout fry (Salmo gairdneri) before and after the onset of gonadal sex differentiation. Reprod Nutr Dev, 1982, 22: 413-425
    Wallace RA. Vitellogenesis and oocyte growth in nonmammalian vertebrates. In Developmental Biology, 1985, pp 127–177. Ed LW Browder. New York: Plenum Press
    Wang DS, Kobayashi T, Senthilkumaran B, et al. Molecular cloning of DAX1 and SHP cDNAs and their expression patterns in the Nile tilapia, Oreochromis niloticus. Biochem Biophys Res Commun, 2002, 297(3): 632-640
    Wylie C. Germ cells. Curr Opin Genet Dev, 2000, 10: 410-413
    Yamamoto T. Sex differentiation. In: Hoar WS, Randall DJ. (Eds.), Fish Physiology, 3. Academic Press, New York, 1969, 117-175
    Yamamoto E. Studies on sex-manipulation and production of cloned populations in hirame, Paralichthys olivaceus (Temminck et Sehlege1). Bulletin of the Tottori Prefectual Fisheries Experimental Station, 1995, 34: 1-145
    Yamamoto E. Studies on sex-manipulation and production of cloned populations in hirame, Paralichthys olivaceus (Temminck et Schlegel). Aquaculture, 1999, 173: 235-246
    Yokoi H, Kobayashi T, Tanaka M, et al. Sox9 in a teleost fish, medaka(Oryzias latipes): Evidence for diversified function of Sox9 in gonad differentiation. Mol Reprod Dev, 2002, 63(1): 5-16
    Yoon C, Kawakami K, Hopkins N. Zebrafish vasa homologue RNA is localized to the cleavage planes of 2-and 4-cell-stage embryos and is expressed in the primordial germ cells. Development, 1997, 124: 3157—3166
    Yoshizaki G, Sakatani S, Tominaga H, et al. Cloning and characterization of vasa-like gene in rainbow trout and its expression in the germ cell lineage. Mol Reprod Dev,2000, 55: 364-371
    Zhou R, Cheng H, Zhang Q, et al.SRY-related genes in the genome of the rice field eel (Monopterus albus). Genet Sel Evol, 2002, 34: 129-137
    Zhou R, Liu L, Guo Y, et al. Similar gene structure of two Sox9a genes and their expression patterns during gonadal differentiation in a teleost fish, rice field eel (Monopterus albus). Mol Reprod Dev, 2003, 66(3): 211-217

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700