用户名: 密码: 验证码:
垂体前叶神经纤维的功能学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半个世纪前,G.Harris确立了垂体前叶受下丘脑调节的经典理论,
    认为垂体前叶受下丘脑正中隆起处释放的促激素调控。垂体前叶内虽
    存在有少量的神经纤维,但它们分布于全体前叶血管周围,并不直接
    调节腺细胞的分泌。近年来,在大鼠、狗、猴和人的垂体前叶内发现
    有相当数量的SP、CGRP等多种免疫反应阳性神经纤维,这些神经纤
    维主要集中在腺细胞周围而非血管壁,神经纤维的膨体与腺细胞密切
    接触。电镜研究表明在狗和大鼠的垂体前叶内,神经纤维与腺细胞形
    成突触联系,强烈提示这些神经纤维可以调节腺细胞的活动。大鼠在
    肾上腺或性腺切除等内分泌状态下,垂体前叶神经纤维密度增加,并
    存在活跃的芽生现象。所在这些都提示垂体前叶存在直接神经调节,
    于是提出了垂体前叶受“神经-体液双重调节”的假说。
     我们采用离体灌流结合电场刺激的方法开展垂体前叶神经纤维生
    理功能的实验研究。用自制的多头刀架将垂体前叶沿矢状轴切成宽
    0.8mm的薄片,置于灌流小室内经KRBGA灌流液平衡30分钟后,
    施加电场刺激10分钟,刺激参数为30mA,10Hz,0.5ms。收集每10
    分钟的灌流液放免测定ACTH的浓度。每次实验结束前(通常60分
    
     第四军医大学硕士学位论文
    钟),用含高r的KRBGA灌流液诱发ACTH的峰值分泌,籍此检测
    腺细胞的功能性存活。采用方差分析法进行统计分析,设定灵敏度
    P<0刀5。
    实验结果如下:
    1.大鼠垂体前叶组织薄片经KRBGA平衡30分钟后,持续灌流50
     分钟,ACTH 43efl分泌无明显变化,同样的ACTH的基础分泌不
     受1卜M*TX的影响。
    2.用30mA、0.sins、10Hi的电场刺激10分钟可显著抑制ACTH的
     基础分泌水平从刺激前平均 163p咖l下降至刺激后 40分钟
     89p咖l。电场刺激对 ACTH分泌的抑制作用可被 in M的 TTX完
     全阻断。
    3.精氨酸加压素门p咖1)可使ACTH的分泌由平均149pg忱1增加
     至325pg/ml。电场刺激对精氨酸加压素诱发的ACTH分泌的抑制
     作用更加显著。
The clasical theory of hypothalamic control of the anterior pituitary was founded by G. Harris more than half a century ago, which maintains that the anterior pituitary is regulated via hypothalamic hormones secreted at the median eminence but not by direct innervation, albeit it is acknowledged that there is a small amount of autonomic vascular nerve fibres. This concept is recently challenged by the discovery of substantial amount of substance P-and/ or calcitonin gene-related peptide-immunoreactive nerve fibres in the anterior pituitary of rat, dog, monkey, and human. The nerve fibres were found to mainly gather around gland cells, rather than along vascular walls. The varicosities of the nerve fibres could be seen in close proximity to the gland cells. Electron microscopic studies in the dog and rat demonstrated synapses with the gland cells, strongly suggesting that the nerve fibres could regulate the activities of the gland cells. Moreover, changes in endocrine status by adrenalectomy or ovariectomy in the rat profoundly increased the density of the nerve fibres in the anterior pituitary as a result of active axonal sprouting. All these lines of evidence imply a direct neural regulation of the anterior pituitary and a hypothesis of neural-humoral dual regulation of the anterior pituitary has been postulated .However, the physiological significance of the innervation remains an enigma.
    We addressed the issue by stimulating the an anterior pituitary slices in vitro. The slices were superfused with Krebs-Ringer bicarbonate-BSA
    
