用户名: 密码: 验证码:
PRRSV Nsp2与宿主细胞蛋白BAG6和AIF1相互作用的分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪繁殖与呼吸综合征病毒(PRRSV)是危害全球养猪业的重要病原之一。PRRSV的非结构蛋白2(Nsp2)是其基因组编码的分子量最大的蛋白,参与病毒感染过程的多个环节并发挥重要功能。本研究通过全面筛选与Nsp2相互作用的宿主细胞蛋白以及绘制Nsp2与宿主细胞蛋白的互作图谱,进一步对Nsp2与宿主细胞蛋白Bcl2相关抗凋亡基因6(BAG6)和凋亡诱导因子1(AIF1)的相互作用及其影响PRRSV复制的分子机制进行了研究,以期为揭示Nsp2在PRRSV感染过程中的生物学功能提供科学依据。
     利用PRRSV JXwn06的感染性cDNA克隆,成功构建并拯救出Nsp2区域融合表达外源标签3xMyc的重组病毒(命名为RvMyc-JXwn)。以重组病毒感染MARC-145细胞,采用免疫沉淀结合串联质谱技术,共筛选出617个与Nsp2相互作用的宿主细胞蛋白,其中高度可信(P<0.01)的蛋白共285个。利用生物信息学技术,对285个宿主细胞蛋白进行了功能分析。结果表明,与Nsp2互作的宿主细胞蛋白主要参与病原致病、蛋白翻译、免疫系统、神经系统以及信号转导等相关的细胞通路。
     基于已知的Nsp2功能和相关宿主细胞蛋白功能,对Nsp2与宿主细胞蛋白BAG6和AIFl的互作及其分子机制进行了研究。利用免疫共沉淀(Co-IP)技术验证了Nsp2与BAG6的相互作用,并确定了相互作用的区域为Nsp2N端的半胱氨酸蛋白酶结构域和BAG6N端的泛素样结构域,而Nsp2的半胱氨酸蛋白酶活性位点与二者的相互作用无关。激光共聚焦分析显示,PRRSV感染和利用Nsp2真核表达质粒转染细胞均能诱导BAG6从细胞核转移至细胞质,并与Nsp2共定位。经体内、外泛素化降解试验分析表明,Nsp2的去泛素化酶活性可以抑制其自身被BAG6招募的泛素-蛋白酶体系统降解;免疫电镜分析显示,BAG6有助于Nsp2定位于内质网来源的双层膜泡结构。进一步发现PRRSV感染和Nsp2表达均能导致caspase12的激活,诱导细胞产生由内质网应激所介导的细胞凋亡,表明凋亡的发生可能与Nsp2通过自身去泛素化酶活性,抑制BAG6招募的泛素-蛋白酶体系统对细胞中缺陷蛋白的降解,从而导致细胞内蛋白泛素化水平降低和错误蛋白的积累有关。此外,证实BAG6的表达有利于PRRSV的复制,但对病毒释放没有明显的影响。
     利用Co-IP技术证实了Nsp2和AIFl之间的相互作用,并确定了Nsp2与AIFl相互作用的区域为N端的半胱氨酸蛋白酶结构域,且Nsp2的酶活性位点对其相互作用起着决定性作用。激光共聚焦分析显示,在PRRSV感染和利用Nsp2真核表达质粒单独转染细胞的情况下,Nsp2均能与AIF1在细胞质中共定位,并且能够诱导AIF1进入细胞核。泛素化降解试验结果表明,PRRSV感染和Nsp2表达均能阻止AIF1被泛素-蛋白酶体系统降解,Nsp2的去泛素化酶活性在该过程中发挥重要作用。进一步发现PRRSV感染和Nsp2表达均能诱导AIF1介导的非caspase依赖性细胞凋亡的发生,AIF1的表达有利于病毒感染过程中细胞内ATP的产生,并且可以促进病毒的复制。
     综上所述,我们的研究筛选出了可与PRRSVNsp2互作的宿主细胞蛋白,绘制出Nsp2与宿主细胞蛋白的互作图谱,为研究Nsp2与宿主细胞的相互作用提供了重要线索和依据;揭示了Nsp2与宿主细胞蛋白BAG6和AIF1互作的分子机制及其对PRRSV复制的影响,为进一步探索Nsp2在PRRSV复制和致病机制中的生物学功能及其分子机制提供了新的思路和方向。
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important etiological agents affecting swine industry worldwide. The nonstructural protein2(Nsp2) of PRRSV is the largest viral protein that plays important roles in the PRRSV infection. In the present study, the host cellular proteins that interact with the Nsp2of PRRSV were first identified in the MARC-145cells and an interactome profile between them was drawn; Next, the molecular mechanisms of the interaction of Nsp2with the host cellular proteins, BCL2-associated athanogene6(BAG6) and apoptosis-inducing factor1(AIF1), and the roles of their interactions in the PRRSV replication were explored. The objective of this study is to provide scientific evidences for elucidating the biological fuctions of Nsp2during the PRRSV infection.
