用户名: 密码: 验证码:
气候变化和人类活动在沙漠化过程中相对作用的定量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沙漠化是荒漠化的主要类型,它作为极其重要的环境和社会经济问题困扰着当今世界,威胁着人类的生存和发展。中国是世界上受沙漠化影响最为严重的国家之一,沙漠化引起的土壤质量下降、土地资源减少以及沙尘暴等问题严重制约了社会经济的可持续发展以及和谐社会的构建。近年来,尽管我国的沙漠化防治工作取得了一定的成效,但是整体上其形势依然严峻。
     沙漠化过程的驱动力作用研究是沙漠化研究的基础。气候变化和人类活动是导致土地沙漠化的两个主要驱动力,在不同尺度下开展气候变化和人类活动在土地沙漠化过程中相对作用的定量评价,对于沙漠化治理和沙漠化的理论研究具有重要意义。气候变化和人类活动在沙漠化过程中相对作用的定量研究,是准确评价沙漠化动态过程、研究沙漠化对全球气候变化响应以及制定沙漠化防治对策与战略的基础。探索有效方法开展气候变化和人类活动在沙漠化过程中相对作用的定量研究,突破目前的研究瓶颈,不仅能够丰富沙漠化科学研究的理论基础、澄清目前沙漠化研究中的一些误区,而且能为区域和国家尺度上沙漠化防治对策与战略的制定提供理论依据。本研究以鄂尔多斯高原为典型研究区,在系统分析近30年来鄂尔多斯高原气候变化和人类活动特征变化的基础上,建立沙漠化的定量监测以及沙漠化过程中气候变化和人类活动相对作用的定量评价方法,最终对鄂尔多斯高原沙漠化过程中气候变化和人类活动的相对作用进行多尺度研究。论文以定量研究为主线,从方法论的角度对沙漠化过程中驱动力作用研究进行突破,主要取得了以下的成果和结论:
     1、建立基于Landsat数据的鄂尔多斯高原沙漠化定量监测方法。从沙漠化引起的地表特征变化入手,选取NDVI、MSDI以及Albedo三个指标分别代表沙漠化地表的植被丰度、景观格局以及地表微气候条件,来进行沙漠化定量监测。针对Landsat数据特点,在提出各个指标的反演算法的基础上,综合考虑不同植被类型区以及遥感影像获取的时间,建立了基于决策树模型的沙漠化定量监测方法。根据精度检验的结果,该方法监测精度较高,可以准确地用于鄂尔多斯高原沙漠化的监测研究。
     2、1980-2005年间,鄂尔多斯高原沙漠化变化趋势呈一种逆转与发展同时存在,但是逆转整体大于发展的态势。在1980-1990年间,逆转的沙漠化土地在鄂尔多斯高原分布相对分散,而发展的沙漠化土地的空间分布相对较为集中,主要分布在杭锦旗东南部的温带落叶灌丛与荒漠草原的过渡区域、准格尔旗西部的温带禾草草原区域、以及鄂托克前旗南部的温带落叶灌丛区。在1990-2000年间,沙漠化逆转的土地面积略高于沙漠化发展的土地面积,明显逆转的沙漠化土地集中分布在伊金霍洛旗西北部的温带落叶灌丛与温带禾草草原的过渡区以及鄂托克前旗西部的温带落叶灌丛区;而沙漠化发展的土地主要集中在达拉特旗、杭锦旗、准格尔旗、乌审旗以及东胜。在2000-2005年,该时段年均沙漠化的逆转面积最大,逆转的沙漠化土地主要分布于鄂尔多斯高原东北部的准格尔旗、达拉特旗和东胜这三个旗县的大部分地区;而发展的沙漠化土地主要集中分布在伊金霍洛旗以及鄂托克前旗西北部的温带落叶灌丛与荒漠草原的过渡地带。
     3、气候变化和人类活动在沙漠化过程中相对作用定量评价方法的建立。选择净初级生产力NPP为衡量沙漠化过程中气候变化和人类活动相对作用的公共指标,利用潜在NPP以及潜在NPP与实际NPP的差值来衡量气候变化和人类活动在沙漠化过程中的相对作用,通过拆分复杂的沙漠化驱动力过程,根据沙漠化逆转和发展与气候变化和人类活动引起的NPP变化趋势之间的可能情景,构建沙漠化过程中气候变化和人类活动的定量评价方法。在建立概念框架的基础上,对评价过程中所需的数据进行量化,其中用CASA模型来模拟实际NPP,并在CASA模型的基础上建立了潜在NPP的计算方法。通过对实际NPP以及定量评价结果的验证,表明本研究提出的定量评价方法可以用于沙漠化过程中气候变化和人类活动相对作用的评价。
     4、不同时间尺度下,鄂尔多斯高原沙漠化过程中气候变化和人类活动相对作用存在明显的差异。1980-1990年时间尺度下,气候变化是鄂尔多斯高原沙漠化逆转的主要原因,以气候变化为主导因素的逆转的沙漠化土地面积占总逆转面积的89.45%;人类活动则是沙漠化发展的主要原因,以人类活动为主导因素的发展的沙漠化土地占总发展面积的83.93%。在1990-2000年时间尺度下,人类活动是沙漠化逆转的主导因素,以人类活动为主导因素的逆转的沙漠化土地面积占总逆转面积的90.04%;而气候变化则主导了该时期的沙漠化发展,以气候变化为主导因素的发展的沙漠化土地面积占总发展面积的91.20%。在1980-2000年时间尺度下,人类活动是鄂尔多斯高原沙漠化逆转的主要原因,以人类活动为主导因素的逆转的沙漠化土地面积占总逆转面积的93.02%;而气候变化则是导致沙漠化发展的主要因素,以气候变化为主导因素的发展的沙漠化土地面积占总发展面积的85.77%。1980-2005年时间尺度下,气候变化和人类活动共同导致了鄂尔多斯高原的沙漠化逆转,其中气候变化主导的沙漠化逆转面积略大,占59.71%;而对于沙漠化发展,人类活动则是该时间尺度下的沙漠化发展的主导因素,以人类活动为主导因素的发展的沙漠化土地占总发展面积的62.35%。
     5、不同空间尺度下,鄂尔多斯高原沙漠化过程中气候变化和人类活动相对作用也存在明显的差异。在1980-2005年时间尺度下,随着空间尺度的增加,气候变化和人类活动主导的沙漠化逆转面积均呈增加的趋势,直到旗县尺度达到最大;而气候变化和人类活动主导的沙漠化发展以及评价过程中的误差面积都表现为先增加后降低的趋势,直到旗县尺度减低为0。
As the main type of desertification, sandy desertification is becoming one of the most serious global social-economic-environmental issues of our time, which threatens human survival and development. China is one of the countries which are severely affected by sandy desertification in the world. Sandy desertification caused a lot of problems such as reduction of land quality, decrease of land resources, sand storm, etc., which seriously impede the sustained development of economy and construction of harmonious society. The whole country is still in a serious condition though we have achieved some good results in preventing sandy desertification in recent years.
     Assessing the driving forces of sandy desertification is fundamental and important for sandy desertification research. Climate change and human activities are main driving forces of sandy decertification. The research of the relative role of climate change and human activities in sandy desertification at different temporal and spatial scales has important significance in the prevention of sandy desertification and the research of sandy desertification theory. The quantitative assessment of the relative role of climate change and human activities in sandy desertification is the foundation for accurately evaluating the dynamic progress of sandy desertification, researching the sandy desertification in response to climate change and formulating the strategies of preventing the sandy desertification. Exploring effective methods to carry out the quantitative assessment of the relative role of climate change and human activities in sandy desertification and breaking the present research bottleneck, which not only can enrich the theoretical basis of sandy desertification research and clarify some mistakes in sandy desertification research, but also can provide theoretical basis for formulating strategy of sandy desertification prevention on the district and country scale. In this study, Ordos plateau was selected as the typical research region. Based on analyzing the character of climate change and human activities, this study formulated quantitative monitoring of sandy decertification and quantitative assessment of the relative role of climate change and human activities in the process of sandy decertification, and carried out the research of the relative role of climate change and human activities in sandy desertification in Ordos plateau at multi-scales. This paper takes the quantitative research as masterstroke and breaks the research of driving forces in the progress of sandy desertification from methodology's point of view. The followings are the productions and conclusions of this dissertation:
     1 Developed a quantitative method for monitoring sandy desertification in Ordos Plateau based on Landsat data. Based on the characteristics of the change of land surface induced by sandy desertification, the author selected NDVI, MSDI and Albedo as the indicators to represent the abundant of vegetation, landscape and micrometeorological condition of land surface with sandy desertification respectively for monitoring sandy desertification. Based on the characteristics of Landsat data, the author developed the methods for retrieving the there indicators, and built the quantitative method for monitoring sandy desertification based on Decision tree model with considering the effects of vegetation types and the image date on the value of indicators. According to the results of accuracies checking, there was relative higher accuracy of this method, which made it can be applied to monitor sandy desertification in Ordos Plateau accurately in this study.
