用户名: 密码: 验证码:
沿海平原水资源优化配置与河网水沙输移计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沿海平原地区人口密集,经济发达,但水资源往往并不充沛,资源性缺水伴随着水质性缺水,成为制约当地经济社会发展的主要因素之一。为满足当地经济社会可持续发展的要求,需合理利用域内有限的优质水资源,并从域外引水以根本解决资源性缺水问题。
     综合考虑经济效益、制水输水成本和水量均衡分配等目标及其制约关系,构造了一个新的非线性总目标函数。将3个目标函数有机地组合起来,以可供水量、需水量等作为约束条件,建立了新的水资源优化配置模型。据此获得水资源分配问题的最优解,避免了一般多目标优化问题中存在多个最优解的不足,可有效地解决复杂水资源系统的优化配置问题。
     基于GIS技术将流域河网平面和断面地形数字化,据以划分计算河网和侧向支流。提出时变侧向出流过程的计算公式,以考虑引水时主干河道向支流扩散的水量,从而将圣维南方程中侧向出流项由以往的常数改进为时变流量过程。考虑数学模型出口边界水位为时变过程,使河网非恒定流数值计算更为合理。在此基础上提出了河网输水能力的数值计算方法。
     潮汐河口自流引水不可避免地受非恒定流影响,水流挟沙能力随之变化,而实际含沙浓度变化滞后于水流挟沙能力。为此提出时变挟沙能力的新概念,即水流挟沙能力在半潮周期内随潮流速和潮位同步变化,是时间的函数。在量纲分析基础上建立起水流挟沙能力与时变Froude数的函数关系式,再根据平衡点含沙量和相应水流参数确定关系式中的系指数,由此获得时变水流挟沙能力公式。
     当引水经沿海平原河网时,除入口水流受潮汐影响而具有时变的挟沙能力外,引水带来的粘性泥沙进入河网将破坏原有的泥沙输移格局,导致粘性非均匀沙在河网沉积。为此,考虑时变水流挟沙能力和粘性非均匀沙起动概率,结合河网非恒定流数值计算,建立起沿海平原河网不平衡输沙与淤积的计算方法。将该方法用于某引水工程河网含沙量的沿程变化与淤积计算,分析了河网淤积的时空分布规律,并提出相应的减淤对策,为引水工程决策提供了科学依据。
Coastal plain areas always possess of large population and developed economy but lack for local water resources, which has becoming a bottleneck of economic and social development. To meet the needs of sustainable development of local economy sociaty, besides for reasonably exploiting and optimally allocating water resources in the region, transporting water from outside region is necessary to solve fundamentally the problem of lacking for water.
     Taking economic benefit, cost of water transport and equilibrium distribution into account synthetically, a new nonlinear objective function organically integrating three objectives is proposed. A new model for optimal allocation of water resources is developed under restricts with water supply and demand. The model can provide an optimal solution of water resources allocation, which overcomes the disadvantages of multiple optimal solutions in previous multi-objective programming, and effectively solve the problem of optimal allocation in complex water resources system.
     Using GIS technology to digitalize river network and section topography in the basin, the river network is divided into mainstream and lateral distributary as "reservoirs". A calculation method of time-dependent lateral outflow is proposed, which is adopted to compute water discharge from mainstream to reservoirs in water transport and proves the lateral outflow in Saint-Venant equation from previous constant to time-dependent process. Water level change at outlet boundary in the mathematical model is also considered as time-dependent process, which makes the calculation of unsteady flow in river network more reasonable. As a result a new method is proposed for calculation of water transport capacity in river network.
     As artesian flow from tidal estuary to river network is affected by tide inevitably, the sediment transport capacity of flow changes with it synchronously, but the actual sediment concentration lags behind it. So a new concept that the time-dependent sediment transport capacity is proposed, which means sediment transport capacity varies with tidal velocity and water level in half tide cycle and it is a function of time. Based on the dimensional analysis, the relationship between sediment transport capacity and time-dependent Froude number is constructed, and then the hydraulic parameters and concentrations in equilibrium points are chosen to determine the coefficients in the formulation, so a general formula for time-dependent sediment transport capacity is developed.
     When water flows through the river network in the coastal plain, besides tidal flow at the entrance with time-dependent sediment transport capacity, sediment alorg with water enters the river network and destroys the equilibrium state of sediment transport, which leads to non-uniform cohesive sediment deposition throughout the river network. Considering time-dependent sediment transport capacity and incipient probability of cohesive non-uniform sediment and integrating numerical calculation of unsteady flow, a calculation method of nonequilibrium sediment transport and deposition through the river network in coastal plain is established. The method is applied to calculate sediment concentration and deposition along the river network in a water transport project, the temporal and spatial distribution of sediment deposition is analyzed, and the countermeasures for decreasing deposition in river network are proposed, which provide scientific reasons for the decision of water transport project.