     The infectious cDNA clone of JXwn06was used to generate a chimeric cDNA clone that contains3×Myc tag insertion in its Nsp2-coding region. A recombinant virus was rescued from the chimeric cDNA clone and named RvMyc-JXwn. The host cellular proteins that interact with the Nsp2of PRRSV were immunoprecipitated from the MARC-145cells infected with RvMyc-JXwn with an anti-Myc antibody, and617cellular proteins interacting with Nsp2were then identified by LC-MS/MS. Out of these proteins,285proteins with high Confidence Icons (P<0.01) were used for bioinformatics analysis. Functional analysis of the interactome profile indicated that these proteins were involved in the cellular pathways associated with infectious disease, translation, immune system, nervous system and signal transduction.
     Given to the fuctions of Nsp2and cellular proteins, we explored the molecular mechanisms of the interaction between Nsp2and cellular proteins-BAG6and AIF1. The binding regions of BAG6and Nsp2were identified by Co-IP. Our results showed that the N-terminus but not the cysteine protease (CP) active sites of Nsp2interacted with the N-terminal ubiquitin-like (UBL) domain of BAG6. The confocal microscopy analysis showed that BAG6localized in the nucleus of the cells re-localized to the cytoplasm and co-localized with Nsp2following PRRSV infection in MARC-145cells or PAMs or Nsp2-expressing plasmid transfection in MARC-145cells. Subsequently, we demonstrated that BAG6contributed to target Nsp2to the endoplasmic reticulum (ER)-originated double-membrane vesicles (DMVs). Additionally, the ER stress-mediated apoptosis was discovered in PRRSV-infected cells, and Nsp2induced the ER stress-mediated apoptosis by deubiquitinating BAG6-bound defective proteins and preventing them from degrading, which resulted in the accumulation of defective protein during PRRSV infection. Finally, we found that BAG6played a crucial role in promoting the PRRSV replication, whereas it did not affect the virus release.
     The binding regions of AIF1and Nsp2were identified by Co-IP. The results showed that the N-terminus of Nsp2interacted with AIF1, whereas the CP active sites were necessary for this interaction. The confocal microscopy analysis indicated that Nsp2could co-localize with AIF1in the cytoplasm and lead to the nuclear translocation of AIF1following PRRSV infection in MARC-145cells or PAMs or Nsp2-expressing plasmid transfection in MARC-145cells. We also found that Nsp2could stabilize AIF1by preventing proteasome from degrading it. In the present study, we demonstrated for the first time that PRRSV infection and Nsp2expression could induce the caspase-independent apoptosis mediated by AIF1. In addition, our data suggested that AIF1played a key role in generating ATP during PRRSV infection and enhanced the replication of PRRSV.
     As a whole, we identified the host cellular proteins that interact with the Nsp2of PRRSV and drawn an interactome profile of Nsp2with host cellular proteins, providing important clues and evidence for exploring the interaction between Nsp2and cellular proteins. We revealed the molecular mechanisms affecting viral replication by the interaction of PRRSV Nsp2with BAG6or AIF, providing an insight and novel way for further exploration of the biological functions and molecular mechanisms of Nsp2which is involved in the replication and pathogenesis of PRRSV.
引文
[1]Neumann E J, Kliebenstein J B, Johnson C D, et al. Assessment of the economic impact of porcine reproductive and respiratory syndrome on swine production in the United States. J. Am. Vet. Med. Assoc.2005,227 (3):385-392.
    [2]Zhou L, Yang H. Porcine reproductive and respiratory syndrome in China. Virus Res.2010,154 (1-2):31-37.