    
    
    buffer (KRBGA)in a superfusion chamber for 30min before electrical field stimulation. A square current of 30 mA, lOHz and 0.5ms was then applied for lOmin. The perfusate was collected every lOmin and measured for ACTH by radioimmunoassay. At the end of each experiment (typically 60 min), KRBGA was replaced with high potassium KRBGA to evoke peak ACTH output for assessment of the functional viability of the tissue during the experimental period. Statistic analysis with ANOVA test was done to examine differences between group values, with the limit of significance set atp<0.05. The main results are as fallows:
    1. After 30min of equilibration, the KRBGA perfusion was continued for another SOmin. The basal release of ACTH remained constant throughout the experimental period. No significant changes in ACTH basal concentrations were noticed. Similarly, perfusion with KRBGA containing tetrodotxin(TTX, 1 ja M) for the same duration failed to affect the ACTH basal secretion.
    2. Electrical field stimulation(EFS)of 30mA, lOHz and 0.5ms for lOmin significantly suppressed basal ACTH concentrations. The suppressive effect of EFS was completely abolished by TTX(1 ju M).
    3. The addition of [Args]-vasopressin(10pg/ml) increased ACTH secretion from the basal concentration of 149pg/ml. to 325pg/ml Super-imposition of electrical field stimulation of vasopressin induced -very marked suppression.
引文
1. Aguilera G, Harwood JP, Wilson JX, Morell J, Brown JH, Catt KJ. Mechanisms of action of corticotropin-releasing factor and other regulators of corticotropin release in rat pituitary cells. J Biol Chem 1983; 258:8039-8045.
    2. Arita J. And Kimura F. Enkephalin inhibits dopamine synthesis in vitro in the median eminence portion of rat hypothalamic sliles. Endocrinology 123:694, 1988
    3. Aleshin B V: The effect of the sympathetic impulses on the anterior pituitary functions. Major Problems in Neuroendocrinology(eds.Bajusz, E. And Jasmin, G.) PP.62-81. Karger, Basel. 1964
    4. Bayet et al Tyrosine-hydroxylase immunoreactive fibers in the rat anterior pituitary. Neuroreport. 1994;5:1505-1508
    5. Benowitz LI et al GAP-43: an intrinsic determinant of Neuronal development and plasticity. TINS VOL. 20 NO. 2
    6. Besedovsky H, del Rey A, Sorkin E, Dinarello CA. Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones. Science 1986; 233:652-654.
    7. Buckingham JC. The influence of corticosteroids on the secretion of corticotropin and its hypothalamic releasing hormone. J Physiol (Lond) 1979; 286:331-342.
    8. Cameron E et al Some light-and electron-microscopical obersvations on the pars tuberalis of the pituitary gland of the rabbit. Endocrinol.51:505, 1972
    9. Coiro V, Chiodeva P. Inhibition by sodium valporate of the arginine vasopessin and adrenocorticotropin response to angiotensin Ⅱ in normal men. Brain Res 1989; 491:169-172.
    10. Dogterom, J., TJ.B.van Wimersma Greidanus, and D.De Wied. Vasopressin in cerebrospinal fluid and plasma of man, dog, and rat. Am.J.Physiol.1978; 234(5) : E463-E467.
    
    
    11. Familari M, Smith AI, Smith R, Funder JW. Arginine Vasopressin is a much more potent stimulus to ACTH release from ovine anterior pituitary cells than ovine corticotropin-releasing factor. Neuroendocrinology 1989; 50:152-157.
    12. Friedman E: Serotonergic innervation of the rat pituitary serotonergic innervation of the rat pituitary intermediate lobe: decrease after stalk section: Endocrinology, 112:1943,1983
    13. Gibbs DM, Vale W. Presence of corticotropin-releasing factor-like immunoreactivity in hypophysial portal blood. Endocrinology 1982; 111: 1418-1420.
    14. Gon G, et al.(1990) Localization of immunoreactivity for calcitonin generelated peptide in the rat anterior pituitary during ontogeny and gonadal steroid manipulations and detection of its messenger ribonucleic acid Endocrinology. 127:2618-2629
    15. Gon G, Giaid A, Steel JH, O'Halloran DJ, Van Noorden S, Ghatei MA, Jones PM, Amara SG, Ishikawa H, Bloom SR, Polak JM. Localization of immunoreactivity for calcitonin gene-related peptide in the rat anterior pituitary during ontogeny and gonadal steroid manipulations and detection of its messenger ribonucleic acid. Endocrinology 1990; 127: 2618-2629.
    16. Gross D S: The mammalian hypophysial pars tuberais: A comparative immunocytochemical study. Gen Comp Endocrinol.56:283, 1984
    17. Harris GW. Neural control of the pituitary gland. Physiol Rev 1948; 28:139-179.
    18. Halasz B. Hypothalamo-anterior pituitary system and pituitary portal vessels. In: Imura H ed. The pituitary gland. New York: Raven Press, 1985; 1-23.
    19. Halili-Manabat C, Oki Y, Iino K, Iwabuchi M, Morita H, Yoshima T. The role of sodium in mediating adrenocorticotropin secretion by perfused rat anterior pituitary cells. Endocrinology 1995; 136: 2937-2942.
    20. Henriksen JS. Tachykinins induce secretion of prolactin from perfused rat anterior pituitary cells by interactions with two different binding sites. J. Recept Signal Transduct Res. 1995;15:529-541
    