引文
[1]Maass, A., Hufschmidt, M. M., Dorfinan, R., et al. Design of water resource management[M]. Cambridge Harvard University.1962.
    [2]Buras, N.. Scientific allocation of water resources:water resources development and utilization-a rational approach[M]. New York. American Elsevier Publishing Company.1972.
    [3]Haimes, Y.Y., Hail, W.A., Fredmand, H.T.. Multiobjective optimization in water resources systems:the surrogate worth trade of method[M]. New York. Elsevier. 1972.
    [4]Haimes, Y.Y.; Hall, W.A. Multiobjectives in water resources systems analysis: the surrogate worth trade off method[J]. Water Resources Research.1974, 10(4):615-623.
    [5]Haimes, Y.Y.. Hierarchical analysis of water resources systems:modeling and optimization of large-scale systems[M]. New York. McGraw Hill.1977.
    [6]Peter, W.F.L., William, W.-G. Yeh, Nien-Sheng Hsu. Multi-objective water resources management planning[J]. Journal of Water Resources Planning and Management.1984,110(1):39-56.
    [7]Goicoechea, A.; Duckstein, L., Fogel, M.M. Multiobjective programming in watershed management:a study of the charleston watershed[J]. Water Resources Research.1976,12(6):1085-1092.
    [8]Singh, M.G., Titli, A.. System:decomposition, optimization and control[M]. New York. Peramon Press.1978.
    [9]Olenik, S.C., Haimes, Y.Y.. Hierarchical multiobjective framework for water resources planning[J]. IEEE Transactions on Systems, Man and Cybernetics.1979, SMC-9(9):534-544.
    [10]Haimes, Y.Y., Allee, D.J. Multiobjective analysis in water resources[M]. New York. American Society of Civil Engineering.1982.
    [II]Minsker, B.S., Padera, B., Smalley, J.B.. Efficient methods for including uncertainty and multiple objectives in water resources management models using Genetic Algorithms[C]. Alberta. International Conference on Computational Methods in Water Resources.2000:25-29.
    [12]Walsh, M.R.. Toward spatial decision support systems in water resources[J]. Water Resources Planning.1992,109(2):158-169.
    [13]Rosegrant, M.W., Ringler, C., Mckinny, D.C., et al. Integrated economic-hydrologic water modeling at the Basin Scale:The Maipo River Basin[J]. Agricultural Economics.2000,24(1):33-46.
    [14]XU, Z.X., Ito, K., Schultz, G.A., et al. Integrated hydrologic modeling and GIS in water resources management[J]. Computing in Civil Engineering.2001, 15(3):217-223.
    [15]Mckinny, D.C., CAI, X.M.. Linking GIS and water resources management models:an object-oriented method[J]. Environmental Modeling & Software.2002, 17:413-425.
    [16]问德溥.多维随机动态规划的参数迭代法及在库群调度中的应用[J].水利学报.1986,3:1-9.
    [17]张玉新,冯尚友.多维决策的多目标动态规划及其应用[J].水利学报.1986.7:1-10.
    [18]谢新民,秦大庸,于福亮.基于知识的水电站水库群模糊优化补偿调节模型研究[J].水利学报.1998,3:74-81.
    [19]郭生练.水库调度综合自动化系统[M].武汉.武汉水利电力大学出版社.2000.
    [20]谢新民,秦大庸,于福亮.地下水资源系统多目标管理模型及一种交互式方法[J].河海大学学报(自然科学版).1993,21(1):1-8.
    [21]谢新民,周之豪.水电站水库群与地下水资源系统联合运行经济管理模型研究[J].河海大学学报(自然科学版).1993,21(5):62-69.
    [22]叶永毅,黄守信.水资源大系统优化规划与优化调度经验汇编[M].北京.中国科学技术出版社.1995.
    [23]谢新民,周之豪.地下水资源系统多目标模糊管理模型研究[J].水利学报.1996,8:33-44.
    [24]许新宜,王浩,甘泓,等.华北地区宏观经济水资源规划理论与方法[M].郑州.黄河水利出版社.1997.
    [25]王浩,陈敏建,秦大庸.西北地区水资源合理配置和承载能力研究[M].郑州.黄河水利出版社.2003.