    [3]Keffaber K. K. Reproductive failure of unknown etiology. Am. Assoc. Swine Pract. Newsl.1989, 1:1-10.
    [4]Rossow K D. Porcine reproductive and respiratory syndrome. Vet. Pathol.1998,35 (1):1-20.
    [5]Snijder E J, Kikkert M, Fang Y. Arterivirus molecular biology and pathogenesis. J. Gen. Virol.2013, 94 (Pt 10):2141-2163.
    [6]Dea S, Athanaseous R, Sauvageau R A, et al. PRRS syndrome in Quebec:isolation of a virus serologically related to Lelystad virus. Vet. Rec.1992,130 (8):167.
    [7]Wensvoort G, Terpstra C, Pol J M, et al. Mystery swine disease in The Netherlands:the isolation of Lelystad virus. Vet. Q.1991,13 (3):121-130.
    [8]Hopper S A, White M E, Twiddy N, et al. An outbreak of blue-eared pig disease (porcine reproductive and respiratory syndrome) in four pig herds in Great Britain. Vet. Rec.1992,131 (7): 140-144.
    [9]Baron T, Albina E, Leforban Y, et al. Report on the first outbreaks of the porcine reproductive and respiratory syndrome (PRRS) in France. Diagnosis and viral isolation. Ann. Rech. Vet.1992,23 (2): 161-166.
    [10]Li Y, Wang X, Bo K, et al. Emergence of a highly pathogenic porcine reproductive and respiratory syndrome virus in the Mid-Eastern region of China. Vet. J.2007,174 (3):577-584.
    [11]Tian K, Yu X, Zhao T, et al. Emergence of fatal PRRS V variants:unparalleled outbreaks of atypical PRRS in China and molecular dissection of the unique hallmark. PLoS One 2007,2 (6):e526.
    [12]Zhou L, Zhang J, Zeng J, et al. The 30-amino-acid deletion in the Nsp2 of highly pathogenic porcine reproductive and respiratory syndrome virus emerging in China is not related to its virulence. J. Virol. 2009,83 (10):5156-5167.
    [13]Benfield D A, Nelson E, Collins J E, et al. Characterization of swine infertility and respiratory syndrome (SIRS) virus (Isolate ATCC VR-2332). J. Vet. Diagn. Invest.1992,4 (2):127-133.
    [14]Collins J E, Benfield D A, Christianson W T, et al. Isolation of swine infertility and respiratory syndrome virus (Isolate ATCC VR-2332) in North America and experimental reproduction of the disease in gnotobiotic pigs. J. Vet. Diagn. Invest.1992,4 (2):117-126.
    [15]Hanada K, Suzuki Y, Nakane T, et al. The origin and evolution of porcine reproductive and respiratory syndrome viruses. Mol. Biol. Evol.2005,22 (4):1024-1031.
    [16]Shi M, Lam T T, Hon C C, et al. Molecular epidemiology of PRRSV:a phylogenetic perspective. Virus Res,2010,154(1-2):7-17.
    [17]Bautista E M, Goyal S M, Collins J E. Serologic survey for Lelystad and VR-2332 strains of porcine respiratory and reproductive syndrome (PRRS) virus in US swine herds. J. Vet. Diagn. Invest.1993, 5 (4):612-614.
    [18]Meulenberg J J, De Meijer E J, Moormann R J. Subgenomic RNAs of Lelystad virus contain a conserved leader-body junction sequence. J. Gen. Virol.1993,74 (Pt 8):1697-1701.
    [19]Firth A E, Zevenhoven-Dobbe J C, Wills N M, et al. Discovery of a small arterivirus gene that overlaps the GP5 coding sequence and is important for virus production. J. Gen. Virol.2011,92 (Pt 5):1097-1106.
    [20]Johnson C R, Griggs T F, Gnanandarajah J, et al. Novel structural protein in porcine reproductive and respiratory syndrome virus encoded by an alternative ORF5 present in all arteriviruses. J. Gen. Virol.2011,92 (Pt 5):1107-1116.
    [21]Snijder E, Wassenaar A L, Den Boon J A, et al. Proteolytic processing of the arterivirus replicase. Adv. Exp. Med. Biol.1995,380:443-451.