    
    21. Hooi SC, Maiter DM, Martin B, et al. Galaninergic mechanism is involved in the regulation of corticotropin and thyrotropin secretion in the rat. Endocrinology, 1990; 127(5) :2281
    22. Horn AM, Robiuson LCAF, Fink G. Oxytocin and vasopressin in rathypophysial portal blood: experimental studies in normal and Brattleboro rats. J Endocrinol 1985; 104;211-214
    23. Iovino M, Steardo L. Vasopressin release to central and peripheral angiotensin Ⅱ in rats with lesions of the subfornical organ. Brain Resl984; 322:265
    24. Jeffery Schwartz, Benedict Canny, Wylie W. Vale, John W, Funder. Intrapituitary cell-cell comunication regulates ACTH Secretion. Neuroendocrinology 1989; 50:716-722
    25. Jia, L.G, Canuy, B.J, Oath, D.N. & Leong, D.A.. Distinct classes of corticotropes mediate corticotropin-releasing hormone and arginine vasopressin-stimulated adrenocorticortropin release. Endocrinology 1991; 128, 197-203
    26. Jones MT, Gillham B. Clinical and experimental studies in the role of GABA in the regulation of ACTH secretion. Neuropharmacology 1984; 23:833-834
    27. Jones MT, Gillham b. Clinical and experimental studies in the role of GABA in the regulation of ACTH secretion: a review. Psychoneuroendocrinology 1984; 9:107-123
    28. Jones MT, Gillham B. Factors involved in the regulation of adrenocortinotropic hormone( β-lipotropic hormone, physiological Rev 1988; 68:743
    29. Ju G, Liu SJ, Ma D. Calcitonin gene-related peptide and substance P-like-immunoreactive innervation of the anterior pituitary in the rat. Neuroscience 1993; 54: 981-989.
    30. Ju G, Liu SJ. Relationship of substance P-immunoreactive nerve fibers with somatotropes of the anterior pituitary in the monkey. J Neuroendocr 1989; 1: 397-400.
    31. Ju G, Liu SJ. Substance P-immunoreactive nerve fibers in the pars distalis of the anterior pituitary of macaques. J Chem Neuroanat 1989; 2: 349-360.
    
    
    32. Ju G, Liu SJ. Substance P-like immunoreactive nerve fibers in the pars distalis of the anterior pituitary in the dog. Cell Tissue Res 1990; 261: 323-331.
    33. Ju G, Liu SJ. The relationship of substance P-immunoreactive nerve fibers to thyrotropes and corticotropes in the pars distalis of the anterior pituitary in the monkey. Neuroscience 1989; 32: 441-450.
    34. Ju G, Ma D, Pan SC. Response of Calcitonin gene-related peptide-like immunoreactive nerve fibers of the anterior pituitary to adrenalectomy in the rat. Neuroendocrinology 1994; 59: 505-510.
    35. Ju G, Zhang X. An electron microscopic study on substance P-like immunoreactive nerve fibers in the pars distalis of the adenohypophysis in the dog. Neuroscience 1990; 38: 503-513.
    36. Ju G, Zhang X. An electron microscopical study of calcitonin gene-related peptide-like immunoreactive innervation of the anterior pituitary in the dog. J Comp Neurol 1992; 326: 101-111.
    37. Ju G. Et al. Innervation of mammalian anterior pituitary. A mini review. Microsc Res Tech. 1997; 39:131-137
    38. Kazahari K, Sano E, Matsuura N, Ono M. Chromatin structure of the rat somatotropin gene locus and physical linkage of the rat somatotropin gene and skeletal-muscle sodium-channel gene. Eur J Biochem 1997; 244: 494-500.
    39. Klugbauer N, Lacinova L, Flockerzi V, Hofmann F. Structure and functional expression of a new member of the tetrodotoxin-sensitive voltage-gated sodium channel family from human neuroendocrine cells. EMBO J 1995; 14: 1084-1090.
    40. Liu SJ, Ju G. Substance P-like immunoreactive nerve fibers in the pars distalis of the adenohypophysis of the macaque monkeys. Neurosci Lett 1988; 94:1-4.
    41. Liu Y, Morris . JF, Ju G. Synaptic realationship of substance P-like-immunoreactive nerve fibers with gland cells of the anterior pituitary in the rat. Cell Tissue Res 1996; 285:227-234.
    42. Liu Y-Y, Ju G. Galanin-like immunoreactive nerve fibers in the anterior pituitary of the normal and adrenalectomised rat. Ada Histochem 1998; 100:149-156.
    