     2 From 1980 to 2005, some regions of Ordos Plateau experienced sandy desertification reversion and some places experienced sandy desertification expansion; however, there had a situation that the area of sandy desertification reversion was higher than that of sandy desertification expansion in this period. From 1980 to 1990, the distribution of the area of sandy desertification reversion was relatively scattered while the distribution of the area of sandy desertification expansion was relatively concentrative. The areas of reversed sandy desertification were mainly distributed in the transition zone between temperate deciduous scrubs and desert steppe in the south east of Hanjin Banner, temperate steppe in the east of Zhunger Banner and the temperate deciduous scrubs in the south of Etuokeqian Banner. From 1990 to 2000, the area of sandy desertification reversion was higher than that of sandy desertification expansion. The regions experienced obviously sandy desertification reversion mainly distributed in the transition zone between temperate deciduous scrubs and temperate steppe in the north west of Yijinhuoluo Banner, and the temperate deciduous scrubs in the west of Etuokeqian Banner. However, the area of sandy desertification expansion mainly distributed in Dalate, Hangjin, Zhungeer, Wushen Banner and Dongsheng city. From 2000 to 2005, mean annul revised sandy desertification area in this period was biggest in the three periods, which mainly distributed in the most areas of Zhunger Banner, Dalate Banner and Dongsheng city, while the areas of reversed sandy desertification centralizely distributed in Yijinhuoluo Banner and the transition zone between temperate steppe and temperate deciduous scrubs in the north west of Wushen Banner.
     3 Formulate a quantitative method for assessing the relative role of climate change and human activities in sandy decertification. NPP was selected as the indicator to measure and assess the impact of climate change and human activities on sandy desertification in this study. Potential NPP and the difference between potential NPP and actual NPP were used to measure and assess the impact of climate change and human activities on sandy desertification. Through the process of splitting the driving forces of sandy desertification and basing on the scenarios between the sandy desertification reversion and expansion and the changes of NPP induced by climate change and human activities, formulate the quantitative assessment of the relative role of climate change and human activities in sandy decertification. On the basis of setting up the conceptual model, the author quantified the required date in the assessment process. CASA model was used to simulate the actual NPP, and establish the calculate method of potential NPP based on CASA model. According to the validation of the actual NPP and the results of quantitative assessment, it proved that the quantitative assessing method developed in this study can be used to assess the relative role of climate change and human activities in sandy decertification.
     4 The relative role of climate change and human activities in sandy desertification of Ordos Plateau showed significant differences when it assessed at different temporal scales. When it was assessed at the temporal scale from 1980 to 1990, climate change was the dominant factor that induced the reversion of sandy desertification, and the area of reversed sandy desertification which was induced by climate change was 89.45 percent of the total area of reversed sandy desertification. While human activities was the dominant factor that induced the expansion of sandy desertification, and the area of expanded sandy desertification which was induced by human activities was 83.93 percent of the total area of expanded sandy desertification in this period. When it was assessed at the temporal scale from 1990 to 2000, human activities was the dominant factor that induced the reversion of sandy desertification, and the area of reversed sandy desertification which was induced by human activities was 90.04 percent of the total area of reversed sandy desertification. While climate change was the dominant factor that induced the expansion of sandy desertification in this period, and the area of expanded sandy desertification which was induced by climate change was 91.20 percent of the total area of expanded sandy desertification. When it was assessed at the temporal scale from 1980 to 2000, human activities was the dominant factor that induced the reversion of sandy desertification, and the area of reversed sandy desertification which was induced by human activities was 93.02 percent of the total area of reversed sandy desertification. While climate change was the dominant factor that induced the expansion of sandy desertification, and the area of expanded sandy desertification which was induced by climate change was 85.77 percent of the total area of expanded sandy desertification. However, when it was assessed at the temporal scale from 1980 to 2005, both climate change and human activities induced the reversion of sandy desertification, but the areas of reversed sandy desertification which was induced by climate change were slightly bigger and reached 59.71 percent of the total revised area; while human activities was the dominant factor that induced the expansion of sandy desertification in this period. The area of expanded sandy desertification which was induced by human activities was 62.35 percent of the total area of expanded sandy desertification.
     5 When it assessed at different spatial scales, there were also differences in the relative role of climate change and human activities in sandy desertification of Ordos Plateau. Along with the increase of spatial scale, there is a growing tendency for the areas of reversed sandy desertification which was induced by both climate changes and human activities, and both of them reached the biggest when it assessed at banner scale. But the expansion of sandy desertification induced by climate change and human activities and error area in the process of assessment are represented by the trend of lowing after increasing, and both of them reached 0 when it assessed at banner scale.
