用户名: 密码: 验证码:
基于人工神经网络方法的黄河干支流河床演变分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
I在过去的50多年里,黄河中、下游的水沙过程发生了显著的变化,二级悬河和主槽萎缩的现象不断加剧,河流的治理面临着巨大的挑战。平滩流量是一个重要的河槽形态特征和过流能力指标,它的确定是黄河干支流治理过程中核心问题之一。潼关位于黄河、洛河、渭河三河汇流区的出口,是黄河的天然卡口,是黄河在晋、陕间南流后东折的拐点,是黄河小北干流、渭河的侵蚀基准面,因此潼关高程的变化一直备受人们的关注。这些问题都是研究黄河干支流河床演变的关键科学问题。本文在前人研究的基础上,系统收集和整理了实测资料,运用河流动力学及河床演变学基本理论,综合分析了黄河下游、渭河下游、黄河内蒙河段平滩流量及潼关高程变化情况以及其影响因素,将平滩流量的影响因子分为三类:①汛期及非汛期来水来沙影响因子;②前期水沙条件的累积作用;③其他因子,例如洪峰流量、泥沙含量、泥沙粒径等。潼关高程的影响因子分为四类:①来水来沙影响因子;②三门峡水库的影响;③前期水沙条件的累积作用;④其他因子,例如洪峰流量、泥沙粒径等。人工神经网络方法是一种研究复杂非线性问题十分有效的手段,本文运用人工神经网络方法,分别建立了黄河下游花园口、高村、艾山、利津断面、渭河下游华县站、黄河内蒙河段三湖河口站各影响因子与平滩流量的BP模型,以及潼关高程与其影响因子的BP模型。通过对模型结果分析得出以下结论:
     (1)汛期及非汛期来水来沙影响因子均对平滩流量具有较大影响,且非汛期来水来沙影响因子不可忽略。
     (2)滞后响应是冲积河流河床演变的一种普遍现象。对于平滩流量的计算,使用人工神经网络方法直接输入前n年水沙因子能够更好的反映累积影响;对于潼关高程的计算,滑动平均方法体现水库运用方式的累积影响效果精度更高。
     (3)考虑其他因子如洪峰流量、泥沙含量、泥沙粒径等有利于平滩流量计算精度的提高。潼关站和华县站洪水期日平均流量大于2500m~3/s持续的天数与潼关高程相关性最好,训练和检验的平均误差均最小。对于非汛期水库运用方式对潼关高程的影响则是将非汛期坝前水位高于315m、320m和322m分别持续的天数共同作用时相关性最好。
In the past fifty years, the water and sediment process has changed a lot in the Lower Yellow River, resulting in secondary suspended river and main channel shrinkage, which causes great challenge to the river management. The bankfull discharge is significant for potential discharging capacity of the main channel to pass flood flows and to transport sediment. It is one of the core issues to identify the bankfull discharge in the process of governance of the Yellow River. Tongguan is the convergence exports in the Yellow River and Luo River and Wei River, is a natural block port of the Yellow River, is the inflection point of Yellow River in Shanxi- Shaanxi Arear, is erosion base level of North Yellow River and Weihe River. So Tongguan Elevation change has always been concerned. These issues are all key scientific issues in fluvial processes of Middle and Lower Reaches of the Yellow River. In this paper, based on previous studies the author detailedly collected and measured data. The changes and influence factors of Tonguan elevation and bankfull discharge of Lower Yellow River、Lower Weihe River and Inner Mongolia of Yellow River was analysed by using of basic theory of fluvial dynamics and basic principle of fluvial processes. The influence factors of bankfull discharge were divided into there types:①the impact factor of water flow and incoming sediment in flood and non-flood season;②the accumulative effect of several consecutive years flow discharge and sediment load conditions;③other factors like peak discharge、sediment content, etc. The influence factors of Tonguan elevation were divided into four types:①the impact factor of water flow and incoming sediment;②the influence of Three Gorges dam builded;③the accumulative effect of several consecutive years flow discharge and sediment load conditions;④other factors like peak discharge、sediment content, etc. Artificial neural network is a very effective means to soule complex nonlinear problem. By Artificial neural network, BP models of bankfull discharge and impact factor of bankfull discharge were established in Huayuankou, Gaocun, Aishan, Lijin, Huaxian, Sanhuhekou stations. At the same time BP models of Tonguan elevation and impact factor of Tonguan elevation were established. Through the analysis of model results, the following conclusions was obtained:
     (1) the impact factor of water flow and incoming sediment in non-flood season can not be ignored. Flood and non-flood water and sediment impact factors are all important to bankfull discharge.
