用户名: 密码: 验证码:
MEMS-SINS/GPS组合导航关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于微机电系统(Micro-Electro Mechanical Systems, MEMS)技术的捷联惯性导航系统(Strapdown Inertial Navigation System, SINS)与全球定位系统(GlobalPositioning System, GPS)的组合为实现导航系统的低成本、小型化与轻量化设计提供了可行方案。本文以小型无人飞行器导航系统的研制为背景,以解决MEMS-SINS/GPS存在的精度低与可靠性差问题为目标,以惯性辅助紧耦合组合结构为框架,研究了MEMS-惯性测量单元(Inertial Measurement Uunit, IMU)误差分析与补偿、惯性辅助的接收机跟踪环路设计、组合导航滤波器设计等关键技术。主要工作内容可概括为:
     (1)为建立MEMS-IMU高精度误差模型,研究了其误差特性。建立了确定性误差的系统误差模型,设计了标定与补偿方案,提高了使用精度;采用Allan方差分析法辨识了随机误差的主要误差项与误差参数,建立了随机微分方程模型。MEMS-IMU误差模型的建立为惯性器件仿真与组合导航滤波器设计提供了设计输入。
     (2)针对高动态环境下GPS接收机信号失锁问题,设计了惯性辅助紧耦合组合结构。建立了SINS的非线性误差模型,推导了伪距差与伪距率差的非线性量测模型,为组合导航滤波器设计提供了依据;设计了惯性辅助的接收机跟踪环路,通过引入前馈通道,消除了载体动态应力的影响,试验表明,在50g/s的动态条件下,可保证对信号的可靠跟踪。该组合导航结构从根本上解决了载体动态导致的卫星信号失锁问题,且具有较强的工程可实现性。
     (3)针对组合导航模型中的非线性问题,分析了扩展卡尔曼滤波(ExtendedKalman Filtering, EKF)与无迹卡尔曼滤波(Unscented Kalman Filter, UKF)的滤波精度与计算复杂度,提出了改进UKF算法,由UKF进行时间更新,EKF进行序贯量测更新;仿真结果表明,其滤波精度与UKF相当,与EKF相比提高了30%以上,执行时间与UKF相比降低了45%。改进UKF算法可同时满足系统对精度与实时性的要求。
     (4)针对GPS信号失锁时的滤波发散问题,提出了径向基函数神经网路(Radial Basis Function Neural Network, RBFNN)辅助自适应卡尔曼滤波的信息融合方法,设计了RBFNN在线训练方法与卡尔曼滤波的自适应算法;跑车试验结果表明,在GPS信号断开时间为40s时,位置误差优于15m;断开时间为100s时,位置误差优于90m。该方法可在GPS失锁时有效阻尼导航误差发散。
     (5)研制了MEMS-SINS/GPS惯性辅助紧耦合组合导航系统原理样机,建立了惯性器件标定与测试系统、组合导航半物理仿真试验系统。通过半物理仿真试验、跑车试验、高动态试验等,验证了相关技术,测试了主要性能指标,结果为:位置精度优于7m,速度精度优于0.4m/s,水平姿态精度优于0.2°、航向精度优于0.6°。
The integration of Strapdown Inertial Navigation System (SINS) based on thetechnology of Micro-Electro Mechanical Systems (MEMS) and Global PositioningSystem (GPS) provides a feasible solution for the implementation of navigationsystem featured with low-cost, small scale and lightweight. With the implementationof the navigation system of UAV as background, the inertial-assisted tightly-coupledstructure as a framework, this dissertation studies the key technologies, whichinvolves MEMS-Inertial Measurement Uunit (IMU) error analysis and compensationscheme, inertial-assisted receiver tracking loop design, integrated navigation systemfilter design, to improve the accuracy and the reliability of MEMS-SINS/GPSintegrated navigation system.The main accomplishments are listed below:
     (1) The error analysis and compensation scheme has been studied to establishthe high-precision error model for MEMS-IMU. As to the systematic error, the modeland calibration schemes are proposed for error mitigation; as to the stochastic error,the major error terms and parameters are identified using Allan variance for errormodeling. The error model provides design input for the simulation of inertialinstrument and the design of integrated navigation system filter.