引文
1. Allen R G, Pereira L S, Raes D, et al. Crop evapotranspiration-Guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56. FAO-Food and Agriculture Organization of the United Nations, Rome,1998
    2. Anyamba A, Tucker C J. Analysis of Sahelian vegetation dynamics using NOAA-AVHRR NDVI data from 1981-2003[J]. Journal of Arid Environments,2005,63:596-614
    3. Asner G P, Heidebrecht K B. Desertification alters regional ecosystem-climate interactions [J]. Global Change Biology,2005,11:182-194
    4. Bailey R G. Explanatory supplement to Ecoregions Map of the Continents[J]. Environmental Conservation,1989,16:307-309
    5. Barnes E M, Sudduth K A, Hummel J W, et al. Remote-and ground-based sensor techniques to map soil properties[J]. Photogrammetric Engineering and Remote Sensing,2003,69(6):619-630
    6. Ben-Dor E, Inbar Y, Chen Y. The reflectance spectra of organic matter in the visible near-infrared and short wave infrared region (400-2500nm) during a controlled decomposition process[J]. Remote Sensing of Environment,1997,61:1-15
    7. Bergkamp G. A hierarchical approach for desertification assessment J]. Environmental Monitoring and Assessment,1995,37(1):59-78
    8. Carly G, Bertrand B. Moderate sheep grazing in semiarid shrubland alters small-scale soil surface structure and patch properties[J]. Catena,2006,65:285-291
    9. Charney J G, Quirk W J, Chow S, et al. A comparative study of the effects of a albedo change on drought semi-arid regions[J]. Journal of the Atmospheric Sciences,1977,34:1366-1385
    10. Charney J G, Stone P H. Drought in the Sahara:a biogeophysical feedback mechanism[J]. Science, 1975,187:434-435
    11. Chavez P S Jr. An improved dark-object subtraction technique for atmospheric scattering correction of Multispectral data[J]. Remote Sensing of Environment,1988,24:459-479
    12. Chavez P S Jr. Image-based atmospheric corrections-revisited and improved[J]. Photogrammetric Engineering and Remote Sensing,1996,62:1025-1036
    13. Chen F, Kissel D E, West. L T, et al. Field scale mapping of surface soil clay concerntration[J]. Precision Agriculture,2004,5:7-26
    14. Chen Y X, Lee G, Lee P, et al. Model analysis of grazing effect on above-ground biomass and above-ground net primary production of a Mongolian grassland ecosystem[J]. Journal of Hydrology, 2007,333:155-164
    15. Ci L J, Yang X H, Chen Z X. The potential impacts of climate change scenarios on desertification in China[J]. Earth Science Frontiers,2002,9(2):287-294
    16. Daniel W O, Peter H T, Karen F B. Human appropriation of net primary production (HANPP) in Nova Scotia[J]. Canada Regional Environment Change,2007,7:1-14
    17. David M, Judith L, Timothy W, et al. Desertification evaluated using an integrated environmental assessment model[J]. Environmental Monitoring and Assessment,1997,48:139-156
    18. Dickinson R E, Henderson-Sellers A, Kennedy P J. Biosphere-Atmosphere Transfer Scheme (BATS) Version le as Coupled to the NCAR Community Climate Model,1993
    19. Dregne H. Desertification-present and future[J]. International Journal for Development Technology, 1984,2:255-259
    20. Driedger H L, Gatchpole A J W. Estimation of solar radiation receipt from sunshine duration at Winnipeg[J]. Meteorological magazine,1970,99:285-291
    21. Dunkerley D. Hydrologic effects of dryland shrubs:defining the spatial extent of modified soil water uptake rates at an Australian desert site[J]. Journal of Arid Environments,2000,45:159-172
    22. Ellis J E, Price K, Yu F, et al. Dimensions of desertification in the drylands of Northern China. In: Reynolds, J.F., Smith, D.M.S. (Eds.), Global desertification:Do humans causes deserts?[M]. Berlin: Dahlem University Press,2002:167-180
    23. Evans J, Geerken R. Discrimination between climate and human-induced dryland degradation [J]. Journal of Arid Environments,2004,57:535-554
    24. Fang S B, Xu D Y, Zhang X S. Analysis of desertification processes and its driving Mechanism in Mu Su region, China[C]. In:Wu H Y, Zhu Q, eds. Proceedings of SPIE-The International Society for Optical Engineering,2006 Oct 28-29, Wuhan. International Society for Optical Engineering, 2006:476-483
    25. FAO, UNEP. Provisional methodology for desertification assessment and mapping(Draft).1984
    26. Field C B, Behrenfeld M J, Randerson J T, et al. Primary production of the biosphere:integrating terrestrial and oceanic components[J]. Science,1998,281:237-240
    27. Field C B, Randerson J T, Malmstrom C M. Global net primary production:combining ecology and remote sensing[J]. Remote Sensing of Environment,1995,51(1):74-88
    28. Friedl M A, Brodley C E, Strahler A H, et al. Maxing land cover classification accuracies produced by decision trees at continental to global scales[J]. IEEE Transactions on Geoscience and Remote Sensing,1999,37:969-977
    29. Friedl M A, Melver D K, Brodley C E. Integration of domain knowledge in the form of ancillary map into supervised classification of remote sensing data[C]. Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS),2002,2:1038-1040
    30. Friedl M A, Melver D K, Hodges J C, et al. Global land cover mapping from MODIS:Algorithms and early results [J]. Remote Sensing of Environment,2002,83:287-302
    31. Geerken R, Ilaiwi M. Assessment of rangeland degradation and development of a strategy for rehabilitation[J]. Remote Sensing of Environment,2004,90:490-504
    32. Golodets C, Boeken B. Moderate sheep grazing in semiarid shrubland alters small-scale soil surface structure and patch properties [J]. Catena,2006,65:285-291
    33. Gomes L, Arrue J L, Lopez M V, et al. Wind erosion in a semiarid area of Spain:the WELSONS project[J]. Catena,2003,52:235-256
    34. Greeley R, Iversen J D. Wind as a Geological Process:on Earth, Mars, Venus and Titan[M]. Cambridge:Cambridge University Press,1985
    35. Gressey G B. Ordos desert of Inner Mongolia[J]. Journal of Science Laboratory,1993