    
    43. Loeffler JP, Demeneix MA,Kley NA, et al. Dopamine inhibition of proopiomelanocortin gene expression in the intermediate lobe of the pituitary. Neuroendocrinology, 1988; 47:95-101
    44. Lu CR, Meng FT, Benowitz LI, Ju G. Evidence for axonal sprouting in the anterior pituitary following adrenalectomy in the rat. J Endocrinol 1995; 147:161-166.
    45. Lysine K, Mecca SM. Induction of adrenocorticotropic hormone release by interleukin-6 in vivo and in votro. Ann NY Acad Sci 1992; 650:182-185
    46. Ma D, Ju G. The relationship and developmental changes of substance P-immunoreactive nerve fibers to thyrotropes in the anterior pituitary in human fetus. Chin J Neuroanat 1994; 2:117-121.
    47. Ma D, Zhao C, Mayhew TM, Ju G. Response of substance P-immunoreactive nerve fibers in the anterior pituitary to plasma oestrogen concentrations in the rat. J Neuroendocr 1997; 9:735-740.
    48. Man SE. Larsen PJ, Mikkelsen JA, Saermark T. Substance p and related tachykinin induce receptor mediated hydrolysis of polyphosphoinosidides in the rat anterior pituitary. Mol Cell Endocrinol 1990; 69:69-78
    49. Mazzdchi-G, Malendowicz LK, Menehtelli V. Nussdorfer GG. Calcitonin gene related peptide depresses the growth and secretory activity of rat adrenal zone glomerulosa. Neuropeptides 1992; 21(3) : 157-61
    50. Metuzals J: The structure of the hypothalamic final common path in the cat.The periventricular area of the nucleus arcuatus and the eminentia mediana. J Comp Neurol. 113:103,1959
    51. Mikkelsen JD, Larsen PJ, Moller M, Vllhardt H, Saermark T. Substance P in the median eminence and pituitary of the rat: demonstration of immunoreactive nerve fibers and specific binding sites. Neuroendocrinology 1989; 50:100-108.
    52. Nakarte PK. Classification of anterior pituitary cell types with immunoenzyme histochemistry. JhistochemistryCytochem, 1970; 18(1) :9
    53. Nicholson SA, Adrian TE, Bloom SR et al. Effect of hypothalamic neuropeptides
    
     on corticotropin release from quarters of rat anterior pituitary gland in vitro. J Endocrinol 1984; 100:219-226
    54. Ohnichi M, Hirota K, Tanizawa D et al. binding sties for interleukin-6 in the anterior pituitary gland. Neuroendocrinology 1992; 55:199-203
    55. Paden CM et al. Innervation of the rat anterior and neurointermediate pituitary visualized by immunocytochemistry for the growth-assosiated protein GAP-43. Endocrinol. 1994; 134:503-506
    56. Paden CM, Babcock C, Conner KA, Duong DKT, Kuhl JM. Axons containing the growth associated protein GAP-43 specifically target rat corticotrophs following adrenalectomy. JNeuroendocr 1998; 10:693-699.
    57. Payette R.F.,et al: Serotonergic elements of the mammalian pituitary. Endocrinology. 116:1933,1985
    58. Perlstein RS, Mongey EH, Jackson WE, Neta R. Interleukin-1 and interleukin-6 act synergistically to stimulate the release of adrenocorticotropic hormone in vivo. Lymphokine Cytokine Res 1991; 10:141-146.
    59. Rasmussen AT. Innervation of the hypophysis. Endocrinology 1938; 23:263-278.
    60. Rivier C, Vale W. Modulation of stress induced ACTH release by corticotropin-releasing factor, catecholamines and vasopressin, Nature 1983; 305:325-327
    61. Rivier C, Vale W. Stimulatory effect of interleukin-1 on adrenocorticotropin secretion in the rats: is it modulated by prostaglandin. Endocrinology 1991; 129:384-288
    62. Romeis B: Innerserelorische Dr u sen Ⅱ , Hypophyse, handbu h der mikroskopischen Anatomie des Menschen. Berlin 1940
    63. Rosenfeld MG, Mermod J-J, Amara SG, Swanson LW, Sawchenko PE, Rivier J, Vale WW, Evans RM. Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature 1983; 304:129-135.
    64. Samson WK, et al Evidence for physiological for oxytocin in the control of prolactin secretion. Erdocrinologty 1986; 119:554
    65. Samson WK. et al Oxytocin mediates the hypothalamic action of vasoactive
    