    [22]Fang Y, Treffers E E, Li Y, et al. Efficient-2 frameshifting by mammalian ribosomes to synthesize an additional arterivirus protein. Proc. Natl. Acad. Sci. U. S. A.2012,109 (43):E2920-E2928.
    [23]Snijder EJ, Wassenaar A L, Spaan W J. Proteolytic processing of the replicase ORFla protein of equine arteritis virus. J. Virol.1994,68 (9):5755-5764.
    [24]Li Y, Tas A, Snijder E J, et al. Identification of porcine reproductive and respiratory syndrome virus ORFla-encoded non-structural proteins in virus-infected cells. J. Gen. Virol.2012,93 (Pt 4): 829-839.
    [25]Wissink E H, Kroese M V, Van Wijk H A, et al. Envelope protein requirements for the assembly of infectious virions of porcine reproductive and respiratory syndrome virus. J. Virol.2005,79 (19): 12495-12506.
    [26]Mardassi H, Massie B, Dea S. Intracellular synthesis, processing, and transport of proteins encoded by ORFs 5 to 7 of porcine reproductive and respiratory syndrome virus. Virology 1996,221 (1): 98-112.
    [27]Meulenberg J J, Petersen-den Besten A. Identification and characterization of a sixth structural protein of Lelystad virus:the glycoprotein GP2 encoded by ORF2 is incorporated in virus particles. Virology 1996,225(1):44.
    [28]Music N, Gagnon C A. The role of porcine reproductive and respiratory syndrome (PRRS) virus structural and non-structural proteins in virus pathogenesis. Anim. Health Res. Rev.2010,11 (2): 135-163.
    [29]Kappes M A, Miller C L, Faaberg K S. Highly divergent strains of porcine reproductive and respiratory syndrome virus incorporate multiple isoforms of nonstructural protein 2 into virions. J. Virol.2013,87 (24):13456-13465.
    [30]Snijder E J, Wassenaar A L, Spaan W J, et al. The arterivirus Nsp2 protease. An unusual cysteine protease with primary structure similarities to both papain-like and chymotrypsin-like proteases. J. Biot. Chem.1995,270 (28):16671-16676.
    [31]Fang Y, Snijder E J. The PRRSV replicase:exploring the multifunctionality of an intriguing set of nonstructural proteins. Virus Res.2010,154 (1-2):61-76.
    [32]Ziebuhr J, Snijder E J, Gorbalenya A E. Virus-encoded proteinases and proteolytic processing in the Nidovirales. J. Gen. Virol.2000,81 (Pt4):853-879.
    [33]Han J, Rutherford M S, Faaberg K S. The porcine reproductive and respiratory syndrome virus Nsp2 cysteine protease domain possesses both trans-and cis-cleavage activities. J. Virol.2009,83 (18): 9449-9463.
    [34]Han J, Rutherford M S, Faaberg K S. Proteolytic products of the porcine reproductive and respiratory syndrome virus Nsp2 replicase protein. J. Virol.2010,84 (19):10102-10112.
    [35]Wassenaar A L, Spaan W J, Gorbalenya A E, et al. Alternative proteolytic processing of the arterivirus replicase ORF1a polyprotein evidence that Nsp2 Acts as a cofactor for the Nsp4 serine protease. J. Virol.1997,71 (12):9313-9322.
    [36]Snijder E J, Van Tol H, Roos N, et al. Non-structural proteins 2 and 3 interact to modify host cell membranes during the formation of the arterivirus replication complex. J. Gen. Virol.2001,82 (Pt 5): 985-994.
    [37]Van Der Meer Y, van Tol H, Locker JK, et al. ORFla-encoded replicase subunits are involved in the nembrane association of the arterivirus replication complex. J. Virol.1998,72 (8):6689-6698.
    [38]Pedersen K W, Van Der Meer Y, Roos N, et al. Open reading frame 1a-encoded subunits of the arterivirus replicase induce endoplasmic reticulum-derived double-membrane vesicles which carry the viral replication complex. J. Virol.1999,73 (3):2016-2026.
    [39]Saxena V, Lai C K, Chao T C, et al. Annexin A2 is involved in the formation of hepatitis C virus replication complex on the lipid raft. J. Virol.2012,86 (8):4139-4150.