    36. Ha S. The tendency of precipitation variation in the past nine decades in Bashang Highland[J]. Journal of Desert Research,1994,14 (2):47-52
    37. Haberl H, Erb K H, Krausmann F, et al. Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems[J]. Proceedings of the National Academy of Sciences,2007,104:12942-12947
    38. Haberl H, Krausmann F, Erb K H, et al. Human Appropriation of Net Primary Production[J]. Science,2002,296:1968-1969
    39. Hanafi A, Jauffret S. Are long-term vegetation dynamics useful in monitoring and assessing desertification processes in the arid steppe, southern Tunisia[J]. Journal of Arid Environments,2008, 4:557-572
    40. Hermann S M, Anyamba A, Tucker C J. Recent trends in vegetation dynamics in the African Sahel and their relationship to climate[J]. Global Environment Change Part A,2005,15(4):394-404
    41. Huang D, Wang K, Wu W L. Dynamics of soil physical and chemical properties and vegetation succession characteristics during grassland desertification under sheep grazing in an agro-pastoral transition zone in Northern China[J]. Journal of Arid Environments,2007,70:120-136
    42. Huenneke L F, Anderson J P, Remmenga M, et al. Desertification alters patterns of above ground net primary production in Chihuahuan ecosystems[J]. Global Change Biology,2002,8:247-264
    43. Hulme M, Kelly M. Exploring the links between desertification and climate change[J]. Environment,1994,35(6):5-11,39-45
    44. Jafari R, Lewis M M, Ostendorf B. An image-based diversity index for assessing land degradation in an arid environment in South Australia[J]. Journal of Arid Environments,2008,72,1282-1293
    45. Jensen M E, Burman R D, Allen R G. Evapotranspiration and irrigation requirements[M]. ASCE Manuals and Reports on Engineering Practice No.70. New York:American Society of Civil Engineer,1990
    46. Jensen M E, Haise H R. Estimating evapotranspiration from solar radiation[J].Journal of Irrigation and Drainage Division, ASCE,1963,89(IR4):15-41
    47. Jordan D N N, Zitzer S F, Hendrey G R, et al. Biotic, abiotic and performance aspects of the Nevada Desert free-air CO2 enrichment (FACE) facility[J]. Global Change Biology,1999,5(6): 659-668
    48. Katrina H J, David N. Sensitivity of Tropical Land Climate to Leaf Area Index:Role of Surface Conductance versus Albedo[J]. Journal of Climate,2004,4:1459-1473
    49. Le Houerou H N. Climate change, drought and desertification[J]. Journal of Arid Environments. 1996,34(2):133-185
    50. Li S G, Harazono Y, Oikawa T, et al. Grassland desertification by grazing and the resulting micrometeorological changes in Inner Mongolia[J]. Agricultural and Forest Meteorology,2000,102: 125-137
    51. Li S, Zheng Y, Luo P, et al. Desertification in western hainan island, China (1959 to 2003)[J]. Land Degradation & Development,2007,18(5):473-485
    52. Li X R, Jia X H, Dong G R. Influence of desertification on vegetation pattern variations in the cold semi-arid grasslands of Qinghai-Tibet Plateau, North-west China[J]. Journal of Arid Environments, 2006,64:505-522
    53. Liang S L, Shuey C J, Russ A L, et al. Narrowband to broadband conversions of land surface albedo Ⅱ Validation[J]. Remote Sensing of Environment,2002,84:25-41
    54. Liang S L. Narrowband to broadband conversions of land surface albedo Ⅰ Algorithms[J]. Remote Sensing of Envrionment,2000,76:213-238
    55. Lira J. A Model of Desertification Process in a Semi-arid Environment Employing Multi-spectral Images. In Progress in Pattern Recognition, Image Analysis and Application, 1st Ed.; Sanfeliu, A., Martinez-Trinidad, J.F., Carrasco-Ochoa, J.A., Eds.; Berlin Heidelberg:Springer,2004,3287: 249-258
    56. Liu A X, Wang J, Liu Z J, et al. Monitoring desertification in arid and semi-arid areas of China with NOAA-AVHRR and MODIS data[C]. Geoscience and Remote Sensing Symposium,2005. IGARSS apos; 05. Proceedings.2005 IEEE international.,2005,4,2362-2364
    57. Livingstone I, Warren A. Aeolian Geomorphology—An Introduction[M]. Lodon:Addison Wesley Longman,1996
    58. Lunkeit F, Bottinger M, Fraedrich K, et al. Planet Simulator Reference Manual Version 15.0,2007
    59. Ma Y H, Fan S Y, Zhou L H, et al. The temporal of driving factors during the couse of land desertification in arid region of North China:the case of Minqin county[J]. Environment Geology, 2007,51:999-1008
    60. Martinez-Lozano J A, Tena F, Onrubia J E, et al. The historical evolution of the Angstrom formula and its modifications:review and bibliography[J]. Agricultural and Forest Meteorology,1984,33: 109-128
    61. Mclver D K, Friedl M A. Using prior probabilities in decision-tree classification of remotely sensed data[J]. Remote Sensing of Environment,2002,81:253-261
    62. Melillo J M, McGuire A D, Kicklighter D W, et al. Global climate change and terrestrial net primary production[J]. Nature,1993,363(6426):234-240
    63. Mensching H, Ibrahim F. Note toward the desertifications and geographical analysis of the problem of desertification in and around arid lands[J]. Scientific Reviews on Arid Zone Research,1985,3: 105-114
    64. Monteith J L, Moss C J. Climate and the Efficiency of Crop Production in Britain and Discussion[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences (1934-1990),1977,281(980):277-294
    65. Monteith J L. Solar radiation and productivity in tropical ecosystems[J]. Journal of Applied Ecology,1972,9(3):747-766
    66. Mouat D A, Hutchinson C F. Desertification in developed countries [J]. Environmental Monitoring and Assessment,1995,37:1-137 (special issue)
    67. Mouat D, Lancaster J, Wade T, et al. Desertification evaluated using an integrated environmental assessment model[J]. Environmental Monitoring and Assessment,1997,48(2):139-156
    68. Muchoney D, Borak J, Borak H C, et al. Application of the MODIS global supervised classification to vegetation and land cover mapping of central America[J]. International Journal of Remote Sensing,2000,21:1115-1138
    69. Musick H B. Temporal change of Landsat MSS albedo estimates in arid rangeland[J]. Remote Sensing of Envrionment,1986,20,107-120