     (2) The delayed response is a universal phenomenon in the evolution of alluvial river channel. For bankfull discharge calculation, BP method input the data for the past n years can reflect the accumulative effect better. For Tonguan elevation calculation, using Moving average method can get more accurate.
     (3) Consider other factors such as peak discharge, sediment concentration, sediment particle size is conducive to bankfull discharge increased accuracy. They are the best correlation between Tonguan elevation and the number of days of daily mean flow greater than 2500m~3/s in flood season at Tonguan and Huaxian station. For inflence of operational mode of Three Gorges dam in non-flood season to Tonguan elevation, it has best correlation between Tonguan elevation and the number of days of dam front water level higher than the 315m, 320m and 322m.
引文
Andrews, E. D. (1980). Effective and bankfull discharges of streams in the Yampa River Basin,Colorado and Wyoming. Journal of Hydrology 46: 311-330.
    Biedenharm, Thorne, C. R.,Watson, C. C. (2000). Recent morphological evolution of the Lower Mississippi River. Geomorphology 34: 227-249.
    Blench, T. (1957). Regime Behavior of Canals and Rivers. Butterworth Sci. Pub. Bonacci, O., Tadix, Z.,Trininic, D. (1992). Effexts of Dams and Reservoirs on the Hydrological Characteristics of the Lower Drava River. Regulated Rivers Research & Management 7(4).
    Durrant, P. J. (2001).WinGammaTM: a non-linear data analysis and modelling tool with applications to flood prediction system. In Department of Computer ScienceCardiff: University of Wales
    Durrant, P. J.,Jones, A. J. (2003).Non-linear modeling of river levels using the gamma test. (Ed T. r. w. Archive).
    F, R., Hadley,Emmett., W. W. (1998). Channel Changes Downstream from a Dam. Journal of the American Water Resources Association 34(3).
    Harman, C.,Stewardson, M. (2008). Varibility and uncertainty in reach bankfull hydraulic geometry. Journal of Hydrology 351: 13-25.
    Harman, W. H., Jennings, G. D.,Patterson, J. M. (1999).Bankfull Hydraulic Geometry Relationships for North Carolina Streams. In AWRA Wildland Hydrology Symposium Proceedings(Eds E. B. D. S. Olsen and J. P. Potyondy). AWRA Summer Symposium. Bozeman, MT.
    Hayes (1975). Morphology of sand accumulation in estuaries. In Estuarine Research, Vol. Ⅱ, 3-22 New York.
    Inglis.C.C (1949).The Behavior and Control of Rivers and Cana1s. In Central Waterpower,Irrigation and Navigation Res, Vol. 2India.
    Jones, A. J.,Durrant, P. J. (2001). WinGammaTM Manual.
    Jones, A. J., Evans, D.,Kemp, S. E. (2007). A Note on the Gamma test Analysis of Noisy Input/Output data and Noisy Time Series. Nonlinear Phenomena. Elsevier Physica D 229(1): 1-8.
    Kashefipour, S. M., Lin, B.,Falconer, R. A. (2006). Neural networks for predicting seawater bacterial levels. Water Management 158(3): 111-118.
    Kobus.H (1988).模型试验的理论与方法.北京:清华大学出版社.
    Leliavsky.S (1955). An Introduction to Fluvial Hydraulics. 257.
    Leopold, L. B. (1994).A view of the River. In Harvard University PressCambridge.
    Leopold, L. B., Wolman, W. G.,Miller, J. P. (1964). Fluvial processes in geomorphology. San Francisco: W.H. Freeman.
