用户名: 密码: 验证码:
三环唑在稻田生态环境中的残留降解与水解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三环唑是一种内吸性杀菌剂,主要用于防治稻瘟病,尤其对穗颈瘟病有很好的防治效果。三环唑在我国出现的较早,国内外对其研究也主要集中在防治稻瘟病的相关研究上,而关于其水解规律的研究鲜见报道。本文研究了三环唑在稻田生态环境中的残留降解行为,并探讨了pH值、温度、表面活性剂和无机盐的存在对三环唑水解的影响。这些研究对在我国推广和合理使用该农药,以及评价这种农药使用后的生态环境安全性有十分重大的现实意义。本论文的主要内容如下:
     (1)在我国自然环境条件下,三环唑在水稻生态环境中的降解符合化学反应一级动力学方程。2008年和2009年在湖南长沙、浙江杭州和广西南宁三个试验点的试验结果表明:三环唑在稻田水中的消解半衰期在7.87 d~9.00 d之间,平均半衰期为8.33 d;在稻田土壤中的消解半衰期在10.56 d~11.42 d之间,平均半衰期为10.93 d;在水稻植株中的消解半衰期在7.48 d~8.11 d之间,平均半衰期为7.81 d。
     (2)在水稻生长期采用三环唑250克/升悬浮剂按1500 g/hm2(有效成分含量为375.0 a.i.g/hm2)和2250 g/hm2(有效成分含量为562.5 a.i.g/hm2)兑水50kg/亩稀释后,均匀喷施于水稻茎叶,各试验处理分别施药2次和3次,每次间隔7天。三环唑在湖南长沙、浙江杭州和广西南宁三个试验点的稻田土壤中,在最后一次施药后的21d时其残留量在0.073~0.219 mg/kg之间;在稻秆中的残留量在0.557~1.189mg/kg之间;谷壳中的残留量在0.736~1.874 mg/kg之间;糙米中的残留量在0.094~0.366 mg/kg之间。试验结果发现在最后一次施药后的7d、14d和21d时,糙米中三环唑的残留量均未超过1.0mg/kg。因此,根据以上残留实验结果,建议参考欧盟制定的三环唑在大米中的MRL值(1.0mg/kg)。
     (3)在不同的pH值条件下三环唑的水解速率不同。碱性条件下三环唑的水解速率要比中性条件或酸性条件下的水解速率快。试验结果表明,pH=3时,三环唑水解半衰期为64.78d;pH=5时,水解半衰期为56.82d;pH=7时,水解半衰期为47.80d;pH=9时,水解半衰期为41.26d;pH=11时,水解半衰期为37.67d。
     (4)三环唑的水解速率随温度的升高而加快。当温度为15℃时,三环唑的水解半衰期为100.46 d;当温度为25℃时,其水解半衰期为60.80 d,;当温度为35℃时,其水解半衰期为30.01 d。试验中,温度每升高10℃,三环唑的水解常数平均增加1.84倍。
     (5)不同类型的表面活性剂对三环唑水解产生的影响不同。阴离子表面活性剂SDBS可以加快三环唑的水解反应速度;阳离子表面活性剂CTAB对三环唑的水解有抑制作用;非离子型表面活性剂TW-80对三环唑的水解无明显的影响。
     (6)无机盐对三环唑水解的影响试验表明,当添加强酸强碱盐(NaC1、KCl、CaCl2、NaNO3)时,由于盐析作用对三环唑水解产生抑制作用。当NaCl、KCl、CaCl2、NaNO3的添加浓度由0增至1mol/L,三环唑的水解半衰期分别增加了0.88%、7.55%、11.76%、31.04%;当添加强碱弱酸盐(NaHCO3)时,由于强碱弱酸盐水解后使水环境呈碱性而促进三环唑的水解。随着NaHCO3的浓度由0增至1mol/L,三环唑的水解半衰期缩短了75.47%。
Tricyclazole is a kind of fungicide within the suction. It was always used in preventing and curing rice blast. Tricyclazole came to China for a long time. The studying on tricyclazole almost focus on the capability of preventing and curing the rice blast. But little information was availabled about its hydrolysis. In this paper, the residue degradation of tricyclazole in paddy has be studed; and the effect of tricyclazole hydrolysis has be studed on the pH, temperature, surface active agents and the presence of inorganic salt. It has a very great practical significance to promote and reasonably use the pesticide in our country, and to evaluate the safety after using. The major results were obtained as follows:
     (1) Under natural conditions in China, the degradation of tricyclazole in ecological environment followed the chemical reaction kinetic equation. in and three test points test The results of the test in Hunan Changsha, Guangxi Nanning, Zhejiang Hangzhou in 2008 and 2009 showed that:the degradation half time of tricyclazole was 7.87 d~9.00 d in the paddy water, with an average half-time of 8.33 d; the degradation half time was 10.56 d~11.42d in the paddy soil, with an average half-time of 10.93 d; in the degradation half time was 7.48 d~8.11d in rice plants, with an average half-life of 7.81 d.