    70. Nezlin N P, Kostianoy A G, Li B L. Inter-annual variability and interaction of remote-sensed vegetation index and atmospheric precipitation in the Aral Sea region[J]. Journal of Arid Environments,2005,62:677-700
    71. Nicholson S E, Tucker C J, Ba M B. Desertification, drought, and surface vegetation:an example from the west African Sahel[J]. Bulletin of the American Meteorological Society,1998,79:815-829
    72. Ojima D S, Dirks B O M, Glenn E P, et al. Assessment of C budget for grassland and drylands of world [J]. Water Air & Soil Pollution,1993,70:643-657
    73. Onate J J, Peco B. Policy impact on desertification:stakeholders perception in southeast Spain[J]. Land Use Policy,2005,22:103-114
    74. Palacios-Orueta A, Pinzon J E, Ustin S L, et al. Remote Sensing of Soil Properties in the Monica Mountains:Ⅱ. Hierarchical Foreground and Background Analysis[J]. Remote Sensing of Environment,1999,68:138-151
    75. Palacios-Orueta A, Ustin S L. Remote Sensing of Soil Properties in the Monica Mountains Ⅰ. Spectral Analysis[J]. Remote Sensing of Environment,1998,65:170-183
    76. Papendick R I, Campbell G S. Theory and measurement of water potential[J]. Water Potential Relations in Soil Microbiology,1980,9:1-21
    77. Pinet P C, Kaufmann C, Hill J. Imaging spectroscopy of changing Earth's surface:a major step toward the quantitative monitoring of land degradation and desertification[J]. C.R.Geosciences, 2006,338:1042-1048
    78. Potter C S, Randerson J T, Field C B, et al. Terrestrial ecosystem production:a process model based on global satellite and surface data[J]. Global Biogeochemical Cycles,1993,7(4):811-841
    79. Potter C. Predicting climate change effects on vegetation, soil thermal dynamics, and carbon cycling in ecosystems of interior Alaska[J]. Ecological Model,2004,175(1):1-24
    80. Prentice I C, Cramer W, Harrison S P, et al. A global biome model based on plant physiology and dominance, soil properties and climate[J]. Journal of Biogeography,1992,19:117-134
    81. Price S D. Spatial and Temporal Scales for Detection of Desertification. Global Desertification:Do Humans Cause Deserts?[M] Edited by Reynolds J F and Stafford Smith D M. Berlin:Dahlem University Press,2002:23-40
    82. Prince S D, Brown de Colstoun E, Kravitz L L. Evidence from rain-use efficiency dose not indicate extensive Sahelian desertification[J]. Global Change Biology,1998,4:359-374
    83. Pye K. Aeolian Dust and Dust Deposits[M]. London:Academic Press,1987
    84. Qiu G, Zhao Y, Wang S. The impacts of climate change on the interlock area of farming-pastoral region and its climatic potential productivity in northern China[J]. Arid Zone Research,2001,18: 23-28
    85. Qiu P H, Xu S J, Xie G Z, et al. Analysis of the ecological vulnerability of the western Hainan island based on its landscape pattern and ecosystem sensitivity[J]. Acta Ecology Sinica,2007,27(4): 1257-1264
    86. Quinlan J R. C4.5:Programs for machine learning[M]. San Fransisco:Morgan Kaufmann Publishers,1993
    87. Quinlan J R. Improved use of continuous attributes in c 4.5 [J]. Journal of Artificial Intelligence Research,1996,4:77-90
    88. Quinlan J R. Introduction of decision trees[J]. Machine Learning,1986,1:81-106
    89. Rasmus F, Thomas Theis N, Simon S. Evaluation of AVHRR PAL and GIMMS 10-day composite NDVI time series products using SPOT-4 vegetation data for the African continent[J]. International Journal of Remote Sensing,2006,27:2719-2733
    90. Rasmussen K, Fog B, Madsen J E. Desertification in reverse? Observations from northern Burkina Faso[J]. Global Environmental Change,2001,11:271-282
    91. Reining P. Handbook on Desertification Indicators. American Association for the Advancement of Science, Washington,1978,114
    92. Rietveld M R. A new method for estimating the regression coefficients in the formula relation solar radiation to sunshine[J]. Agricultural Meteorology,1978,19(3):243-252
    93. Rosenfeld D, Rudich Y, Lahav R. Desert dust suppressing precipitation:a possible desertification feedback loop[J]. Proceedings of the National Academy of Sciences,2001,98:5975-5980
    94. Rubio J L, Bochet E. Desertification indicators as diagnosis criteria for desertification risk assessment in Europe[J]. Journal of Arid Environments 1998,39(2):113-120
    95. Runnstrom M C. Is northern China winning the battle against desertification? Satellite remote sensing as a tool to study biomass trend on the Ordos Plateau in semiarid China[J]. Ambio,2000,29: 468-476
    96. Saxton K E, Rawls W J, Romberger J S, et al. Estimating generalized soil-water characteristics from texture[J]. Soil Science Society of America Journal,1986,50(4):10-31
    97. Shukla J, Mintz Y. Influence of Land-Surface Evapotranspiration of the Earth's Climate[J]. Science, 1982,215:1498-1500
    98. Sivakumar M V K. Interactions between climate and desertification[J]. Agricultural and Forest Meteorology,2007,142:143-155
    99. Skaggs T H, Arya L M, Shouse P J, et al. Estimating particle-size distribution from limited soil texture data[J]. Soil Science Society of America Journal,2001,65(4):1038-1044
    100. Smith S D, Huxman T E, Zitzer S F, et al. Elevated CO2 increases productivity and invasive species success in an arid ecosystem[J]. Nature,2000,408:79-82
    101. Sperry J S, Hacke U G Desert shrub water relations with respect to soil characteristics and plantfunctional type[J]. Functional Ecology,2002,16:367-378
    102. Stuart R, Shannon M S, Nathan J M. Human Appropriation of Photosynthesis Products[J]. Science, 2001,294:2549
    103. Su Y Z, Zhao W Z, Su P X, et al. Ecological effects of desertification control and desertified land reclamation in an oasis-desert ecotone in an arid region:A case study in Hexi Corridor, northwest China[J]. Ecological Engineering,2007,29:117-124
    104. Sud Y C, Molod A. A GCM simulation study of the influence of Saharan evapotranspiration and surface-albedo anomalies on July circulation and rainfall[J]. Monthly weather review,1988,116: 2388-2400