    Li, Y.,R.Gu, R. (2003). Modeling Flow and Sediment Transport in a River System Using an Artificial Neural Network. Environmental Management 31(1).
    Lingyun, L., Baosheng, W.,Suzhen, H. (2009). Delayed Response Model for Bankfull Discharge at Inner Mongolia Reach of the Yellow River[A]. . In The 4th International Yellow River Forum (IYRF) on ecological civilization and river ethicsZhenzhou.
    Nash.D.B (1994). Effective sediment-transporting discharge from magnitude-frequency analysis. Journal of Hydrology 102(1): 79-95.
    Omdorff, R. L.,Whiting , P. J. (1999). Computing effective discharges with S-PLUS. Computers & Geosciences (25): 559-565.
    Richter, B. D.,V, B. J. (1997). How much water does a river need. Freshwater Biology 37(1): 231-249.
    Schumm, S. A. (1960). The Shape of Alluvial Channels in Relation to Sediment Type. Washigton, DC: Geological Survey.
    Wal, D. v. d., Pye, K.,Neal, A. (2002). Long-term morphological change in the Ribble Estuary, northwest England. Marine Geology 189: 249-266.
    Wenwen, L., Wenqiang, W.,Junqiang, X. (2009).The Artificial Neural Network Method to Calculating Bankfull Discharge in the Lower Yellow River. In The 2nd IWA Asia-Pacific Regional Young Water Professionals Conference, 393.
    Westergard, B. E., I, M. C.,G, E. A. (2005).Regionalized equations for bankfull discharge and channel characteristics of streams in New York State. In U. S. Geologoical Survey Scientific Investigation Report(Ed H. R. i. C. N. York).
    Williams, G. P. (1978). Bank-full discharge of rivers. Water Resources Research 14(6): 1141-1154.
    Wolman, M. G.,Leopold, L. B. (1957). River Floodplains: Some Observations on their Formation. Washigton, DC: Geological Survey.
    Wolman, M. G.,Miller, J. P. (1960). Magnitude and frequency of forces in geomorphic processes. The Journal of Geology 68 (1): 54 - 74.
    Wu, B., Xia, J., Fu, X.,Zhang, Y. (2008a). Effect of altered flow regime on bankfull area of the Lower Yellow River. Earth Surface Processes and Landforms 33: 1585-1601.
    Wu, B. S., Wang, G. Q.,Xia, J. Q. (2008b). Response of bankfull discharge to discharge and sediment load in the Lower Yellow River Geomorphology 100: 366-376.
    陈刚,刘发升(2006).基于BP神经网络的数据挖掘方法.计算机与现代化134(10): 20-22.
    陈建国,胡春宏,戴清(2002).渭河下游近期河道萎缩特点及治理对策.泥沙研究6: 45-52.
    陈建国,胡春宏,董占地(2006 ).黄河下游河道平滩流量与造床流量的变化过程研究.泥沙研究(5): 10-16.
    陈立(2001).河流动力学.武汉:武汉大学出版社.
    丁六一,缪凤举(1994).三门峡水库的调度运用.郑州:河南人民出版社.
    窦国仁(1963).潮汐水流中悬沙运动及冲淤计算.水利学报(4): 13-24.
    窦国仁(1981).全沙河工模型试验的研究.科学通报14.
    窦国仁(2003).窦国仁论文集.北京:中国水利水电出版社.
    窦国仁,蓝风舞,窦希萍(1995).河口海岸泥沙数学模型.中国科学25(9): 995-1001.
    杜殿勋(1994).三门峡水库龙门至潼关段河道冲淤演变规律及滞洪滞沙分析.郑州:河南人民出版社.
    韩其为,何明民(1987).水库淤积与河床演变的数学模型.泥沙研究(3): 14-29.
    何国祯,吴知(1994).提高三门峡水库调水调沙及综合利用效益的探讨.郑州:河南人民出版社.
    侯国本(1997).关于三门峡水库的现在、未来问题的商榷.
    侯素珍,常温花,王平,楚卫斌(2007).黄河内蒙古段河道萎缩特征及成因.人民黄河29(1): 25-26.