    [26]王浩,秦大庸,王建华,等.黄淮海流域水资源合理配置[M].北京.科 学出版社.2003.
    [27]伊明万,谢新民,王浩,等.基于生活、生产和生态环境用水的水资源配置模型[J].水利水电科技进展.2004,24(2);5-8.
    [28]甘治国,蒋云钟,鲁帆,等.北京市水资源配置模拟模型研究[J].水利学报.2008,39(1):91-102.
    [29]贺北方,周丽,马细霞,等.基于遗传算法的区域水资源优化配置模型[J].水电能源科学.2002,20(3):10-12.
    [30]周丽,黄哲浩,贺惠萍,等.多目标非线性水资源优化配置模型的混合遗传算法[J].水电能源科学.2005,23(5):22-25.
    [31]李群,贾明敏,陈南祥,等.优化与模拟耦合模型在水资源合理配置中的应用[J].水土保持学报.2007,21(5):142-146.
    [32]金菊良,王文圣,程吉林,等.区域水资源合理配置的模糊模式识别-模糊层次分析法的熵耦合模型[J].四川大学学报(工程科学版).2007,39(2):9-13.
    [33]黄显峰,邵东国,顾文权,等.基于多目标混沌优化算法的水资源配置研究[J].水利学报.2008,39(2):183-188.
    [34]Peter, W.F.L., William, W.-G. Yeh, Nien-Sheng Hsu. Multi-objective water resources management planning[J]. Journal of Water Resources Planning and Management.1984,110(1):39-56.
    [35]Mcphee, J.Y., William, W.G.. Multiobjective optimization for sustainable groundwater management in semiarid regions [J]. Journal of Water Resources Planning and Management.2004,130(6):490-497.
    [36]CHEN, B., GUO, H.C., HUANG, G.H., et al.. ASRWM:An arid/semiarid region water management model [J]. Engineering Optimization.2005,37(6):1179-1191.
    [37]Siegfried, Tobias, Kinzelbach, Wolfgang. A multiobjective discrete stochastic optimization approach to shared aquifer management:Methodology and application[J]. Water Resources Research.2006,42(2):p W02402.
    [38]王维平,杨金忠,何庆海,等.区域水资源优化配置模型研究[J].长江科学院院报.2004,21(5):41-43.
    [39]孙月锋,张胜红,王晓玲,等.基于混合遗传算法的区域大系统多目标水资源优化配置模型[J].系统工程理论与实践.2009,29(1):139-144.
    [40]Saint-Venant, B.De. Theory of unsteady water flow with application to river floods and to propagation of tides in river channels[M]. Paris. Computes Rendus Acad. Sci.1871.
    [41]Stoker, J.J. Numerical solution of flood prediction and river regulation problems: Derivation of basic theory and formulation of numerical methods of attack[R]. New York. New York University Institute of Mathematical Science.1953, Report I, IMM-NYU-200.
    [42]Liggett, A., Woolhiser, A. Difference solutions of the shallow-water equation[R]. Cornell University.1967, Tech. Rep.6,
    [43]Balloffet, Armando. One dimensional analysis of floods and tides in open channels[J]. Journal of Hydraulics Division.1969,95(4):1429-1451.
    [44]Kamphuis, J.W. Mathematical tidal study of St. Lawrence river[J]. Journal of Hydraulics Division.1970,96(3):643-664.
    [45]Garrison, J.M., Granju, J.P., Price, J.T. Unsteady flow simulation in rivers and reservoirs[J]. Journal of Hydraulics Division.1969,95(5):1559-1576.
    [46]Johnson, B.H. Unsteady flow computations on the Ohio Cumberland Tennessee Mississippi river system[R]. United States Waterways Experiment Station.1974. Technical Report., H-74-8.
    [47]Baltzer, R.A., Lai, Chintu. Computer simulation of unsteady flows in waterways[J]. Journal of Hydraulics Division.1968,94(4):1083-1117.
    [48]Contractor, D.N., Wiggert, J.M. Numerical studies of unsteady flow in the James river[R]. Blacksburg. Virginia Water Resources Research Center.1971.
    [49]Quinn, F.H., Wylie, E.B. Transient analysis of the Detroit River by the implicit method[J]. Journal of Water Resources Research.1972,8(6):1461-1469.
    [50]Fread, D.L. Technique for implicit dynamic routing in rivers with tributaries[J]. Journal of Water Resources Research.1973,9(4):918-926.
    [51]Chaudhry, Y.M., Contractor, D.N. Application of the implicit method to surges in open channels[J]. Journal of Water Resources Research.1973,9(6):1605-1612.