     (2) The inertial-aided tightly-coupled structure is designed to solve the problemof the GPS outages in high dynamic environment. The nonlinear model for SINS error is analyzed and established, and the nonlinear measurement model for thepseudo-range difference and pseudo-range rate difference is derived, providing thebasis for the filter design. An approach based on the concept of feedforward toreconfigure the PLL model is introduced, eliminating the effects of dynamic stress.High dynamic experiment shows the reliable tracking for the signal is possible underthe dynamic circumstances of50g/s. The structure solves the problem of loss of lockcaused by the dynamics stress fundamentally and practicality.
     (3) As to the nonlinearity issue in integrated navigation model, the filteringaccuracy and calculation complex of Extended Kalman Filtering (EKF) andUnscented Kalman Filter (UKF) are studied, the improved UKF filtering algorithm isproposed, with UKF executing time update and EKF executing sequencialmeasurement update. Simulation result demonstrates that the accuracy of theimproved algorithm is the same as UKF, but30%better than EKF, and the calculationtime has been reduced by45%compared with UKF, meeting the system accuracy andreal-time requirements.
     (4) To make MEMS-based SINS/GPS meet the accuracy requirements duringGPS outages, Radial Basis Function Neural Network (RBFNN) aided adaptiveKalman filtering information fusion method is proposed. RBFNN training strategyand Kalman filtering measurement noise adaptive algorithm are designed. Vehicleexperiment shows that the position error is within15m during40s GPS outages; andwithin90m during100s GPS outages. The proposed method can effectively damp thedivergence of the navigation error during the GPS outages.
     (5) The prototype of the MEMS-SINS/GPS inertial-assisted tightly-coupledintegrated navigation system is designed; the calibration system for inertial sensor andthe hardware-in-loop simulation system are established. The proposed system solutionhas been validated by means of hardware-in-loop simulation, dynamic test, andvehicle experiment, result shows that position error is within7m, velocity error within0.4m/s, attitude error within0.2°and bearing error within0.6°.
引文
[1] D. H.Titterton, J. L. Weston. Strapdown Inertial Navigation Technology [M]:2ndEdition. Reston: AIAA,2004.
    [2] P. D. Groves. Principles of GNSS, Inertial and Multisensor Integrated NavigationSystems [M]. London: Artech House,2008.
    [3] A. Noureldin, T. B. Karamat, J. Georgy. Fundamentals of Inertial Navigation,Satellite-based Positioning and their Integration [M]. Berlin: Springer,2013.
    [4] J. Farrell, M. Barth. The Global Positioning System and Inertial Navigation [M].New York: Mc-Craw-Hill Professional,1999.
    [5]秦永元.惯性导航[M].北京:科学出版社,2005.
    [6] E. Gai. The Century of Inertial Navigation Technology [C]. IEEE AerospaceConference Proceedings,2000,1:59-60.
    [7] R. L. Greenspan. Inertial Navigation Technology from1970-1995[J]. Navigation.1995,42(1):165-185.
    [8] S. M. Bezick, A. J. Pue, C. M. Patzelt. Inertial Navigation for Guided MissileSystems [J]. Johns Hopkins APL Technical Digest,2010,28(4):331-342.
    [9] P. Misra, P. Enge. Global Positioning System Signals, Measurements andPerformance [M]:2nd Edition. Massachusetts: Ganga-Jamuna Press:2006.
    [10] D. Dardari, E. Falletti, M. Luise. Satellite and Terrestrial Radio PositioningTechniques [M]. Oxford: Elsevier Ltd,2012.
    [11] B. W. Parkinson, T. Stansell, R. Beard, et al. A History of Satellite Navigation [J].Navigation.1995,42(1):109-163.