    侯素珍,王平(2005).黄河宁蒙河道排洪指标及径流条件分析.人民黄河27(9): 24-25.
    黄河水利科学研究院(2002). 2002黄河河情咨询报告.郑州:黄河水利出版社.
    姜乃迁(2000).水沙条件对潼关高程作用分析.人民黄河7: 17-18.
    姜乃迁(2002).黄河潼关河段清淤研究.人民黄河9: 17-18.
    姜乃迁,张翠萍,侯素珍(2004).潼关高程及三门峡水库运用方式问题探讨泥沙研究(1): 23-28.
    焦恩泽(2001).潼关高程演变规律及其成因分析.泥沙研究(2): 8-11.
    焦李成(1990).神经网络系统理论.西安:西安电子科技大学出版社.
    金双彦,秦毅(2008).黄河下游夹河滩站洪水最大含沙量预报研究泥沙研究(2): 58-61.
    李保如(1994).李保如河流研究文选.北京:中国水利水电出版社.
    李昌华(1981).河工模型试验.北京:人民交通出版社.
    李庆中,叶春江,唐梅英(2000).三门峡库区潼三段存在的问题及治理措施.人民黄河12: 7-8.
    李文文,吴保生,夏军强(2010b).潼关高程与其影响因子相关分析.人民黄河.
    李文文,吴保生,夏军强(2010c).黄河下游平滩流量影响因子相关分析.人民黄河.
    李文文,夏军强,吴保生(2010a).人工神经网络在黄河下游平滩流量中的应用.泥沙研究3(17-23).
    李文学,张翠萍,姜乃迁(2003).潼关高程变化及其对渭河下游淤积的影响泥沙研究1(3): 25-29.
    李杨俊(1998).渭河下游河道萎缩特性分析和改善对策.人民黄河12: 9-11.
    李勇,董雪娜,张晓华(2004).黄河水沙特性变化研究.郑州:黄河水利出版社.
    梁志杰,王立军,张森(2001).河床演变及河道整治浅析.水利科技与经济7(3): 138.
    林秉南(1985).关于一维动床数学模型的讨论. 1002-1015 (Ed三峡工程泥沙问题研究成果汇编(160-180m蓄水位方案)).北京:水利电力部科学技术司.
    林秀芝,姜乃迁,梁志勇(2005b).渭河下游输沙用水量研究.郑州:黄河水利出版社.
    林秀芝,田勇,伊晓燕(2005a).渭河下游平滩流量变化对来水来沙的响应.泥沙研究(5): 1-4.
    吕世雄(1970).潼关河底高程升降原因和发展趋势的分析.西北水利科学研究所资料.
    马雪妍(2006).渭河下游平滩流量与水沙条件响应关系研究.水资源与水工程学报17(3): 79-82.
    牛建新,韩其为(1992).三门峡水库控制运用的冲淤数模验证与计算分析. (Ed全国泥沙基本理论研究学术讨论会论文集).
    齐璞(1994).三门峡水库不同运用方式对小北干流河段的影响.郑州:河南人民出版社.
    钱宁,张仁,周志德(1978).河床演变学.北京:科学出版社.
    钱意颖,程秀文,付崇进,陈世丹(1989).多沙河流上修建水库水沙调节指标的研究.郑州:黄河科学研究所.
    钱意颖,吴知,米粹侠(1972).关于在多沙河流上修建水库保持有效库容的初步分析. In水库泥沙报告汇编(Ed黄河水库泥沙观测研究成果交流会).
    申冠卿,张原锋,侯素珍,尚红霞(2007).黄河上游干流水库调节水沙对宁蒙河道的影响.泥沙研究(1): 67-75.
    汤立群,唐洪武,陈国祥(1999).河海大学泥沙研究进展及成果综述. Vol. 6, 29-32.
    唐先海(1999).渭河下游近期淤积发展情况的分析研究.泥沙研究3: 69-73.
    万景文(1996).三门峡库区水灾成因与减免措施的初步研究.西北水电勘测设计院.
    王士强(2001).三门峡水库非汛期运用水位研究.泥沙研究.