    [52]Greco, F., Panattoni, L. An implicit method to solve Saint-Venant equation[J]. Journal of Hydrology.1975,24(1-2):171-185.
    [53]顾元棪,王尚毅,郭传镇.具有岔道支流的明渠不恒定计算[J].天津大学学报.1985,1:54-64.
    [54]ZENG Fan-tang, XU Zhen-cheng, CHEN Xian-cheng. Real time mathematical model for tidal river networks and its application to the Pearl River Delta[C]. Venice, Italy. The 8th International Conference on Computational Methods in Water Resources.1990.
    [55]李岳生,杨世孝,肖子良.网河不恒定流隐式方程组的稀疏矩阵解法[J]中山大学学报.1977,3:27-37.
    [56]李光炽,王船海.大型河网水流模拟的矩阵标识法[J].河海大学学报(自然科学版).1995,23(1):36-43.
    [57]Dronkers,J.J.河流近海区和外海的潮汐计算[J].水利水运科技情报(增刊).1976:24-67.
    [58]徐小明,何建京,汪德爟.求解大型河网非恒定流的非线性方法[J].水动力学研究与进展(A辑).2001,16(1):18-24.
    [59]李义天.河网非恒定流隐式方程组的汉点分组解法[J].水利学报.1997,3:49-57.
    [60]侯玉,卓建明,郑国权.河网非恒定流汉点分组解法[J].水科学进展.1999.10(1):48-52.
    [61]张二骏,张东生,李挺.河网非恒定流的三级联合解法[J].河海大学学报(自然科学版).1982,1:1-13.
    [62]吴寿红.河网非恒定流四级解法[J].水利学报.1985,8:42-50.
    [63]Cunge, J. A.. Two-dimension modeling of flooding plains [M]. Mahmood, K., Yevjevich, V. Unsteady flow in open channels. Water Resources Publications.1975.
    [64]韩龙喜,金忠青.平原河网的水量计算和参数率定--改进的湄公河模型[J].水动力学研究与进展(A辑).1991,6(SUP):39-45.
    [65]韩龙喜,张书农,金忠青.复杂河网非恒定流计算模型——单元划分法[J].水利学报.1994,2:52-56.
    [66]姚琪,丁训静,郑孝宇.运河水网水量数学模型的研究和应用[J].河海大学学报(自然科学版).1991,19(4):9-17.
    [67]Dibike, Y.B., Solomatine, D., Abbott, M.B. On the encapsulation of numerical-hydraulic models in artificial neural network[J]. Journal of Hydraulic Research.1999,37(2):147-161.
    [68]Dibike, Y.B., Abbott, M.B. Application of artificial neural networks to the simulation of a two dimensional flow[J]. Journal of Hydraulic Research.1999, 37(4):435-446.
    [69]李义天,李荣.具有河网水沙运动特点的人工神经网络模型[J].水利学报.2001,11:1-7.
    [70]王腊春,许有鹏,周寅康,等.太湖水网地区河网调蓄能力分析[J].南京大学学报(自然科学).1999,35(6):712-718.
    [71]白玉川,万艳春,黄本胜,等.河网非恒定流数值模拟的研究进展[J].水利学报.2000(12):43-47.
    [72]李毓湘,逢勇.珠江三角洲地区河网水动力学模型研究[J].水动力学研究与进展A辑.2001,16(2):143-155.
    [73]徐祖信,卢士强.平原感潮河网水动力模型研究[J].水动力学研究与进展(A辑).2003,18(2):176-181.
    [74]吴作平,杨国录,甘明辉.河网水流数值模拟方法研究[J].水科学进展.2003,14(3):350-353.
    [75]彭静,何少苓,廖文根,等.珠江三角洲大系统洪水模拟分析及防洪对策探讨[J].水利学报.2003(11):78-84.
    [76]吴作平,杨国录,甘明辉.湖泊调蓄作用对河网计算的影响[J].水科学进展.2004,15(5):603-607.
    [77]Yuan Fei, REN Li-liang, YU Zhong-bo. A river flow routing model based on digital drainge network[J]. Journal of Hydrodynamics, Ser. B.2005,17(4):483-488.
    [78]王晓玲,李明超,周潮洪,等.复杂河网中洪水演进二维数值仿真及其应用[J].天津大学学报.2005,38(5):416-421.
    [79]YANG, J., Townsend, R. D., Daneshfar, B.. Applying the HEC-RAS model and GIS techniques in river network floodplain delineation[J]. Canadian Journal of Civil Engineering.2006,33(1):19-28.