     (2) The final residue indicated that when the rice plant was sprayed 2 to 3 times with 25% tricyclazole in the dosage of 1500 g/hm2 and 2250 g/hm2, and the last application was done at 7,14 or 21 days before harvesting, when the last application was done at 21 days before harvesting, the residues of tricyclazole in paddy soil ranged from 0.073 to 0.219 mg/kg; the residues of tricyclazole in rice plant changed from 0.557 to 1.198 mg/kg; the residues of tricyclazole in rice hull was from 0.736 to 1.874 mg/kg; the residues of tricyclazole in rice changed from 0.094 to 0.366 mg/kg. The residues of tricyclazole in rice were lower than 1.0 mg/kg. It suggested that the MRL of tricyclazole in rice was 1.0 mg/kg.
     (3) The hydrolysis rates of tricyclazole were different at different pH values. The hydrolysis rate of tricyclazole in alkaline solution was lower than in neuter solution or acid solution. The results showed that, when pH=3, the half-life of tricyclazole hydrolysis was 64.78 d; when pH=5, the half-life of hydrolysis was 56.82 d; when pH=7, the half-life of hydrolysis was 47.80 d; when pH=9, the half-life of hydrolysis was 41.26 d; when pH=11, the half-life of hydrolysis was 37.67 d.
     (4) The hydrolysis rate of tricyclazole accelerated with the rise of temperature. When the temperature was 15℃, the hydrolysis half-life of tricyclazole was 100.46 d. When the temperature was 25℃, the hydrolysis half-life was 60.80 d. When the temperature was 35℃, the hydrolysis half-life was 30.01d. Even the temperature increased 10℃, then the hydrolysis rate of tricyclazole accelerated 1.84 times as much as that before.
     (5) Different surfactant had dfifferent effect on the hydrolysis rate of tricyclazole. The anionic surfactant (SDBS) could increase the speed of the hydrolysis of tricyclazole. The cationic surfactant (CTAB) could decrease the speed of the hydrolysis of tricyclazole. The nonionic surfactant (TW-80) did not have special influence on the hydrolysis of tricyclazole.
     (6) Added strong acid and strong base salts (NaCl, KCl, CaCl2, NaNO3) into tricyclazole agueous. Due to salting-out effect which restrained hydrolysis of tricyclazole, when the concentration of NaCl, KCl, CaCl2, NaNO3 changed from 0 to 1 mol/L, the hydrolysis half-life of tricyclazole increased 0.88%,7.55%,11.76%, 31.04%, respectivily. Added strong base and weak acid salt (NaHCO3) into tricyclazole's agueous solution, because dissociation of this salt can make water alkaline, it could accelerate its hydrolysis. When the concentration of NaHCO3 ranged from 0 to 1 mol/L, the hydrolysis half-life of tricyclazole decreased 75.47%.
引文
[1]岳永德.农药残留分析[M].北京:中国农业出版社,2004.1
    [2]王丽霞,李挥,范斌.国外农药残留检测技术一瞥[J].检测方法,2007,6:86-87.
    [3]许朝中,张恩建,张诗玉,等.三环唑防治水稻穗颈瘟病试验研究[J].安徽农学通报,2001,7(2):50.
    [4]付金国.防治稻瘟病的高效杀菌剂—三环唑[J].植物保护.
    [5]何文.[硕士学位论文].湖南:湖南农业大学,2006.
    [6]杨仁斌,刘毅华,邱建霞等.农药在水中的环境化学行为及对水生生物的影响[J].湖南农业大学学报(自然科学版),2007,33(1):96-100.
    [7]农业部农药检定所.农药残留量实用检测方法手册1[M].北京:中国农业出版社,1995.
    [8]张帆,楼根林,张忠俊,等.三环唑在稻鱼水生生态系的残留和降解动态[J].西南农业学报,1997,(10):72.