    105. Sun D F, Dawson R, Li H, et al. A landscape connectivity index for assessing desertification:a case study of Minqin County, China[J]. Landscape Ecology,2007,22:531-543
    106. Sun D F, Dawson R, Li H, et al. Modeling desertification chnge in minqin county, china[J]. Environmental Monitoring and Assessment,2005,108:169-188
    107. Tanser F C, Palmer A R. The application of a remotely-sensed diversity index to monitor degradation patterns in a semi-arid, heterogeneous, South African landscape [J]. Journal of Arid Environments,1999,43:477-484
    108. Tao F L, Yokozawa M, Zhao Z, et al. Remote sensing of crop production in China by production efficiency models:Models comparisons estimates and uncertainties[J]. Ecological Modelling,2005, 183(4):385-396
    109. Thomas D S G, Leason H C. Dune activity response to climate variability in the southwest Kalahari[J]. Geomorphology,2005,64:117-132
    110. Thomas W, Karl-Heinz E, Niels B S, et al. Linking pattern and process in cultural landscape:an empirical study based on spatially explicit indicators [J]. Land Use Policy,2004,21:289-306
    111. Tripathy G K, Ghost T K, Shah S D. Monitoring of desertification process in Karanataka State of India using multi-temporal remote sensing and ancillary information using GIS[J]. International Journal of Remote Sensing,1996,17(12):2243-2257
    112. Tsoar H. Sand dunes mobility and stability in relation to climate[J]. Physica A,2005,357:50-56
    113. Tucker C J, Dregne H E, Newcomb W W. Expansion and contraction of the Sahara Desert from 1980 to 1990[J]. Science,1991,253:299-301
    114. Tucker C J, Pinzon J E, Brown M E, et al. An extended AVHRR 8 km NDVI data set compatible with MODIS and SPOT vegetation NDVI data[J]. International Journal of Remote Sensing,2005, 26:4485-4498
    115. UN. Global alarm:Dust and sand storms from the world's drylands. United Nations,2002,345
    116. UN. United Nations Convention to Combat Desertification in Those Countries Experiencing Serious Drought and/or Desertification Particularly in Africa.1994
    117. UNCCD (United Nations Convention to Combat Desertification). United Nations Publication,1994
    118.UNEP. Status of Desertification and Implementation of the United Nations Plan of Action to Combat Desertification. Draft Report. UNEP. Nairobi, Kenya.1991
    119. UNEP. UNEP governing council decision-desertification. Desertification Control Bulletin,1991,20: 3-5
    120. Verburg P H, Chen Y Q. Multiscale Characterization of Land-Use Patterns in China[J]. Ecosystems, 2000,3:369-385
    121. Verdoodt A, Ranst E V. Environmental assessment tools for multi-scale land resources information systems[J]. Agriculture Ecosystems & Environment,2006,114:170-184
    122. Veron S R, Paruelo J M, Oesterheld M. Assessing desertification[J]. Journal of Arid Environments, 2006,66:751-763
    123. Walko R L, Tremback C J. ATMET Technical Note:Modifications for the Transition,2005
    124. Walter I A, Allen R G, Elliott R, et al. ASCE's Standardized Reference Evapotranspiration Equation[C]. Proceedings of the 4th National Irrigation Symposium,2000, Phoenix, AZ:ASAE
    125. Wang X M, Chen H F, Dong Z B. The relative role of climatic and human factorcs in desertification in semiarid China[J]. Global Environment Change,2006,16:48-57
    126. Wang X M, Chen F H, Hasi E D, et al. Desertification in China:an assessment J]. Earth-Science Reviews,2008,88:188-206
    127. Wang X M, Eerdun H, Zhou Z J, et al. Significance of variations in the windy energy environment over the past 50 years with respect to due activity and desertification in arid and semiarid northern China[J]. Geomorphology,2007,86:252-266
    128. Wang X, Chen F H, Dong Z, et al. Evolution of the southern mu us desert in north china over the past 50 years:an analysis using proxies of human activity and climate parameters[J]. Land Degradation and Development,2005,16:351-366
    129. Wessels K J, Prince S D, Frost P E, et al. Assessing the effects of human-induced land degradation in the former homelands of northern South Africa with a 1 km AVHRR NDVI time-series[J]. Remote Sensing of Environment,2004,91:47-67
    130. Wessels K J, Prince S D, Malherbe J, et al. Can human-induced land degradation be distinguished from the effects of rainfall variability? a case study in South Africa[J]. Journal of Arid Environments,2007,68:271-297
    131. William H S, James F R, Gary L C, et al. Biological Feedbacks in Global Desertification[J]. Scinece, 1990,247:1043-1048
    132. Winstenley D. Rainfall patterns and general atmospheric circulation. Nature,1973,245:190-194
    133. Wu B, Ci L J. Causes and development stages of desertification in the Mu Us Sandland[J]. Chinese Science Bulletin,1998,43:2437-2440
    134. Wu B, Ci L J. Landscape change and desertification development in the Mu Us Sandland, Northern China[J]. Journal of Arid Environments,2002,50:429-444
    135. Wu B, Ci L J. Landscape change and desertification development in the Mu Us sandland, Northern China[J]. J ournal of Arid Environments,2002,50:429-444
    136. Yang X, Zhang K, Jia B, et al. Desertification assessment in China:an overview[J]. Journal of Arid Environments,2005,63:517-531
    137. Zeidler J, Hanrahan S, Scholes M, et al. Land-use intensity affects range condition in arid to semi-arid Namiba[J]. Journal of Arid Environments,2002,52:389-403
    138. Zeng N, Neelin J D, Lau K M, et al. Enhancement of interdecadal climate variability in the Sahel by vegetation interaction[J]. Science,1999,286:1537-1540
    139. Zhao H L, Zhao X Y, Zhou R L, et al. Desertification processes due to heavy grazing in sandy rangeland, Inner Mongolia[J]. Journal of Arid Environments,2005,62:309-319
    140. Zhao H L, Zhou R L, Zhang T H, et al. Effects of desertification on soil and crop growth properties in Horqin sandy cropland of Inner Mongolia, north China[J]. Soil & Tillage Research,2006,87: 175-185
    141. Zheng Y R, Xie Z X, Rorbert C. Did climate drive ecosystem change and induce desertification in Otindag sandy land, China over the past 40 years? [J] Journal of Arid Environments,2006,64: 523-541