    [40]Posthuma C C, Pedersen K W, Lu Z, et al. Formation of the arterivirus replication/transcription complex:a key role for nonstructural protein 3 in the remodeling of intracellular membranes. J. Virol. 2008,82 (9):4480-4491.
    [41]Sun Z, Chen Z, Lawson S R, et al. The cysteine protease domain of porcine reproductive and respiratory syndrome virus nonstructural protein 2 possesses deubiquitinating and interferon antagonism functions. J. Virol.2010,84 (15):7832-7846.
    [42]Frias-Staheli N, Giannakopoulos N V, Kikkert M, et al. Ovarian tumor domain-containing viral proteases evade ubiquitin-and ISG15-dependent innate immune responses. Cell host microbe,2007, 2 (6):404-416.
    [43]Van Kasteren P B, Beugeling C, Ninaber D K, et al. Arterivirus and nairovirus ovarian tumor domain-containing Deubiquitinases target activated RIG-I to control innate immune signaling. J. Virol.2012,86 (2):773-785.
    [44]Sun Z, Li Y, Ransburgh R, et al. Nonstructural protein 2 of porcine reproductive and respiratory syndrome virus inhibits the antiviral function of interferon-stimulated gene 15. J. Virol.2012,86 (7): 3839-3850.
    [45]Han J, Wang Y, Faaberg K S. Complete genome analysis of RFLP 184 isolates of porcine reproductive and respiratory syndrome virus. Virus Res.2006,122 (1-2):175-182.
    [46]Allende R, Lewis T L, Lu Z et al. North American and European porcine reproductive and respiratory syndrome viruses differ in non-structural protein coding regions. J. Gen. Virol.1999,80 (Pt 2):307-315.
    [47]Gao Z Q, Guo X, Yang H C. Genomic characterization of two Chinese isolates of porcine respiratory and reproductive syndrome virus. Arch. Virol.2004,149 (7):1341-1351.
    [48]Han J, Liu G, Wang Y, et al. Identification of nonessential regions of the Nsp2 replicase protein of porcine reproductive and respiratory syndrome virus strain VR-2332 for replication in cell culture. J. Virol.2007,81 (18):9878-9890.
    [49]Shen S, Kwang J, Liu W, et al. Determination of the complete nucleotide sequence of a vaccine strain of porcine reproductive and respiratory syndrome virus and identification of the Nsp2 gene with a unique insertion. Arch. Virol.2000,145 (5):871-883.
    [50]Wang F X, Song N, Chen L Z, et al. Non-structural protein 2 of the porcine reproductive and respiratory syndrome (PRRS) virus:a crucial protein in viral pathogenesis, immunity and diagnosis. Res. Vet. Sci.2013,95 (1):1-7.
    [51]Brown E, Lawson S, Welbon C, et al. Antibody response to porcine reproductive and respiratory syndrome virus (PRRSV) nonstructural proteins and implications for diagnostic detection and differentiation of PRRSV types Ⅰ and Ⅱ. Clin. Vaccine Immunol.2009,16 (5):628-635.
    [52]Johnson C R, Yu W, Murtaugh M P. Cross-reactive antibody responses to nsp1 and Nsp2 of Porcine reproductive and respiratory syndrome virus. J Gen Virol,2007,88 (Pt 4):1184-1195.
    [53]De Lima M, Pattnaik A K, Flores E F, et al. Serologic marker candidates identified among B-cell linear epitopes of Nsp2 and structural proteins of a North American strain of porcine reproductive and respiratory syndrome virus. Virology 2006,353 (2):410-421.
    [54]Oleksiewicz M B, Botner A, Toft P, et al. Epitope mapping porcine reproductive and respiratory syndrome virus by phage display:the Nsp2 fragment of the replicase polyprotein contains a cluster of B-cell epitopes. J. Virol.2001,75 (7):3277-3290.
    [55]Yan Y, Guo X, Ge X, et al. Monoclonal antibody and porcine antisera recognized B-cell epitopes of Nsp2 protein of a Chinese strain of porcine reproductive and respiratory syndrome virus. Virus Res. 2007,126 (1-2):207-215.
    [56]Fang Y, Kim D Y, Ropp S, et al. Heterogeneity in Nsp2 of European-like porcine reproductive and respiratory syndrome viruses isolated in the United States. Virus Res.2004,100 (2):229-235.