    [9]马妍,李薇,赵建庄,等.现代农药残留技术与发展动向[J].北京农学院学报,2007,6(22):119-123.
    [10]Michelangelo Anastassiades.Residues of pesticides in the food[J]. Journal of AOAC International,2003,86(2):412-431.
    [11]Specht W.Guidance document on residue analytical methods,directorate general health and consumerprotection/European Commission[J].Anal.Chem.1995, 353:183-190.
    [12]李元平,黄冠胜,林伟,等.日本“肯定列表制度”知识问答[R].国家质量监督检验检疫总局,2006.
    [13]黄琼辉.国内外农药残留检测技术研究进展和发展方向[J].福建农业学报,2008,23(2):218-222.
    [14]肖云祥,樊德方.三环唑残留量的气相色谱分析[J].环境化学,1990,9(5):67-70.
    [15]刘家富,梅文泉.大米中三环唑残留量的气相色谱测定[J].西南农业学报,2005,18(6):836-838.
    [16]王德诚.三环唑含量测定的比色法和色谱法比较[J].化工时刊,1995,(3):3-6.
    [17]苏大水.三环唑高效液相色谱分析[J].农药科学与管理,1998,(3):10-11.
    [18]李敬源,卢丽霞.高效液相色谱法测定三环唑原药[J].广州化工,2007,35(1):49-51.
    [19]肖云祥,陈鹤鑫,樊德方.三环唑在水稻和土壤中的消解动态和持久性研究[J].农业环境保护,.1991,10(1):9-11,36.
    [20]黄星,张传清,陈长军,等.稻瘟病菌对三环唑的敏感性检测与抗药风险分析[J].江苏农业学报,2005,21(4):298-300.
    [21]James E, Thompson ES. The second reductase of fungal melanin biosynthesis in Magnporthe grise[J]. Bioloical Chemistry,2000,275:34867~34872.
    [22]Oleg N,Nikolaev Y, Anprey G. A possible Involement of reactiveoxygen species in action of some anti—last fungicides[J]. Pesticides Biochemistry and Physiology, 1994,50:219-228.
    [23]蔡道基.农药环境毒理学研究.北京:中国环境科学出版社,1999:98-110.
    [24]彭娟莹.敌草快的水解行为研究.长沙:湖南农业大学硕士论文,2007:4.
    [25]刘维屏.农药环境化学[M].北京:化学工业出版社,2006:165-195.
    [26]WEI J, FURRER G SCHULIN R.Kinetics of carbosulfuron degradationin the aqueous phase in the presence of a cosolvent[J]. Journal of Environmental Quality,2000,29:1481-1487.
    [27]SARMAH A K, KOOKANA R S, DUFFY M J, et al.Hydrolysis of triasulforon, metsulforon-methyl and chlorsulforon in alkaline soil and aqueous solutions[J].Pest Management Science,2000,56:463-471.
    [28]SARMAH A K, SABADIE J.Hydrolysis of sulfonylurea herbicides in soils and aqueous solutions[J]. Journal of Agriculture and Food Chemistry,2003,50: 6263—6265.
    [29]WETJ, FURRIEG KAUFMANN S, et al.Influence of clay minerals on the hydrolysis of carbamate pesticides [J].Environmental Scienceand Technology,2001, 35:2226-2232.
    [30]郑立庆,刘国光,孙德智,等.农药在环境中的水解研究进展[J].安徽农业科学,2006,34(14):3410-3412.
    [31]徐祖祥,盛雪峰,孙吉林,等.临安市山核桃土宜调查与分析[EB/OL]. [2002-10-02]. http://www.hznet.com.cn/kjdt/hzkj/2002/hk2205t22.him
    [32]刘毅华.三唑酮的水环境化学行为研究[D].长沙:湖南农业大学资源环境学院,2005.
    [33]Morrica P, Barbato F, Iacovo R D, etal.Kinetics andmechanisim of imazosulfuron hydrolysis[J].Agric.Food Chem.2001,49:3816—3820.
    [34]莫汉宏.农药环境化学行为论文集[C].北京:中国科学技术出版社.1994.
    [35]杨克武,莫汉宏.有机化合物水解研究方法[J].环境化学,1994,13(3):206—209.
    [36]Berger B M, WolfN L.Hydrolysis and biodegradation of sulfonylurea herbicides in aqueous bufers and an aerobic water-sediment system:assessing fate pathway susing molecular descriptions[J].Environ. Toxicol.Chem.1996,15:1500-1507.