    [12] J. L. Hammer. Integrated Navigation Systems-Where Are We Headed?[R].Washington Dc: Defense Mapping Agency Hydrographic/Topographic Center,1984.
    [13] G. Hyslop, D. Gerth, J. Kraemer. GPS/INS Integration on the StandOff LandAttack Missile (SLAM)[J]. IEEE Position Location and Navigation Symposium,1990,5(7):407-412.
    [14] T. Moore, K. Rudolph, F. Ziolkowski, et al. Use of the GPS Aided InertialNavigation System in the Navy Standard Missile for the BMDO/Navy LEAPtechnology Demonstration Program [C]. Proceedings of the19958thInternational Technical Meeting of the Satellite Division of the Institute ofNavigation,1995:363-371.
    [15] N. Ei-Sheimy, X. Niu. The Promise of MEMS to the Navigation Community [J].Inside GNSS,2007,3(4):46-56.
    [16] D. K. Shaeffer. MEMS Inertial Sensors: A Tutorial Overview [J]. IEEECommunications Magazine.2013,4:100-109.
    [17] M. G. Petovello, M. E. Cannon, G. Lachapelle. Benefits of Using a Tactical GradeINS for High Accuracy Positioning Navigation [J]. Journal of Institute ofNavigation,2003,51(1):1-12.
    [18] J. Beser, S. Alexander, R. Crane, et al. A Low-Cost Guidance/Navigation UnitIntegrating ASAASM-based GPS and MEMS IMU in a Deeply CoupledMechanization [C]. ION GPS2002,2002:545-555.
    [19] N. M. Faulkner, S. J. Cooper, P. A. Jeary. Integrated MEMS/GPS NavigationSystem [C]. In Position Location and Navigation Symposium,2002:306-313.
    [20] S. Nassar, Z. Syed, X. Niu. Improving MEMS IMU/GPS Navigation System forAccurate Land-Based Navigation Applications [C]. ION NTM2006,2006:523-529.
    [21] A. Noureldin, T. B. Karamat, M. D. Eberts, et al. Performance Enhancement ofMEMS-Based INS/GPS Integration for Low-Cost Navigation Applications [J].IEEE Transactions on Vehicular Technology,2009,58(3):1077-1096.
    [22] E. D. Kaplan, C. J. Hegarty. Understanding GPS Principles and Applications [M]:2nd Editon. London: Artech House,2006.
    [23] A. Kourepenis, J. Connelly, J. Sitomer. Low Cost MEMS Inertial MeasurementUnit [C]. ION NTM2004,2004:246-251.
    [24] J. Bernstein. An Overview of MEMS Inertial Sensing Technology [J]. Sensors,2003,2(1),1-8.
    [25] R. S. Anderson, D. S. Hanson, A. S. Kourepenis. Evolution of Low-cost MEMSInertial System Technologies [C]. ION GPS2001,2001:1332-1342.
    [26] M. Park, Y. Gao. Error Analysis of Low-Cost MEMS-Based Accelerometers forLand Vehicle Navigation [C]. ION GPS2002,2002:1162-1170.
    [27] P. Aggarwal, Z. Syed, X. Niu, et al. A Standard Testing and Calibration Procedurefor Low Cost MEMSInertial Sensors and Units [J].The Journal of Navigation,2008,61:323-336.
    [28] G. Artese, A. Trecroci. Calibration of a Low Cost MEMS INS Sensor for anIntegrated Navigation System [J]. The International Archives of thePhotogrammetry, Remote Sensing and Spatial Information Sciences.2008,XXXVII(B5):877-882.
    [29] L. Sahawneh, M. A. Jarrah. Development and Calibration of Low Cost MEMSIMU for UAV Applications [C]. IEEE International Symposium on Mechatronicsand its Applications,2008:1-9.
    [30] G. A. Aydemir, A. Saranli. Characterization and Calibration of MEMS InertialSensors for Stateand Parameter Estimation Applications [J]. Measurement,2012,45:1210-1225.