    142. Zika M, Erb K. Net Primary Production lossess due to human-induced desertification[C]. Second International Conference on Earth System Modelling (ICESM),2007, Vol.1, ICESM2007-A-00260
    143. Zobeck, T M, Fryrear D W. Chemical and physical characteristics of windblown sediment Ⅱ: chemical characteristics and nutrient discharge[J]. Transactions of the American Society of Agricultural Engineers,1986,29:1032-1036
    144.白美兰,郝润全,邸瑞琦,等.气候变化对浑善达克沙地沙漠化影响的评估[J].气候与环境研究,2006,11(2):215-220
    145.白美兰,郝润全.气候变化对浑善达克沙地生态环境演变的影响[J].中国沙漠,2006,26(3):484-488
    146.包慧娟,姚云峰,张学林,等.科尔沁沙地景观格局变化的研究[J].干旱区资源与环境,2003,17(2):83-88
    147.保家有,李晓松,吴波.基于沙地植被指数的荒漠化评价方法[J].东北林业大学学报,2008, 36(001):69-72
    148.蔡福,于贵瑞,祝青林,等.气象要素空间化方法精度的比较研究[J].资源科学,2005,27(5):173-179
    149.蔡体久,琚存勇.鄂尔多斯草地荒漠化程度定量评价[J].北京林业大学学报,2007,29(增刊2):227-231
    150.常学礼,高玉葆,何兴东,等.科尔沁地区流动沙地景观破碎化与沙漠化过程分析[J].南开大学学报(自然科学版),2006,39(1):84-89
    151.常学礼,鲁春霞,高玉葆,等.科尔沁沙地景观斑块结构对沙漠化过程影响分析[J].生态学报,2004,24(6):1237-1242
    152.常学礼,鲁春霞,高玉葆,等.科尔沁沙地流动沙丘斑块动态与沙漠化关系[J].自然灾害学报,2003,12(3):54-60
    153.常学礼,邬建国.科尔沁沙地景观各具特征分析[J].生态学报,1998,18(3):225-232
    154.常学礼,于云江,曹艳英,等.科尔沁沙地景观结构特征对沙漠化过程的生态影响[J].应用生态学报,2005,16(1):59-64
    155.常学礼,于云江,曹艳英.半干旱地区沙地景观破碎化趋势分析——以科尔沁沙地为例[J].干旱区研究,2004,21(1):21-26
    156.常学礼,赵爱芬,李胜功.景观格局在沙漠化研究中的作用[J].中国沙漠,1998,18(3):210-214
    157.常学礼.坝上地区沙漠化过程对景观格局影响的研究[J].中国沙漠,1996,9:222-227
    158.常学礼.景观间隙度指数在沙漠化研究中的应用[J].中国沙漠,1997,17(4):351-354
    159.陈广庭.土地荒漠化[M].北京:化学工业出版社,2002:23
    160.陈隆勋,刘骥平,周秀骥,等.青藏高原隆起及海陆分布变化对亚洲大陆气候的影响[J].第四纪研究,1999,4:314-328
    161.慈龙骏,刘玉平.人口增长对荒漠化的驱动作用[J].干旱区资源与环境,2000,3,14(1):28-33
    162.慈龙骏,吴波.中国荒漠化气候类型划分与潜在发生范围的确定[J].中国沙漠,1997,17(2):107-111
    163.慈龙骏,杨晓辉,陈仲新.未来气候变化对中国荒漠化的潜在影响[J].地学前沿,2002,9(2):287-294
    164.慈龙骏,杨晓辉,张新时.防治荒漠化的“三圈”生态-生产范式机理及其功能[J].生态学报,2007,27(4):1450-1460
    165.慈龙骏,杨晓辉.荒漠化与气候变化间反馈机制研究进展[J].生态学报,2004,24(4):755-760
    166.邓辉,舒时光,宋豫秦,等.明代以来毛乌素沙地流沙分布南界的变化[J].科学通报,2007,52(21):2556-2563
    167.丁国栋.荒漠化评价指标体系的研究-以毛乌素沙区为例[D].北京:北京林业大学,1998
    168.丁国栋,赵延宁,范建友,等.荒漠化评价指标体系研究现状述评[J].北京林业大学学报,2004,26(1):92-96
    169.董朝阳,樊胜岳,钟方雷,等.中国沙漠化过程中人文作用研究进展[J].中国沙漠,2006,26(4):657-653
    170.董光荣.中国西部环境演变评估[A].《中国西部环境特征及其演变》(第一卷)[C].北京:科学出版社,2002:107
    171.董光荣,高尚玉,金炯,等.青海共和盆地土地沙漠化与防治途径[M].北京:科学出版,1993
    172.董光荣,高尚玉,金炯,等.青海共和盆地土地沙漠化与防治途径[M].北京:科学出版社,1993:142-165
    173.董光荣,高尚玉,金炯,等.晚更新世初以来我国陆生生态系统的沙漠化过程及其成因[A].//:刘东生主编.黄土.第四纪地质.全球变化(第二集)[C]。北京:科学出版社,1990,91-101
    174.董光荣,靳鹤龄,陈惠忠,等.中国北方半干旱和半湿润地区沙漠化的成因[J].第四纪研究,1998,2:136-143
    175.董玉祥,陈克龙.中国沙漠化程度判定与分区初步研究[J].中国沙漠,1995,15(2):170-174
    176.董玉祥,刘毅华.国外沙漠化监测评价指标与分级标准[J].干旱环境监测,1992,6(4):234-241
    177.董玉祥,刘玉璋,刘毅华.沙漠化若干问题研究[M].西安:西安地图出版社,1995:1-271
    178.董玉祥.人文因子在荒漠化中的作用[J].中国沙漠,1992,12(1):16-26
    179.董玉祥.土地沙漠化影响因子的定量分析[J].干旱区研究,1989,4:34-41
    180.董玉祥.我国半干旱地区现代沙漠化驱动因素的定量辨识[J].中国沙漠,2001,21(4):412-416
    181.杜明义.决策树方法在土地荒漠化分类中的应用研究[J].测绘科学,2006,31(2):81-82
    182.段怡春,陈建平,厉青,等.沙漠化:从圈层耦合到全球变化[J].地学前沿,2002,9(2):277-283
    183.方精云,柯金虎,唐志尧,等.生物生产力的“4P”概念、估算及其相互关系[J].植物生态学报,2001,25(4):414-419
    184.方精云,徐嵩龄.我国森林植被的生物量和净生产量[J].生态学报,1996,16(005):497-508
    185.方修琦.陕北鄂尔多斯地区降水变化与沙漠化[J].北京师范大学学报(自然科学版),1987,1:90-95
    186.封志明,杨艳超,丁小强,等.甘肃地区参考作物蒸散量时空变化研究[J].农业工程学报,2004,20(1):99-103
    187.傅伯杰,牛栋,赵士洞.全球变化与陆地生态系统研究:回顾与展望[J].地球科学进展,2005,20(5):556-560
    188.高尚武,王葆芳,朱灵益,等.中国沙质荒漠化土地监测评价指标体系[J].林业科学,1998,34(2):1-10
    189.高尚武,王君厚.中国沙质荒漠化土地监测评价指标体系[J].1998,34(2):1-10
    190.韩海涛,祝小妮.气候变化与人类活动对玛曲地区生态环境的影响[J].中国少摸,2007,27(4):608-613
    191.韩红,任国玉,王文,等.黄土高原地区太阳辐射时空演变特征[J].气候与环境研究,2008,13(1):61-66
    192.郝成元,吴绍洪,杨勤业.毛乌素地区沙漠化与土地利用研究[J].中国沙漠,2005,25(1):33-38
    193.郝兴明,陈亚宁,李卫红.塔里木河流域近50年来生态环境变化的驱动力分析[J].地理学报,2006,61(3):262-272
    194.贺军亮,蒋建军,周生路,等.土壤有机质含量的高光谱特性及其反演[J].中国农业科学,2007,40(3):638-643
    195.侯学煜.1:1000000中国植被图集[M].北京:科学出版社,2001
    196.胡孟春.科尔沁土地沙漠化分类定量指标初步研究[J].中国沙漠,1991,11(3):57-60
    197.胡顺军,潘渝,康绍忠,等.Penamn-Monteith与Panman修正式计算塔里木盆地参考作物潜在蒸发量比较[J].农业工程学报,2005,21(6):30-35
    198.胡霞,刘连友,严平,等.不同地表状况对土壤风蚀的影像-以内蒙古太仆寺旗为例[J].水土保持研究,2006,13(4):116-119
    199.黄秉维,郑度,赵名茶,等.现代自然地理[M].北京:科学出版社,1999
    200.黄秉维.自然条件与作物生产:温度.见:黄秉维文集编辑小组.自然地理综合工作六十年-黄秉维文集[M].北京:科学出版社,1993:197-212
    201.黄金庭,王文科,何渊,等.鄂尔多斯沙漠高原湖淖群的形成演化及生态功能探讨[J].资源科学,2006,28(2):140-144
    202.霍艾迪,张广军,武苏里,等.利用MODIS-NDVI进行沙化土地评价研究—以陕西省北部地区为例[J].干旱地区农业研究,2008,26(2):154-158
    203.霍艾迪.基于MODIS数据的沙漠化遥感监测研究[D].杨凌:西北农林科技大学,2008
    204.贾宝全,慈龙骏,高志刚,等.鄂尔多斯高原土地沙化过程中自然与人为因素的定量分析[J].林业科学,2003,39(6):15-20
    205.贾宝全,慈龙骏.绿洲荒漠化及其评价指标体系的初步探讨[J].干旱区研究,2001,18(2):19-24
    206.贾科利,常庆瑞.陕北农牧交错带土地沙漠化景观格局动态变化[J].应用生态学报,2007,18(9):2045-2049
    207.蒋德明,曹成有,押田敏雄,等.科尔沁沙地沙漠化过程中植被与土壤退化的特征研究[J].干旱区资源与环境,2008,22(10):156-161
    208.靳虎甲,王继和,李毅,等.腾格里沙漠南缘沙漠化逆转过程中的土壤化学性质变化特征[J].水土保持学报,2008,22(5):119-124
    209.康相武,刘雪华,张爽,等.北京西南地区区域生态安全评价[J].应用生态学报,2007,18(2):2846-2852
    210.康相武,吴绍洪,尹云鹤,等.华北农牧交错带土地沙漠化成因与土地利用调整对策[J].农业工程学报,2005,21(8):45-51
    211.李宝林,周成虎.东北平原西部沙地的气候变异与土地荒漠化[J].自然资源学报,2001,16(3):234-239
    212.李宝林,周成虎.东北平原西部沙地沙质荒漠化的遥感监测研究[J].遥感学报,2002,6(2):117-122
    213.李宝林.松嫩沙地沙漠化的气候因素与沙地发育特征[J].中国沙漠,1996,9:253-258
    214.李博.内蒙古鄂尔多斯高原自然资源与环境研究[M].北京:科学出版社,1990
    215.李双成,蔡运龙.地理尺度转换若干问题的初步探讨[J].地理研究,2005,24(1):11-18
    216.李双成,吴绍洪,戴尔阜.生态系统相应气候变化脆弱性的人工神经网络模型评价[J].生态学报,2005,25(3):621-626
    217.李香云,王立新,章予舒,等.塔里木河下游绿色走廊土地荒漠化驱动因子贡献度研究——基于投影寻踪回归模型[J].干旱区资源与环境,2004,18(6):44-49
    218.李香云,王立新,章予舒,等.西北干旱区土地荒漠化中人类活动作用及其指标选择[J].地理科学,2004,24(1):68-75
    219.李香云,杨君,王立新.干旱区荒漠化的人为驱动作用分析—以塔里木河流域为例[J].资源科学,2004,26(5):30-37
    220.李玉环,王静,吕春燕,等.基于TM/ETM+遥感数据的地面相对反射率反演[J].山东农业大学学报(自然科学版),2005,36(4):545-551
    221.李振山,贺丽敏,王涛.现代草地沙漠化中自然因素贡献率的确定方法[J].中国沙漠,2006,26(5):687-692
    222.李振山,王一谋.沙漠化评价基本理论初探[J].中国沙漠,1994,14(2):84-89
    223.李智佩,岳乐平,薛祥熙,等.毛乌素沙地东南边缘不同成因类型土地沙漠化的特征[J].地质通报,2006,25(5):590-596
    224.廖顺宝,李泽辉,游松财.气温数据栅格化的方法及其比较[J].资源科学,2003,25(6):83-88
    225.廖顺宝,李泽辉.气温数据栅格化中的几个具体问题[J].气象科技,2004,32(5):352-356
    226.林培松,李森,李保生,等.近20a来海南岛西部土地沙漠化与气候变化关联度研究[J].中国沙漠,2005,25(1):27-32
    227.刘爱霞.中国及中亚地区荒漠化遥感监测研究[D].北京:中科院研究生院,2004
    228.刘广峰,吴波,范文义,等.基于象元二分模型的沙漠化地区植被覆盖度提取—以毛乌素沙地为例[J].水土保持研究,2007,14(2):268-271
    229.刘洪勇,牛铮,王长耀.基于MODIS数据的决策树分类方法及应用[J].遥感学报,2005,9(4):405412