    [57]Fang Y, Rowland R R, Roof M, et al. A full-length cDNA infectious clone of North American type 1 porcine reproductive and respiratory syndrome virus:expression of green fluorescent protein in the Nsp2 region. J. Virol.2006,80 (23):11447-11455.
    [58]刘光清.动物病毒反向遗传学.北京:科学出版社,2009,3-8.
    [59]Taniguchi T, Palmieri M, Palmieri M, et al. QB DNA-containing hybrid plasmids giving rise to QB phage formation in the bacterial host. Nature 1978,274 (5668):223-228.
    [60]Racaniello V R, Baltimore D, Baltimore D. Cloned poliovirus complementary DNA is infectious in mammalian cells. Science 1981,214 (4523):916-919.
    [61]Meulenberg J J, Bos-de Ruijter J N, Wensvoort G, et al. An infectious cDNA clone of porcine reproductive and respiratory syndrome virus. Adv. Exp. Med. Biol.1998,440:199-206.
    [62]陈小云,杨汉春,郭鑫.猪繁殖与呼吸综合征病毒BJ-4株全长cDNA的构建.农业生物技术学报,2005,13(1):61-65.
    [63]冉智光,陈小云,杨汉春,等.从PRRSV BJ-4株基因组全长cDNA获得感染性病毒.微生物学报,2007,47(3):423-429.
    [64]刘从敏.猪繁殖与呼吸综合征病毒N蛋白单克隆抗体的制备及双抗体夹心ELISA方法的建立:[硕士学位论文].北京:中国农业大学,2009.
    [65]Zhou L, Chen S, Zhang J, et al. Molecular variation analysis of porcine reproductive and respiratory syndrome virus in China. Virus Res.2009,145 (1):97-105.
    [66]Kim D Y, Kaiser T J, Horlen K, et al. Insertion and deletion in a non-essential region of the nonstructural protein 2 (Nsp2) of porcine reproductive and respiratory syndrome (PRRS) virus: effects on virulence and immunogenicity. Virus genes 2009,38 (1):118-128.
    [67]Van Oirschot J T, Kaashoek M J, Rijsewijk F A, et al. The use of marker vaccines in eradication of herpesviruses. J. Biotechnol.1996,44 (1-3):75-81.
    [68]Moormann R J, de Rover T, Briaire J, et al. Inactivation of the thymidine kinase gene of a gI deletion mutant of pseudorabies virus generates a safe but still highly immunogenic vaccine strain. J. Gen. Virol.1990,71 (Pt7):1591-1595.
    [69]Dong X N, Chen Y H. Marker vaccine strategies and candidate CSFV marker vaccines. Vaccine 2007,25 (2):205-230.
    [70]Walsh E P, Baron M D, Anderson J, et al. Development of a genetically marked recombinant rinderpest vaccine expressing green fluorescent protein. J. Gen. Virol.2000,81 (Pt 3):709-718.
    [71]Mebatsion T, Koolen M J, de Vaan L T, et al. Newcastle disease virus (NDV) marker vaccine:an immunodominant epitope on the nucleoprotein gene of NDV can be deleted or replaced by a foreign epitope. J. Virol.2002,76 (20):10138-10146.
    [72]Martelli P, Cordioli P, Alborali L G., et al. Protection and immune response in pigs intradermally vaccinated against porcine reproductive and respiratory syndrome (PRRS) and subsequently exposed to a heterologous European (Italian cluster) field strain. Vaccine 2007,25 (17):3400-3408.
    [73]Jourdan S S, Osorio F, Hiscox J A et al. An interactome map of the nucleocapsid protein from a highly pathogenic North American porcine reproductive and respiratory syndrome virus strain generated using SILAC-based quantitative proteomics. Proteomics 2012,12 (7):1015-1023.
    [74]Beura L K, Dinh P X, Osorio F A, et al. Cellular poly(c) binding proteins 1 and 2 interact with porcine reproductive and respiratory syndrome virus nonstructural protein lbeta and support viral replication. J. Virol.2011,85 (24):12939-12949.
    [75]Snijder E J, Kikkert M, Fang Y. The molecular biology of arteriviruses. J. Gen. Virol.1998,79 (Pt 5): 961-979.