    [31] S. Nassar, N. El-Sheimy. A Combined Algorithm of Improving INS ErrorModeling and Sensor Measurementsfor Accurate INS/GPS Navigation [J], GPSSolut,2006,10:29-39.
    [32] K. P. Schwarz. INS/GPS Integration for Geomatics [D]. The University ofCalgary,2001.
    [33] R. G. Brown, H. Wang, Y. C. Patrick. Introduction to Random Signals andApplied Kalman Filtering with Matlab Exercises and Solutions [M]:3rd Edition.New York: Wiley,1997.
    [34] V. Saini, S. C. Rana, M. M. Kube. Online Estimation of State Space Error Modelfor MEMS IMU [J]. Journal of Modelling and Simulation of Systems.2010,1(4):219-225.
    [35] S. Nassar. Improving the Inertial Navigation System (INS) Error Model for INSand INS-DGPS Applications [D]. The University of Calgary,2003.
    [36] H. Jiang, W. Yang, Y. Yang. State Space Modeling of Random Drift Rate inHigh-Precision Gyro [J]. IEEE Transaction on Aerospace and Electronic Systems,1996,32(3):1138-1143.
    [37] S. M. Seong, J. G. Lee. Equivalent ARMA Model Representation for RLGRandom Errors [J]. IEEE Transaction on Aerospace and Electronic Systems,2000,36(1):286-290.
    [38] H. Hou. Modeling Inertial Sensor Errors Using Allan Variance [D]. University ofCalgary,2004.
    [39] IEEE Std952-1997, IEEE Standard SpeciTcation Format Guide and TestProcedure for Single-Axis Interferometric Fiber Optic Gyros [S].
    [40] Y Yi. On Improving the Accuracy and Reliability of GPS/INS-Based DirectSensor Georeferencing [D]. Ohio State University,2007.
    [41] N. El-Sheimy, H. Hou, X. Niu. Analysis and Modeling of Inertial Sensors UsingAllan Variance [J]. IEEE Transactions on Instrumentation and Measurement,2008,57(1):140-149.
    [42] R. Vaccaro, A. Zaki. Statistical Modeling of Rate Gyros [J]. IEEE Transactionson Instrumentation and Measurement.2012,61:673-684.
    [43] IEEE Std647-2006, IEEE Standard Specification Format Guide and TestProcedure for Single-Axis Laser Gyros [S].
    [44] IEEE Std1554-2005, IEEE Recommended Practice for Inertial Sensor TestEquipment, Instrumentation, Data Acquisition, and Analysis [S].
    [45] J. N. Gross, Y. Gu, M. Rhudy. On-line Modeling and Calibration of Low-CostNavigation Sensors [C]. AIAA Modeling and Simulation TechnologiesConference,2011:1-14.
    [46] V. Bistrov. Study of the Characteristics of Random Errors in Measurements byMEMS Inertial Sensors [J]. Automatic Control and Computer Sciences,2011,45(5):284-292.
    [47] A. G. Quinchia, G. Falco, E. Falletti. A Comparison between Different ErrorModeling of MEMS Applied to GPS-INS Integrated Systems [J]. Sensors,2013,13:9549-9588.
    [48] G. T. Schmidt, R. E. Phillips. INS-GPS Integration Architectures [R].Massachusetts: NATO RTO-EN-SET-064,2003.
    [49] E. Gebre. What is the Difference Between ‘Loose’,‘Tight’,‘Ultra-Tight’ and‘Deep’ Integration Strategies for INS And GNSS [J]. Inside GNSS,2007,2(1):28-33.
    [50] B. Hofmann-Wellenhof, H. Lichtenegger, J. Collins. Global Positioning System:Theory and Applications [M]:5th Edition. New York: Springer-Verlag,2001.
    [51] O. Salychev, V. V. Voronov, M. E. Cannon. Low cost INS/GPS IntegiationConcepts and Testing [C]. ION NTM2000,2000:98-105.