     intestinal peptide to stimulate prolactin secretion. Endocrinology 1989; 124:812,
    66. Skofitsch G, Jacobowitz DM. Calcitonin gene-related peptide: detailed immunohistochemical distribution in the central nervous system. Peptides 1985; 6:721-745.
    67. Swanson LW et al Hypothalamic integration:organization of the paraventricular and surpraoptic nuclei. Ann Rev Neurosci 6:269,1983
    68. Szentagothal J et al Hypothalamic control of the anterior pituitary, Akademiai Kiada, Budapest. 1962
    69. Thomas GB et al Effects and site of action of hypothalamic neuropeptides on prolactin release in sheep. Neuroendo crinology 1988; 48:252
    70. Turner, C.D., Bagnara J.T. General Endocrinology W.B.Saunders company. 1976.
    71. Usui T, Nakai Y, Tsukada T, et al Cyclic AMP-responsive region of the human proopiomelanocortin gene.Mol Cell Endocrinol, 1989 ; 62:141-146
    72. Vale W, Rivier C. Substance modulating the secretion of ACTH by cultured anterior pituitary cells. Fed Proc, 1977; 36:2094
    73. Vale W, Vaughan J, smith M, Yamamoto G,Rivier C. Effects of synthetic ovine corticotropin-releasing factor, glucocorticoids, catecholamines, neurohypophysial peptides.and other substances on cultured corticotropic cels. Endocrinology 1993; 113:1121
    74. Vigh S, Arimura A, Gottschall PE, et al Cytochemical characterization of anterior pituitary target cells of the neuropeptide, pituitary adenylate cyclase activting polypeptide(PACAP), using biotinlated ligands, peptides 1993; 57:733-737
    75. Vincent JR, Hokfelt T. GABA neuron systems in hypothalamus and pituitary gland. Neuroendocrinology 1982; 34:117-125
    76. Wang J and Ju G. TH-and chAT-immunoreactive nerve fibers in the anterior pituitary of the rat. Chin J Histochem Cytochem. 1997;6:129-133
    77. Westlund KM, Childs GV. Localization of serotonin fibers in the adenohypophysis. Endocrinology 1982; 111:1761-1763
    78. Westlund KN, Childs GV. Localization of serotonin fibers in the rat
    
    adenohypophysis. Endocrinology 1982;111:1761-1763.
    79. Westlund KN, Chmielowiec S, Childs GV. Somatostatin fiber and their relationship to specific cell type (GH and TSH) in the rat anterior pituitary.Peptides 1983;4:557-562.
    80. Wiffinger WW, Larsen WJ. Downs TR, Wilbur DL. An in vitro model for studies of intercellular communication in cultures rat anterior pituitary cells. Tissue and cell 1984; 16:483-497
    81.程治平 内分泌生理学 人民卫生出版社1984
    82.克里格休斯 神经内分泌学 1986
    83.童伟 李风英 邝安等 大鼠垂体细胞ACTH分泌的调节控制生理学报1992;44;414-419
    84.马丹 鞠躬 范思昌 肾上腺切除后大鼠垂体前圳降钙素基因相关肽免疫反应神经纤维的变化。解剖学报1993;24:361-367
    85.马丹 鞠躬 新生儿垂体前叶内微管相关蛋白与免疫反应纤维的分布。神经解剖学杂志1992;8:187-190
    86.马丹 鞠躬 人胎儿垂体前叶中P物质免疫反应阳性神经纤维形态及分布。解剖学报1994;25;18-21
    87.庞志平 鞠躬等 甘丙肽和经典激素在大鼠垂体前叶细胞内的共存研究免疫组织化学方法1995;26:123-126
    88.苏宇华 石爱荣等 大鼠垂体远侧部ACTH细胞与GH细胞形态学关系的免疫细胞化学研究 解剖学报1995;26(1)96-100
    89.张殿明,徐隆绍主编 神经内分泌学 中国医药科技出版社.1991
    90.史轶蘩主编 协和内分泌和代谢学 科学出版社.1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700