    [37]Dinelli G, Viccari A, Brandolini V.Detection and quantification of sulfonylurea herbicides in soil at the ppb level by capillary electrophoresis[J].Chromagr.A,1995, 700:207-210.
    [38]朱良天.精细化工产品手册农药卷[M].化学工业出版社,2004:487-488.
    [39]叶常明.多介质环境污染研究[M].北京:科学出版社,1997:88-98.
    [40]李学德,花日茂,岳永德.百菌清水解的影响因素研究[J].安徽农业大学学报,2004,31(2):131—134.
    [41]邹耀洪,余燕.表面活性剂CTAB、LAS及Tween80对乙酸异戊酯碱性水解影响的动力学研究.常熟理工学院学报(自然科学版),2007,21(2):34-39.
    [42]肖曲,郝冬亮,刘毅华.农药水环境化学行为研究进展[J].中国环境管理干部学院学报,2008,18(3):58-61.
    [43]欧小明.农药在环境中的水解机理及其影响因子研究进展[J].生态环境,2006,15(6):1352-1359.
    [44]吴凌云,陶传江,宗伏霖,等.乙羧氟草醚水解动态[J].农药学学报,2007,9(1):96-99.
    [45]孔令仁.环境化学实验[M].南京大学出版社,1989.
    [46]张卫,虞云龙,谭成侠.阿维菌素水解动力学研究[J].农业环境科学学报,2004,23(1):174-176.
    [47]刘毅华,杨仁斌,肖曲,等.三唑酮水解动力学研究[J].农业环境科学学报,2004,23(6):1133-1135.
    [48]刘毅华,郭正元,杨仁斌,等.三唑酮的酸性、中性和碱性水解动力学研究[J].农村生态环境,2005,21(1):67-68.
    [49]夏会龙.氯氰菊酯和马拉硫磷农药的水解动力学研究[J].农业环境保护,1989,8(5):1-3.
    [50]华晓梅.甲基异柳磷等四种农药的水解特性[J].环境化学,1992,11(3):16-21.
    [51]范志金.磺酰脲类除草剂的化学水解[J].四川师范大学学报(自然科学版),2003,26(1):69-73.
    [52]颜文红,雷志芳,叶常明.单甲脒盐酸盐的酸性、中性和碱性水解的动力学过程[J].环境科学学报,1996,16(4):494-497.
    [53]杨克武,莫汉宏,安春风.有机化合物水解的研究方法[J].环境化学,1994,13(3):206-209.
    [54]唐美珍,郭正元,袁敏,等.碘甲磺隆钠盐的水解特性[J].农药,2005,44(7):303-305.
    [55]何文,郭正元,贺仲兵,等.异恶草酮水解动力学研究[J].农业环境科学学报,2005,24(增刊):277-279.
    [56]阮朗编译.农药制剂用表面活性剂的动向[M].农药译丛,1996(5):39-42.
    [57]饶品华,何明.表面活性剂在土壤中的行为及其对土壤物理特性的影响[J].上海交通大学学报(农业科学版),2005,23(3):326-333.
    [58]林智信,安从俊,刘义,等.物理化学:动力学、电化学、表面及胶体化学[M].武汉:武汉大学出版社,2003:1-85.
    [59]陈锡岭,樊德方.杀茵剂叶青双的水解及在池塘中降解的研究[J].环境化学,1993,1:52-58.
    [60]Morrica P, Barbato F, Iacova R D, et al.Kinetics and mechanism of imazosulfuron hydrolysis[J].Agric. Food Chem.,2001,49:3816-3820.
    [61]崔英姿,廉波,纪宗梅.利用分光光度法研究三价铁盐的水解现象[J].牡丹江师范学院学报,2003,3:19-20.
    [62]王敏欣,朱书全.水环境中农药的水解研究分析[J].黑龙江科学学院学报,2004,14(2):74-77.
    [63]李学德,花日茂,岳永德.百菌清水解的影响因素研究[J].安徽农业大学学报,2004,31(2):131-134.
    [64]莫汉宏,安风春,杨克武.单甲脒水解动力学研究[J].环境科学学报,1995,15(3):310-315.
    [65]王晓蓉.环境化学[M].南京:南京大学出版社,1997:57-65.
    [66]石兰.影响盐类水解的因素及盐类水解的应用[J].雁北师范学院学报,2007,23(2):105-107.
    [67]韦薇,宋建梅,郭子义.主族元素无机盐水解性规律[J].云南民族大学学报(自然科学版),2004,13(1):43-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700