    [52] N. G. Mathur. Feasibility of using a Low-Cost Inertial Measurement Unit withCentimeter-Level GPS [D]. Ohio University,1999.
    [53] R. A. Nayak. Reliable and Continuous Urban Navigation Using Multiple GPSAntennas and a Low Cost IMU [D]. University of Calgary,2000.
    [54] D. B. Cox. Integration of GPS with Inertial Navigation Systems [J]. Navigation,1978,25(2):236-245.
    [55] G. T. Schmidt, R. E. Phillips. INS/GPS Integration Architecture PerformanceComparisons [R]. Massachusetts, NATO RTO-EN-SET-064,2003.
    [56] C. Gibson, K. Flueckiger, R. Hopkins. Demonstrating Practical InertialNavigation: The Beginnings and Beyond [C]. AIAA Guidance, Navigation, andControl (GNC) Conference,2013:1-12.
    [57] A. Brown, Y. Lu. Performance Test Results on an Integrated GPS/MEMS InertialNavigation Package [C]. ION GNSS2004,2004:825-832.
    [58] C. Hide, T. Moore. GPS and Low Cost INS Integration for Positioning in TheUrban Environment [C]. ION GPS2005,2005:1007-1015.
    [59]郑辛,付梦印. SINS/GPS紧耦合组合导航[J].中国惯性技术学报,2011,19(1):33-37.
    [60]鲁郁,胡锐,杨云春.一种低成木GPS/INS紧耦合组合导航系统[J].武汉大学学报,2011,36(4):481-485.
    [61] N. M. Faukner, S. J. Cooper, P. A. Jeary. Integrated MEMS/GPS NavigationSystems [C]. IEEE Position Location and Navigation Symposium,2002:306-313.
    [62] R. Babu, J. Wang, G. Rao. Analysis of Ultra-tight GPS/INS Integrated System forNavigation Performance [C]. IEEE International Conference on SignalProcessing, Communications and Networking,2008:234-237.
    [63] T. Buck, J. Wilmot, M. J. Cook. A High G MEMS Based, Deeply Integrated,INS/GPS, Guidance, Navigation and Control Flight Management Unit [C].Proceedings of IEEE/ION PLANS2006,2006:772-794.
    [64] S. Kiesel, M. M. Held, A. Maier, et al. Performance Analysis of a DeeplyCoupled GPS/INS System with Differenct IMU Grades [C]. Symposium GyroTechnology2007,2007,10:1-16.
    [65] A. Soloviev, F.V. Graas, S. Gunawardena. Implementation of Deeply IntegratedGPS/Low-Cost IMU for Reacquisition and Tracking of Low CNR GPS Signals[C]. ION NTM2004,2004:923-935.
    [66] D.Groves, P. Petovello, M. G. Lachapelle. MEMS and Platform Orientation&Deep Integration of GNSS/Inertial Systems [J].Inside GNSS,2008.3(1):22-28.
    [67] M. S. Grewal, A. P. Andrews. Applications of Kalman Filtering in Aerospace1960to the Present-2010[J]. IEEE Control Systems Magazine,2010(6):69-77.
    [68] A. H. Jazwinski. Stochastic Processes and Filtering Theory [M]. NewYork:Academic,1970.
    [69] R. S. Bucy, K. D. Renne. Digital Synthesis of Nonlinear Filter [J]. IEEETransactions on Automatica Control,1971,7(3):287-289.
    [70] S. J. Julier, J. K. Uhlmann. A New Approach for Filtering Nonlinear System [C].Proceedings of the1995American Control Conference,1995:1628-1632.
    [71] S. J. Julier, J. K. Uhlman. Unscented Filtering and Nonlinear Estimation [C].Proceedings of the IEEE,2004,92(3):401-422.
    [72] Y. C. Ho, R. C. K. Lee. A Bayesian Approach to Problems in StochasticEstimation and Control [J]. IEEE Transactions on Automation Control,1994,53(9):333-339.