    王彦成,王铁钧,郭少宏(1999).黄河内蒙古段近期水沙变化分析.内蒙古水利(3): 13-14.
    吴保生,夏军强,王兆印(2006).三门峡水库淤积及潼关高程的滞后响应.泥沙研究(1): 9-16.
    吴保生,夏军强,张原锋(2007).黄河下游平滩流量对来水来沙变化的响应.水利学报38(7): 886-892.
    吴文浩(1998).长江下游河床演变论文集.南京:河海大学出版社.
    夏军强,吴保生,李文文(2009).黄河下游平滩流量不同确定方法的比较.泥沙研究(3): 20-29.
    夏军强,吴保生(2008).近期黄河下游河床调整过程及特点.水科学进展19(3): 301-308.
    谢鉴衡(2002).河流模拟.北京:水利水电出版社.
    谢鉴衡,魏良琐(1987).河流泥沙数学模型的回顾与展望.泥沙研究(3): 3-15.
    许全喜(2000).人工神经网络模型在流域水沙预报中的应用人民长江(5): 30-32.
    许全喜,张小峰(2002).河道深泓线变化神经网络预报模型研究与应用人民长江(11): 35-37.
    许协庆,朱鹏程(1963).河床变形问题的特征线性解.水利学报(1): 20-24.
    杨国录(1993).河流数学模型.南京:海洋出版社.
    杨庆安,龙毓赛,缪凤举(1995).黄河三门峡水利枢纽运用与研究.郑州:河南人民出版社.
    姚文广(1994).渭河流域综合治理迫在眉睫.水利水电技术(6): 45-47.
    曾庆华,周文浩(1986).渭河淤积发展及其与撞关卡口黄河洪水倒灌的关系.泥沙研究(3).
    翟宜峰,李鸿雁(2003).人工神经网络与遗传算法在多泥沙洪水预报中的应用.泥沙研究(2): 7-13.
    张翠萍,张原锋,高际萍(1999 ).渭河下游近期水沙特性及冲淤规律.泥沙研究3: 17-25.
    张根广,林劲松,赵克玉(2004).渭河下游淤积上延分析.泥沙研究(4): 39-43.
    张根广,赵克玉,杨红梅(2003).渭河下游河床演变特征及其淤积上延分析.西北水资源与水工程3: 35-46.
    张红武(2001).河工动床模型相似率研究进展.水科学进展12(2): 256-263.
    张立明(1993).人工神经网络的模型及其应用.上海:复旦大学出版社.
    张启舜,蒋如琴(1994).提高三门峡水库综合效益问题的研究.郑州:河南人民出版社.
    张仁(2000).潼关高程升高及其解决方法. In三门峡水利枢纽运用四十周年论文集.
    张仁(2001).潼关高程升高及其解决方法.泥沙研究(2): 12-16.
    张润亭(1994).三门峡水库调水调沙运用经验.郑州:河南人民出版社.
    张书农,华国祥(1985).河流动力学.南京:河海大学出版社.
    张小峰,谈广鸣(2002).基于BP神经网络的河道断面变形预测模型.水利学报11: 8-13.
    张小峰,许全喜(2001).河道岸线变形神经网络预测模型研究.泥沙研究(5): 19-26.
    张原峰,姜乃迁,候素珍(2005).潼关高程影响因素及下降幅度探讨.泥沙研究(1): 40-45.
    郑鸣芳(2005).闽江下游分流口河段分流比及河道演变分析.南京:河海大学.
    周建军,林秉南,王连祥(1993).平面二维泥沙数学模型的研究及应用.水利学报(11): 12-21.
    周文浩,陈建国,李慧梅(2000).撞关高程及遏制渭河下游淤积的对策. In三门峡水利枢纽运用四十周年论文集.
    周志德(2003). 20世纪的河床演变学.中国水利水电科学研究院学报3: 62-67.
    左东启(1984).模型试验的理论与方法.北京:水利电力出版社.
    左书华(2004).人工神经网络在我国流域水沙分析预测中的应用研究进展.海河水利(6): 37-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700