    [80]ZHANH Rui-jin, XIE Jian-heng. Sedimentation Research in China. Beijing[M]. China Water and Power Press.1983.
    [81]刘家驹.在风浪和潮流作用下淤泥质浅滩含沙量的确定[J].水利水运科学研究.1988,2:69-73.
    [82]赵龙保,祝永康.椒江河口挟沙力经验关系初步分析[J].泥沙研究.1991,4:69-75
    [83]窦国仁,董凤舞.潮流和波浪的挟沙能力[J].科学通报.1995,40(5):443-446.
    [84]Lin, B., Falconer, R.A. Modelling sediment fluxes in estuarine waters using a curvilinear coordinate grid system[J]. Estuarine, Coastal and Shelf Science.1995, 4:413-428.
    [85]Cellino, M., Graf, W. H. Sediment-laden flow in open-channels under noncapacity and capacity conditions[J]. Journal of Hydraulic Engineering.1999, 125(5):455-462
    [86]Tayfur, G. Applicability of sediment transport capacity models for nonsteady state erosion from steep slopes[J]. Journal of Hydrologic Engineering.2002, 127(3):252-259
    [87]Sun, Z., Sun, Z., Donahue, J.. Equilibrium bed-concentration of nonuniform sediment[J]. Journal of Zhejiang University(Science).2003,4 (2):186-194.
    [88]钱宁,万兆惠.泥沙运动力学[M].科学出版社.1983.
    [89]Gessler, J. Self Stabilizing Tendencies of Sediment Mixtures with Large Range of Grain Sizes[J]. J. Waterways and Harbor Div., Proc., Amer. Soc. Civil Engrs.1970, 96(WW2).
    [90]Gessler, J. Critical Shear Stress for Sediment Mixtures[C]. Proc.,14th. Cong., Intern. Assoc. Hyd. Res.1971,3:1-8.
    [91]Gessler, J. Stochastic Aspects of Incipient Motion on Riverbeds[J]. Stochastic Approach to Water Resources.1976,2(25):1-26.
    [92]秦荣昱.不均匀沙的起动规律[J].泥沙研究.1980,12:83-91.
    [93]韩其为,何明民.泥沙运动统计理论[M].北京.科学出版社.1984.
    [94]陈媛儿,谢鉴衡.非均匀沙起动规律初探[J].武汉水利电力学院学报.1988.3:28-37.
    [95]冷魁,王明甫.无粘性非均匀沙起动规律探讨[J].水力发电学报.1994,2:57-65.
    [96]孙志林,谢鉴衡,段文忠,等.非均匀沙分级起动规律研究[J].水利学报.1997,10:25-32.
    [97]李荣,李义天,王迎春.非均匀沙起动规律研究[J].泥沙研究.1999,1:27-32.
    [98]刘兴年,曹叔尤,黄尔,等.粗细化过程中的非均匀沙起动流速[J].泥沙研究.2000,4:10-13.
    [99]杨具瑞,方铎,何文社,等.非均匀沙起动规律研究[J].水利学报. 2002,10:82-86.
    [100]杨奉广,曹叔尤,刘兴年,等.非均匀沙分级起动流速研究[J].四川大学学报(工程科学版).2008,40(5):51-57.
    [101]王涛,刘兴年,黄尔,等.非均匀沙起动流速研究与比较[J].四川大学学报(工程科学版).2008,40(1):16-20.
    [102]窦国仁.论泥沙起动流速[J].水利学报.1960,4:44-60.
    [103]武汉水利电力学院.河流动力学[M].中国工业出版社.1960.
    [104]唐存本.泥沙起动规律[J].水利学报.1963,2:1-12.
    [105]沙玉清.泥沙运动学引论[M].中国工业出版社.1965.
    [106]杨具瑞,曹叔尤,方铎,等.坡面非均匀沙起动规律研究[J].水力发电学报.2004,23(3):102-106.
    [107]窦国仁.潮汐水流中的悬沙运动及冲淤计算[J].水利学报.1963,4:13-24.
    [108]Feldman, A.D.. HEC Models for Water Resources System Simulation:Theory and Experience[J]. Advances in Hydroscience.1981(12):297-423.
    [109]Borah D.K., Alonso C.V., Prasad S.N.. Routing graded sediments in streams: formulations[J]. Journal of Hydraulics Division.1982,108(HY12):1486-1503.
    [110]Lin Pin-nam, Huan Ju-qing, Li Xin-quen. Unsteady transport of suspended load at small concentrations [J]. Journal of Hydraulic Engineering.1983,109(1):86-98.