    [73] L. Schwartz, E. B. Stear. A Computational Comparison of Several NonlinearFilters [J]. IEEE Transactions on Automatic Control,1968,13(1):83-86.
    [74]A. H.Jazwinski, Stochastic processes and filtering theory [M]. Courier DoverPublications,2007.
    [75] S. J. Julier, J. K. Uhlman, H. F. Durrant-Whyte. A New Method for the NonlinearTransformation of Means and Covariances in Filters and Estimators. IEEETransactions on Automatic Control.2000,45(3):477-482.
    [76] R. V. D. Merwe,E. A. Wan, S. Julier. Sigma point Kalman filters for nonlinearestimation and sensor fusion application to integrated navigation [C]. AIAAGuidance, Navigation and Control Conference,2004:425-437.
    [77] E. H. Shin. Estimation Techniques for Low-Cost Inertial Navigation [D].University of Calgary,2005.
    [78] G. Lachapelle. Sigma-Point Kalman Filtering for Integrated GPS and InertialNavigation [J]. IEEE Transactions on Aerospace and Electronic Systems.2006,42(2):750-756.
    [79] S. J. Julier, J. K. Uhlmann. Reduced Sigma Point Filters for the Propagation ofMeans and Covariances Through Nonlinear Transformations [C]. Proceedings ofAmerican Control Conf,2002:887-892.
    [80] P. J. Nordlund, F. Gustafsson. Sequential Montecarlo Filtering TechniquesApplied to Integrated Navigation Systems [C]. Proceeding of the AmericanControl Conference,2001:4375-4380.
    [81] A. Doucet. On Sequential Monte Carlo Methods for Bayesian Filtering [D].Cambridge University,1998.
    [82] A. Doucet, S. Godsill, C. Andrieu. On Sequential Monte Carlo SamplingMethods for Bayesian Filtering [J]. Statistics and Computing,2000,10:197-208.
    [83] R. Sharaf, A. Noureldin. Sensor Integration for Sattellite Based VechicularNavigation Using Neural Networks [J]. IEEE Transaction on Neural Networks,2007,18(2),589-594.
    [84] T. C. Liu, R. K. Li. A New ART-Counter Propagation Neural Network forSolving a Forecasting Problem [J]. Expert System with Applications,2005,28:21-27.
    [85] M. Malleswaran, V. Vaidehi, D. S. Angel. Data Fusion using Multi-Layer FeedForward Neural Networks for Land Vechicle Navigation [J]. InternationalJournal of Engineering Science and Technology,2010,2(12):7676-7690.
    [86] L. Semeniuk, A. Noureldin. Bridging GPS Outages Using Neural NetworkEstimates of INS Position and Velocity Errors [J]. Measurement Science andTechnology,2006,7:2783–2798.
    [87] K.W. Chiang, Y.W. Huang. An Intelligent Navigator for Seamless INS/GPSIntegrated Land Vechicle Navigation Application [J]. Applied Soft Computing,2008,8:722-733.
    [88] K.W Chiang, H. W. Chang. Intelligent Sensor Positioning and Orientationthrough Constructive Neural Network-Embedded INS/GPS IntegrationAlgorithms [J]. Sensors,2010,10(10):9252-9285.
    [89] A. M. Hasan, K. Samsudin, A. R. Ramli. GPS/INS Integration Based onDynamic ANFIS Network [J]. International Journal of Control and Automation,2012,5(3):1-22.
    [90] P. G. Savage. Strapdown System Performance Analysis [R]. Minnesota: NATORTO-EN-SET-064,2003.
    [91]王寿荣.硅微型惯性器件理论及应用[M].南京:东南大学出版社,2000.
    [92] P. Aggarwal, Z. Syed, A. Noureldin, et al. MEMS-Based Integrated Navigation[M]. Massachusetts: Artech House,2010.
    [93]严恭敏,李四海,秦永远.惯性仪器测试与数据分析[M].北京:国防工业出版社,2012.