    [76]Kim D Y, Calvert J G, Chang K O, et al. Expression and stability of foreign tags inserted into Nsp2 of porcine reproductive and respiratory syndrome virus (PRRSV). Virus Res.2007,128 (1-2): 106-114.
    [77]Sun M X, Huang L, Wang R, et al. Porcine reproductive and respiratory syndrome virus induces autophagy to promote virus replication. Autophagy 2012,8 (10):1434-1447.
    [78]Ma Z, Wang Y, Zhao H, et al. Porcine reproductive and respiratory syndrome virus nonstructural protein 4 induces apoptosis dependent on its 3C-like serine protease activity. PLoS One 2013,8 (7): e69387.
    [79]Gorbalenya A E, Enjuanes L, Ziebuhr J, et al. Nidovirales:evolving the largest RNA virus genome. Virus Res.2006,117 (1):17-37.
    [80]杨汉春.猪高热综合征的发生与流行概况.猪业科学,2007,78-80.
    [81]Cao J, Li B, Fang L, et al. Pathogenesis of nonsuppurative encephalitis caused by highly pathogenic Porcine reproductive and respiratory syndrome virus. J. Vet. Diagn. Invest.2012,24 (4):767-77'1.
    [82]Thanawongnuwech R, Halbur P G, Andrews J J, et al. Immunohistochemical detection of porcine reproductive and respiratory syndrome virus antigen in neurovascular lesions. J. Vet. Diagn. Invest. 1997,9 (3):334-337.
    [83]Li L, Zhao Q, Ge X, et al. Chinese highly pathogenic porcine reproductive and respiratory syndrome virus exhibits more extensive tissue tropism for pigs. Virol. J.2012,9:203.
    [84]Halbur P G, Paul P S, Frey M L, et al. Comparison of the antigen distribution of two US porcine reproductive and respiratory syndrome virus isolates with that of the Lelystad virus. Vet. Pathol. 1996,33(2):159-170.
    [85]Sur J H, Doster A R, Christian J S, et al. Porcine reproductive and respiratory syndrome virus replicates in testicular germ cells, alters spermatogenesis, and induces germ cell death by apoptosis. J. Virol.1997,71 (12):9170-9179.
    [86]Sur J H, Doster A R, Osorio F A. Apoptosis Induced In Vivo During Acute Infection by Porcine Reproductive and Respiratory Syndrome Virus. Vet. Pathol.1998,35 (6):506-514.
    [87]Sirinarumitr T, Zhang Y, Kluge J P, et al. A pneumo-virulent United States isolate of porcine reproductive and respiratory syndrome virus induces apoptosis in bystander cells both in vitro and in vivo. J. Gen. Virol.1998,79 (Pt 12):2989-2995.
    [88]Kim T S, Benfield D A, Rowland R R. Porcine reproductive and respiratory syndrome virus-induced cell death exhibits features consistent with a nontypical form of apoptosis. Virus Res.2002,85 (2): 133-140.
    [89]Labarque G, Van Gucht S, Nauwynck H, et al. Apoptosis in the lungs of pigs infected with porcine reproductive and respiratory syndrome virus and associations with the production of apoptogenic cytokines. Vet. Res.2003,34 (3):249-260.
    [90]Lee C, Rogan D, Erickson L, et al. Characterization of the porcine reproductive and respiratory syndrome virus glycoprotein 5 (GP5) in stably expressing cells. Virus Res.2004,104 (1):33-38.
    [91]Miller L C, Fox J M. Apoptosis and porcine reproductive and respiratory syndrome virus. Vet. Immuno. Immunopathol.2004,102 (3):131-142.
    [92]Bordi L, Castilletti C, Falasca L, et al. Bel-2 inhibits the caspase-dependent apoptosis induced by SARS-CoV without affecting virus replication kinetics. Arch. Virol.2006,151 (2):369-377.
    [93]Karniychuk U U, Saha D, Geldhof M, et al. Porcine reproductive and respiratory syndrome virus (PRRSV) causes apoptosis during its replication in fetal implantation sites. Microb. Pathog.2011,51 (3):194-202.
    [94]Gomez-Laguna J, Salguero F J, Fernandez de Marco M, et al. Type 2 porcine eeproductive and eespiratory syndrome virus infection mediated apoptosis in B-and T-cell areas in lymphoid organs of experimentally infected pigs. Transbound. Emerg. Dis.2013,60 (3):273-278.