    [111]Chang, H.H.. Fluvial Processes in River Engineering[M]. John Wiley and Sons New York.1988.
    [112]杨国录,Philippe B., Rahuel J. L., et al.冲积河流一维数学模型.泥沙研究.1989(4):41-53.
    [113]Rahuel J.L., Holly F.M., Chollet J.P, et al. Modeling of riverbed evolution for bedload sediment mixtures[J]. Journal of Hydraulic Engineering.1990, 115(11):1521-1542.
    [114]Chang H.H., Harrison L.L., Wing L., et al. Numerical modeling for sediment-pass-through reservoirs [J]. Journal of Hydraulic Engineering.1996, 122(7):381-388.
    [115]Darby S.E., Thorne C.R.. Development and testing of riverbank-stability analysis[J]. Journal of Hydraulic Engineering.1996,122(8):443-454.
    [116]Zhou Jian-jun, Lin Bing-nan. One-dimensional mathematical model for suspended sediment by lateral integration[J]. Journal of Hydraulic Engineering.1998, 124(7):712-717.
    [117]张丽春,方红卫,府仁寿.一维非恒定非均匀泥沙数学模型研究[J].泥沙研究.1998(3):81-85.
    [118]李义天,尚全民.一维不恒定流泥沙数学模型研究[J].泥沙研究.1998(1):81-87.
    [119]梁国亭,高懿堂,梁跃平,等.非恒定流泥沙数学模型原理及其应用[J].泥沙研究.1999(4):44-48.
    [120]方红卫,王光谦.一维全沙泥沙输移数学模型及其应用[J].应用基础与工程科学学报.2000,8(2):154-164.
    [121]彭杨,张红武.三峡库区非恒定一维水沙数值模拟[J].水动力学研究与进展A辑[J].2006,21(3):285-292.
    [122]窦国仁,赵士清,黄亦芬.河道二维全沙数学模型的研究[J].水利水运科学研究.1987(2):1-12.
    [123]Jachec S.M., Bosma K.F.. Sediment transport related to potential sand mining offshore New Jersey[C]. Proceedings of the International Symposium on Ocean Wave Measurement and Analysis.2001(2):1326-1335.
    [124]CAO Zhi-xian, Pender G. Numerical modelling of alluvial rivers subject to interactive sediment mining and feeding[J]. Advances in Water Resources. 2004,27(5):533-546.
    [125]谈广鸣,赵连军,韦直林,等.海河口平面二维潮流水沙数学模型研究[J].水动力学研究与进展A辑.2005,20(5):545-550.
    [126]Clinton S.W., Nathan D., William B., et al. Physical and numerical modeling of river and sediment diversions in the lower Mississippi river delta[C]. Proceedings of 6th International Symposium on Coastal Engineering and Science of Coastal Sediment Processes.2007.
    [127]刘士和,梅军亚,徐林波,等.漳河下游河道水沙运动数值模拟[J].水动力学研究与进展A辑.2008,23(2):230-236.
    [128]Kiat C.C., Ghani A.A., Abdullah R., et al. Sediment transport modeling for Kulim River-A case study[J]. Journal of Hydro-Environment Research.2008, 2(1):47-59.
    [129]白玉川,顾元棪,邢焕政.水流泥沙水质数学模型理论及应用[M].天津. 天津大学出版社.2005.
    [130]ZHENG Jin-hai, LIU Ying-qi, YAN Yi-xin, et al. Three-dimensional numerical modelling of submerged dike alignment in curved estuarine channel [J]. Journal of Hydrodynamics.2005,17(5):601-606.
    [131]冯小香,张小峰,李建兵,等.水库坝前冲刷漏斗形态三维水沙数学模型研究[J].水动力学研究与进展A辑.2008,23(1):15-23.
    [132]LIU Xiao-feng, Marcelo H., Garcia M.. Three-Dimensional Numerical Model with Free Water Surface and Mesh Deformation for Local Sediment Scour[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering.2008,134(4):203-217.
    [133]假冬冬,邵学军,王虹,等.考虑河岸变形的三维水沙数值模拟研究[J].水科学进展.2009,20(3):311-317.
    [134]韩其为.非均匀悬移质不平衡输沙的研究[J].科学通报.1979,17:804-808.
    [135]韩其为,何明民.水库淤积与河床演变的(一维)数学模型[J].泥沙研究.1987(3):14-29.
    [136]储裕良,严以新,贾良文,等.一维河网非恒定流及悬沙数学模型的节点控制方法[J].水动力学研究与进展A辑.2001,16(4):503-510.