    [94] H. Hou, N. El-Sheimy. Inertial Sensors Errors Modeling Using Allan Variance[C].ION GPS/GNSS2003,2003:2860-2867.
    [95] A. Papoulis. Probability, Random Variables, and Stochastic Processes [M]:3rd.Edition. New York: McGraw-Hill,1991.
    [96] K. Ogata. Mordern Control Engineering [M]:4th Edition. New Jersey: PrenticeHall,2002.
    [97]秦永远,张洪钺,王叔华,等.卡尔曼滤波与组合导航[M]:第二版.西安:西北工业大学出版社,2012.
    [98] P. G. Savage. Strapdown Analytics [M]. Minnesota: Strapdown Associates,2000.
    [99]严恭敏,严卫生,徐德民.基于欧拉平台误差角的SINS非线性误差模型研究[J].西北工业大学学报,2009,27(4):511-516.
    [100] S. Gleason D. Gebre-Egziabher. GNSS Applications and Methods [M].London: Artech House,2009.
    [101] ARINC Research Corporation, Navstar GPS Space Segment/Navigation UserInterfaces, ICD-GPS-200C [EB/OL].http://www.navcen.uscg.gov/pubs/gps/icd200/default.htm.
    [102] V. B. Mendes, R. B. Langley. A Comprehensive Analysis of Mapping FunctionsUsed in Modeling Tropospheric Propagation Delay In Space Geodetic Data [C].Proc. of the Inter. Symp. on Kinematic Systems in Geodesy, Geomatics andNavigation (KIS94),1994:87-98.
    [103]谢钢. GPS原理与接收机设计[M].北京:电子工业出版社,2009.
    [104] S. Ganguly. Real-Time Dual Frequency Software Receiver [C]. PositionLocation and Navigation Symposium,2004:366-374.
    [105] E. D. Kaplan, C. J. Hegarty. Understanding GPS Principles and Applications[M]:2nd Edition. London: Artech House,2006.
    [106] M. Irsigler, B. Eissfeller. PLL Tracking Performance in the Presence ofOscillator Phase Noise [J]. GPS Solutions,2002,5(4):45-57.
    [107] S. Alban. Design and Performance of a Robust GPS/INS Attitude System forAutomobile Applications [D]. Stanford University,2004.
    [108] A. H. Jazwinski. Stochastic processes and filtering Theory [M]. Courier DoverPublications,2007.
    [109] S. J. Julier, J. K. Uhlmann. A New Extension of the Kalman Filter to NonlinearSystems [C]. Int. Symp. Aerospace/Defense Sensing, Simul. And Controls,1997,3(26):3.2.
    [110] A. Kong, J. S. Liu, W. H. Wong. Sequential Imputations And Bayesian MissingData Problems [J]. Journal of the American Statistical Association,1994,89(425):278-288.
    [111] R. Hunger. Floating Point Operations in Matrix-Vector Calculus [R]. MunichUniversity of Technology: Technical Report TUM-LNS-TR-OS-OS,2005.
    [112] G. Allaire, S. M. Kaber. Numerical Linear Algebra [M]. New York: Springer.2008.
    [113] M.S. Grewal, A. P. Andrews. Kalman Filtering Theory and Practice UsingMatlab [M]. New Jersey: John Wiley&Sons,2008.
    [114] M. Malleswaran, V Vaidehi, M. Jebarsi. Neural Networks Review forPerformance Enhancement in GPS/INS Integration [C]. ICRTIT, Tirunelveli:Dept. of Electron.&Commun. Eng.2012.34-39.
    [115] A. Noureldin, A. El-Shafi, M. Bayoumi. GPS/INS Integration UtilizingDynamic Neural Networks for Vehicular Navigation [J]. Information fusion,2011,12(1):48-57.
    [116] J. J. Wang, J. L. Wang, D, Sinclair, et al. A Neural Network and Kalman FilterHybrid Approach For GPS/INS Integration [C]. International Symposium onGPS/GNSS,2006.277-282.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700