    230.刘立超,王伟红,宋耀选,等.沙漠化过程与气候变化相互作用的研究进展[J].中央民族大学学报(自然科学),2004,13(3):197-202
    231.刘树林,王涛.浑善达克沙地地区土地沙漠化初步研究[J].水土保持学报,2004,18(5):99-103
    232.龙晶.AVHRR数据在中国荒漠化宏观监测中的应用研究[A].98遥感进展[C].大连:中国地理学会环境遥感分会,1998
    233.卢艳丽,白由路,杨俐萍,等.基于高光谱的土壤有机质含量预测模型的建立与评价[J].中国农业科学,2007,40(9):1989-1995
    234.吕一河,傅伯杰.生态学中的尺度及尺度转移方法[J].生态学报,2001,21(012):2096-2105
    235.罗海江,白海玲,方修琦,等.农牧交错带近十五年生态环境变化评价—以鄂尔多斯地区为例[J].干旱区地理,2007,30(4):474-481
    236.马金辉,蔡迪花,肖桐.鄂尔多斯地区沙漠化遥感定量评价[J].兰州大学学报(自然科学版),2007,43(4):1-6
    237.马明国,王雪梅,角媛梅,等.基于RS与GIS的干旱区绿洲景观格局变化研究——以金塔绿洲为例[J].中国沙漠,2003,23(1):53-58
    238.马柱国.我国北方干湿演变规律及其与区域增暖的可能联系[J].地球物理学报,2005,48(5):1011-1018
    239.买买提沙吾提,塔西甫拉提·特依拜,丁建立,等.基于决策树分类法的塔克拉玛干南缘沙漠化信息提取方法研究[J].环境科学研究,2008,21(2):109-114
    240.莫申国,张百平,程维明,等.青藏高原的主要环境效应[J].地理科学进展,2004,23(2):88-96
    241.牛宝茹,刘俊蓉,王政伟.干旱半干旱地区植被覆盖度遥感信息提取研究[J].武汉大学学报:信息科学版,2005,30(1):27-30
    242.牛俊杰,赵淑贞.关于历史时期鄂尔多斯高原沙漠化问题[J].中国沙漠,2000,20(1):67-70
    243.牛文元.可持续发展理论的基本认知[J].地理科学进展,2008,27(3):1-6
    244.朴世龙,方精云,郭庆华.利用CASA模型估算我国植被净第一性生产力[J].植物生态学报,2001,25(5):603-608
    245.朴世龙,方精云,贺金生,等.中国草地植被生物量及其空间分布格局[J].植物生态学报,2004,28(004):491-498
    246.钱正安,吴统文,宋敏红,等.干旱灾害和我国西北干旱气候的研究进展及问题[J].地球科学进展,2001,16(1):28-36
    247.乔汉.土地荒漠化的指标[J].世界沙漠研究,1994,4:1-11
    248.任会利,李萍,申卫军,等.荒漠生态系统对大气CO2浓度升高响应的干湿年差异[J].热带亚
    热带植物学报,2006,14(5):389-396
    249.任振球.全球变化[M].北京:科学出版社,1990:193-214
    250.任志弼.中国北方草地畜牧业动态监测研究.(二):中国北方草地畜牧业动态监测数据集[M].呼和浩特:内蒙古大学出版社,1996
    251.史培军.地理环境演变研究的理论与实践——鄂尔多斯地区晚第四纪以来地理环境演变研究[M].北京:科学出版社,1991
    252.宋乃平,张凤荣.鄂尔多斯农牧交错土地利用格局的演变与机理[J].地理学报,2007,62(12):1299-1308
    253.苏志珠,卢琦,吴波,等.气候变化和人类活动对我国荒漠化的可能影响[J].中国沙漠,2006,26(3):329-335
    254.孙丹峰.民勤1988~1997年间土地荒漠化社会经济驱动力分析[J].农业工程学报,2005,21:131-135
    255.孙继敏,丁仲礼,袁宝印.2000a B.P来毛乌素地区的沙漠化问题[J].干旱区地理1995,18(1):36-41
    256.孙建英,李民赞,郑立华,等.基于近红外光谱的北方潮土土壤参数实时分析[J].光谱学与光谱分析,2006,26(3):426-429
    257.孙武.近50a坝上后山地区人畜压力与沙漠化景观界线之间的互动关系[J].中国沙漠,2000,20(2):154-158
    258.王博,丁国栋,顾小华,等.毛乌素沙地腹地植被恢复效果初步研究—以内蒙古乌审旗为例[J].水土保持研究,2007,14(3):237-242
    259.王建,董光荣,李文君,等.利用遥感信息决策树方法分层提取荒漠化土地类型的研究探讨[J].中国沙漠,2000,20(3):243-247
    260.王君厚,孙司衡.荒漠化类型划分及其数量化评价体系[J].干旱环境监测,1996,10(3):129-137
    261.王涛,陈广庭,赵哈林,等.中国北方沙漠化过程及其防治研究的新进展[J].中国沙漠,2006,26(4):507-516
    262.王涛,吴薇,陈广庭,等.近10年来中国北方沙漠化土地空间分布的研究[J].中国科学D辑:地球科学,2003,33(增刊1):73-82
    263.王涛,吴薇,薛娴,等.近50年来中国北方沙漠化土地的时空变化[J].地理学报,2004,59(2):203-212
    264.王涛,吴薇,薛娴,等.中国北方沙漠化土地时空演变分析[J].中国沙漠,2003,23(3):230-235
    265.王涛,吴薇,赵哈林,等.科尔沁地区现代沙漠化过程的驱动因素分析[J].中国沙漠,2004,24(5):519-527
    266.王涛,吴薇.沙质荒漠化的遥感监测与评估[J].第四纪研究,1998,2:108-118
    267.王涛,吴薇.我国北方的土地利用与沙漠化[J].自然资源学报,1999,14(4):355-358
    268.王涛,赵哈林,肖洪良.中国沙漠化研究的进展[J].中国沙漠,1999,19(4):209-311
    269.王涛,朱震达,赵哈林.我国沙漠化研究的若干问题—4.沙漠化的防治战略与途径[J].中国沙漠,2004,24(2):115-122
    270.王涛,朱震达.我国沙漠化研究的若干问题——1.沙漠化的概念及其内涵[J].中国沙漠,2003,23(3):209-214
    271.王涛,朱震达.中国北方沙漠化的若干问题[J].第四纪研究,2001,21(1):56-64
    272.王涛.我国沙漠化研究的若干问题——2.沙漠化的研究内容[J].中国沙漠,2003,23(5):477-482
    273.王涛.我国沙漠化研究的若干问题——3.沙漠化研究和防治的重点区域[J].中国沙漠,2004,24(1):1-9
    274.王跃,李森,王建华,等.试论青藏高原隆升对中国沙漠形成演化的影响[J].干旱区研究,1996,13(2):20-24
    275.魏文寿,刘明哲.古尔班通古特沙漠现代沙漠环境与气候变化[J].中国沙漠,2000,20(2):178-183
    276.魏文寿.现代沙漠对气候变化的响应与反馈:以古尔班通古特沙漠为例[J].科学通报,2000,45(6):636-641
    277.魏兴琥,李森,杨萍,等.藏北高山嵩草草甸植被和多样性在沙漠化过程中的变化[J].中国沙漠,2007,27(5):750-757
    278.文小航,尚可政,王式功,等.1961-2000年中国太阳辐射区域特征的初步研究[J].中国沙漠,2008,28(3):554-561
    279.吴绍洪,尹云鹤,郑度,等.近30年中国陆地表层干湿状况研究[J].中国科学D辑:地球科学,2005,35(3):276-283
    280.吴薇.近50年来毛乌素沙地的沙漠化过程研究[J].中国沙漠,2001,21(2):164-169
    281.吴正.风沙地貌学[M].北京:科学出版社,1987:4-5
    282.谢高地,肖玉,鲁春霞.生态系统服务研究:进展、局限和基本范式[J].植物生态学报,2006,30(2):191-199
    283.信忠保,许炯心,郑伟.气候变化和人类活动对黄土高原植被覆盖变化的影响[J].中国科学D辑:地球科学,2007,37(11):1504-1514
    284.徐丽恒,王继和,李毅,等.腾格里沙漠南缘沙漠化逆转过程中的土壤物理性质变化特征[J].中国沙漠,2008,28(4):690-695
    285.徐小玲,延军平.陕北沙区人为因素与沙漠化的定量关系研究[J].干旱区资源与环境,2005,9,
    19(5):38-41
    286.徐兴奎,林朝辉,薛峰,等.气象因子与地表植被生长相关性分析[J].生态学报,2003,23(2):221-230
    287.许炯心.土地利用变化对鄂尔多斯高原周边地区沙尘暴的影响[J].地理研究,2004,23(4):465-468
    288.延昊,王绍强,王长耀,等.风蚀对中国北方脆弱生态系统碳循环的影响[J].第四纪研究,2004,24(6):672-678
    289.姚洪林,闫德仁,杨文斌,等.内蒙古沙漠化土地与植被掩体规律的而研究[J].内蒙古林业科技,2001,1(4):7-12
    290.伊克昭盟土壤普查办公室.伊克昭盟土壤[M].呼和浩特:内蒙古人民出版社,1989
    291.尹云鹤,吴绍洪,郑度,等.近30年我国干湿状况变化的区域差异研究[J].科学通报,2005,50(15):1636-1642
    292.尹云鹤.中国干湿状况变化与生态地理区域对气候变化的响应[D].北京:中国科学院研究生院,2006:8-21
    293.曾永年,冯兆东,向南平.基于地表定量参数的沙漠化遥感监测方法[J].国土资源遥感,2005,64(2):40-44
    294.曾永年,冯兆东.沙质荒漠化遥感监测与环境影响研究进展[J].山地学报,2005,24(2):218-227
    295.张春来,董光荣,邹学勇,等.青海贵南草原沙漠化影响因子的贡献率[J].中国沙漠,2005,25(4):511-518
    296.张登山.青海共和盆地土地沙漠化影响因子的定量分析[J].中国沙漠,2000,20(1):59-62
    297.张荣旺,金桂莲,马广铭,等.鄂尔多斯地表水资源浅析[J].内蒙古科技与经济,2002,5:24-26
    298.张新时,杨奠安,倪文革.制备的PE(可能蒸散)指标与植被-气候分类几种方法与PEP程序介绍[J].植物生态学报,1993,17(2):97-109
    299.张新时.毛乌素沙地的生态背景及其草地建设的原则与优化模式[J].植物生态学报,1994,18(1):1-16
    300.章予舒,王立新,张红旗,等.甘肃疏勒河流域环境因子变异对荒漠化态势的影响[J].资源科学,2003,25(6):60-65
    301.赵存玉,王涛.沙质草原沙漠化过程中植被演替研究现状和展望[J].生态学杂志,2005,24(11):1343-1346
    302.赵哈林,张铜会,崔建垣,等.近40a我国北方农牧交错区气候变化及其与土地沙漠化的关系——以科尔沁沙地为例[J].中国沙漠,2000,20:1-6
    303.赵哈林,赵学勇,张铜会,等.北方农牧交错沙漠化的生物过程研究[J].中国沙漠,2002,22(4):309-315
    304.赵哈林,赵学勇,张铜会,等.科尔沁沙地沙漠化过程及其恢复机理[M].北京:海洋出版社,2003:1
    305.赵哈林,赵学勇,张铜会,等.沙漠化过程中沙质旱作农田土壤环境的变化及其对生产力形成的影响[J].水土保持学报,2002,16(4):1-4
    306.赵丽娅,赵哈林.我国沙漠化过程中的植被演替研究概述[J].中国沙漠,2000,20(增刊):7-14
    307.赵学勇,常学礼,张铜会,等.景观生态学原理在沙漠化研究中的应用[J].中国沙漠,2000,20:38-41
    308.赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003:372-374
    309.赵云龙,唐海萍,李新宇.近40年来科尔沁沙地沙漠化过程的气候背景分析[J].干旱区资源与环境,2004,18(5):8-14
    310.周广胜,许振柱,王玉辉.全球变化的生态系统适应性[J].地球科学进展,2004,19(4):642-649
    311.周晓东,朱启疆,孙中平,等.中国荒漠化气候类型划分方法的初步探讨[J].自然灾害学报,2002,11(2):125-131
    312.朱文泉,潘耀忠,何浩,等.中国典型植被最大光利用率模拟[J].科学通报,2006,51(6):700-706
    313.朱文泉.中国陆地生态系统植被净初级生产力遥感估算及其与气候变化关系的研究[D].北京:北京师范大学研究生院,2005:1-3
    314.朱震达,陈广庭.中国土地沙质荒漠化[M].北京:科学出版社,1994
    315.朱震达,刘恕,吴正,等.中国沙漠概念[M].北京:科学出版社,1980
    316.朱震达,刘恕,肖龙山.草原地带沙漠化环境的特征及其治理的途径——以内蒙乌兰察布草原为例[J].中国沙漠,1981,1(1):2-12
    317.朱震达,王涛.从若干典型地区的研究对近十余年来中国土地沙漠化演变趋势的分析[J].地理学报,1990,45(4):430-440
    318.朱震达,王涛.中国沙漠化研究的理论与实践[J].第四纪研究,1992,2:97-106
    319.朱震达.关于沙漠化地图编制的原则与方法[J].中国沙漠,1984,4(1):4-15
    320.朱震达.中国土地荒漠化的概念,成因与防治[J].第四纪研究,1998,002:145-155
    321.左大康,王懿贤,陈建绥.中国地区太阳总辐射的空间分布特征[J].气象学报,1963,33(1):78-96

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700