    [137]施勇,胡四一.感潮河网区水沙运动的数值模拟[J].水科学进展.2001,12(4):431-438.
    [138]吴作平,杨国录,甘明辉.荆江-洞庭湖水沙数学模型研究[J].水利学报.2003(7):96-100.
    [139]曹志芳,李义天.洪泛区河网非恒定水沙数学模型的研究[J].泥沙研究.2004(3):14-21.
    [140]孙昭华,李义天,曹志芳.河网非恒定水沙数学模型研究[J].水科学进展.2004,15(2):165-172.
    [141]吴作平,杨国录,甘明辉.复杂河网水沙数学模型研究[J].水科学进展.2004,15(3):336-340.
    [142]张蔚,霍光,储裕良.珠江三角洲一维河网非恒定流悬沙预测模拟[J].河海大学学报(自然科学版).2005,33(5):542-545.
    [143]Krone R B. Flume studies of the transport of sediment in estuarial shoaling processes. University of California, Berkley,1962.
    [144]Partheniades E., et al. Investigation of the depositional behavior of fine cohesive sediments in an annular rotating channel [R]. Report No.96, Ralph M. Parsons Hydrodynamics Lab. MIT, Cambridge, Massachusetts,1966.
    [145]Mehta A. J.. Depositional behavior of cohesive sediments[D]. Ph.D. Dissertation, University of Florida,1973.
    [146]Richardson J.F.. Sedimentation and fluidization of fine particles and of two component mixtures of solids[J]. Trans. Instn. Chem. Engrs..1961,39(5):348-356.
    [147]王尚毅.细颗粒泥沙在静水中的沉降运动[J].水利学报1964(5):20-29.
    [148]Peirce T.J., Williams P.J.. Experiments on certain aspects of sedimentation of estuary muds[J]. Pro. ICE.1966,34:391.
    [149]Allersma E., Hoekstra A.J., Bijker E.W.. Transport patterns in the Chao Phya Estuary[R]. Report No.47. Delft Hydraulic Laboratory Publication.1967.
    [150]Owen M.W.. A detailed study of the settling velocities of an estuary mud[R]. Report No.78. Hydraulic Research Station, Wallingford, England.1970.
    [151]Hirano M.. River-bed degradation with armoring[J]. Proc. Jap. Soc. Civil Engineering.1971(195):55-65.
    [152]Partheniades.柴挺生译.粘性泥沙的冲刷和淤积的新近研究成果[J].水利水运科技情报.1975(6):48-71.
    [153]Mehta A.J., Partheniades E. On the deposition properties of estuarine sediments[C]. Copenhagen, Den. Coastal Engineering Conference 14th International. ASCE,1975:1232-1251.
    [154]黄建维.粘性泥沙在静水中沉降特性的试验研究[J].泥沙研究.1981(2):30-41.
    [155]Mehta A.J., Lott J.W.. Sorting of fine sediment during deposition[C]. New Orleans. Coastal Sediments'87, Proceedings of a Specialty Conference on Advances in Understanding of Coastal Sediment Processes.1987(1):348-362.
    [156]Scarlatos P.D., Mehta A.J.. Microstructure of cohesive sediment suspensions[C]. Colorado Springs, USA. Hydraulic Engineering:Proceedings of the 1988 National Conference on Hydraulic Engineering.1988:218-223.
    [157]黄建维.粘性泥沙在盐水中冲刷和沉降特性的试验研究[J].海洋工程.1989,7(1):61-70.
    [158]徐啸.细颗粒粘性泥沙沉降率的探讨[J].水利水运科学研 1989 (4):93-104.
    [159]Haralampides K., McCorquodale J.A., Krishnappan B.G. Deposition properties of fine sediment[J]. Journal of Hydraulic Engineering.2003,129(3):230-234.
    [160]Krishnappan B.G. Recent advances in basic and applied research in cohesive sediment transport in aquatic systems[J]. Canadian Journal of Civil Engineering.2007, 34(6):731-743.
    [161]Ariathurai R., Krone R.B. Finite element model for cohesive sediment transport[J]. Journal of the Hydraulics Division,1976,102(3):323-338.
    [162]Scarlatos P.D. On the numerical modeling of cohesive sediment transport[J]. Journal of Hydraulic Research,1981,19(1):61-68.
    [163]Hayter E.J., Mehta A.J. Modeling estuarial cohesive sediment transport[C]. Houston, USA. Nineteenth Coastal Engineering Conference, Proceedings of the International Conference.1985,3:2985-3000.
    [164]Maa P.Y., Srivastava M., Mehta A.J. Prediction of fine sedimentation in small marinas[C]. Lake Buena Vista, USA. Hydraulics and Hydrology in the Small Computer Age, Proceedings of the Specialty Conference. ASCE.1985:100-105.
    [165]Leadon C.J.. Suwannee river estuary:cohesive sedimentation[C]. Baltimore, USA. Coastal Zone'85, Proceedings of the Fourth Symposium on Coastal and Ocean Management.1985,2:1488-1505.
    [166]Hayter E.J., Mehta A.J. Modelling cohesive sediment transport in estuarial waters[J]. Applied Mathematical Modelling.1986,10(4):294-303.
    [167]Mehta A.J., Hayter E.J., Parker W.R., et al. Cohesive sediment transport. I: Process description[J]. Journal of Hydraulic Engineering,1989,115(8):1076-1093.
    [168]Mehta A.J., McAnally Jr., William H., et al. Cohesive sediment transport. II: Application[J]. Journal of Hydraulic Engineering,1989,115(8):1094-1112.
    [169]Chen Y., Wai Onyx W.H., Li Y.S., et al. Three-dimensional numerical modeling of cohesive sediment transport by tidal current in pearl river estuary[J]. International Journal of Sediment Research.1999,14(2):107-123.
    [170]Le N.C.. Three-dimensional modelling of cohesive sediment transport in the Loire estuary[J]. Hydrological Processes.2000,14(13):2231-2243.
    [171]Savvidis Y.G., Koutitas C.G., Krestenitis Y.N.. Development and application of a three-dimensional cohesive sediment transport mathematical model [J]. Journal of Marine Environmental Engineering.2001,6(4):229-255.
    [172]Delo E.A., Ockenden M.C.. Sediment transport model for muddy tidal rivers[C]. New Orleans, USA. Sediment Transport Modeling:Proceedings of the International Symposium.1989:314-319.
    [173]Ziegler C.K., Nisbet B. Fine-grained sediment transport in Pawtuxet river, Rhode island[J]. Journal of Hydraulic Engineering.1994,120(5):561-576.
    [174]Fassnacht S.R.. A multi-channel suspended sediment transport model for the Mackenzie Delta, Northwest Territories[J]. Journal of Hydrology.1997, 197(1-4):128-145.
    [175]Krishnappan B.G.. Modelling cohesive sediment transport in rivers[C]. Waterloo, Canada. Symposium on the Role of Erosion and Sediment Transport in Nutrient and Contaminant Transfer. IAHS-AISH Publication.2000,263:269-276.
    [176]Neary V.S., Wright S.A., Bereciartua P.. Case study:Sediment transport in proposed geomorphic channel for Napa River[J]. Journal of Hydraulic Engineering. 2001,127(11):901-910.
    [177]Ribes E., Provansal M. Suspended sediment transport and trapping processes in the regulated lower Durance River, southeastern France[J]. IAHS-AISH Publication. 2005,299:101-110.
    [178]Luu X.L., Egashira S., Takebayashi H.. Study on river change and sediment transportation of Tan Chau reach in lower Mekong river[C]. Lisbon, Portugal. International Conference on Fluvial Hydraulics-River Flow 2006.2:1319-1327.
    [179]吴挺峰,罗潋葱,崔广柏,等.河流型水库垂向二维水沙数学模型研究[J].水科学进展.2009,20(2):215-221
    [180]龚纯,王正林.精通MATLAB最优化计算[M].电子工业出版社.2009.
    [181]杨行峻,郑君里.人工神经网络与盲信号处理[M].清华大学出版社.2003.
    [182]孙增圻,徐红兵.基于T-S模型的模糊神经网络[J].清华大学学报(自然科学版).1997,37(3):76-80.
    [183]孙增圻.模糊神经网络及其在系统建模与控制中的应用[J].南京化工大学学报.2000,22(4):1-6。
    [184]韩其为.水库淤积[M].北京.科学出版社.2003.
    [185]孙志林,黄赛花,祝丽丽,等.黏性非均匀沙的起动概率[J].浙江大学学报(工学版).2007,41(1):18-22.
    [186]徐小明.大型河网水力水质数值模拟方法[D].南京.河海大学博士学位 论文.2001.
    [187]黄赛花.河口冲刷的理论与数值模拟[D].杭州.浙江大学博士学位论文.2006.
    [188]施勇.长江中下游水沙输运及其调控数学模型研究[D].南京.河海大学博士学位论文.2006.
    [189]夏双喜.河流型水库一维水沙数学模型研究及应用[D].西安.西安理工大学硕士学位论文.2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700