    [95]Rodriguez-Gomez I M, Gomez-Laguna J, Carrasco L. Impact of PRRSV on activation and viability of antigen presenting cells. World J. Virol.2013,2 (4):146-151.
    [96]Suarez P, Diaz-Guerra M, Prieto C, et al. Open reading frame 5 of porcine reproductive and respiratory syndrome virus as a cause of virus-induced apoptosis. J. Virol.1996,70 (5):2876-2882.
    [97]Banerji J, Sands J, Strominger J L, et al. A gene pair from the human major histocompatibility complex encodes large proline-rich proteins with multiple repeated motifs and a single ubiquitin-like domain. Proc. Natl. Acad. Sci. U. S. A.1990,87 (6):2374-2378.
    [98]Lee J G, Ye Y. Bag6/Bat3/Scythe:a novel chaperone activity with diverse regulatory functions in protein biogenesis and degradation. Bioessays 2013,35 (4):377-385.
    [99]Minami R, Hayakawa A, Kagawa H, et al. BAG-6 is essential for selective elimination of defective proteasomal substrates. J. Cell Biol.2010,190 (4):637-650.
    [100]Ozaki T, Hanaoka E, Naka M, et al. Cloning and characterization of rat BAT3 cDNA. DNA Cell Biol. 1999,18 (6):503-512.
    [101]Manchen S T, Hubberstey A V. Human scythe contains a functional nuclear localization sequence and remains in the nucleus during staurosporine-induced apoptosis. Biochem. Biophys. Res. Commun.2001,287 (5):1075-1082.
    [102]Wu Y H. Ricin Triggers Apoptotic Morphological Changes through Caspase-3 Cleavage of BAT3. J. Biol. Chem.2004,279(18):19264-19275.
    [103]Preta G, Fadeel B. Scythe cleavage during Fas (APO-1)-and staurosporine-mediated apoptosis. FEBS Lett.2012,586 (6):747-752.
    [104]Wang Q, Liu Y, Soetandyo N, et al. A Ubiquitin ligase-associated chaperone holdase maintains polypeptides in soluble states for proteasome degradation. Mol. Cell 2011,42 (6):758-770.
    [105]Thress K, Henzel W, Shillinglaw W, et al. Scythe:a novel reaper-binding apoptotic regulator. EMBO J.1998,17 (21):6135-43.
    [106]Thress K, Evans E K, Kornbluth S. Reaper-induced dissociation of a Scythe-sequestered cytochrome c-releasing activity. EMBO J.1999,18 (20):5486-5493.
    [107]Thress K, Song J, Morimoto RI, et al. Reversible inhibition of Hsp70 chaperone function by Scythe and Reaper. EMBO J.2001,20 (5):1033-1041.
    [108]Minami R, Shimada M, Yokosawa H, et al. Scythe regulates apoptosis through modulating ubiquitin-mediated proteolysis of the Xenopus elongation factor XEF1AO. Biochem. J.2007,405 (3):495-501.
    [109]Wu Y H, Shih S F, Lin J Y. Ricin triggers apoptotic morphological changes through caspase-3 cleavage of BAT3. J. Biol. Chem.2004,279 (18):19264-19275.
    [110]Desmots F, Russell H R, Lee Y, et al. The reaper-binding protein scythe modulates apoptosis and proliferation during mammalian development. Mol. Cell. Biol.2005,25 (23):10329-10337.
    [111]Desmots F, Russell H R, Michel D, et al. Scythe regulates apoptosis-inducing factor stability during endoplasmic reticulum stress-induced apoptosis. J. Biol. Chem.2008,283 (6):3264-3271.
    [112]Wu W, Song W, Li S, et al. Regulation of apoptosis by Bat3-enhanced YWK-Ⅱ/APLP2 protein stability. J. Cell Sci.2012,125 (Pt 18):4219-4229.
    [113]Yin X, Ouyang S, Xu W, et al. YWK-Ⅱ protein as a novel G(o)-coupled receptor for Mullerian inhibiting substance in cell survival. J. Cell Sci.2007,120 (Pt 9):1521-1528.
    [114]Sasaki T, Gan E C, Wakeham A, et al. HLA-B-associated transcript 3 (Bat3)/Scythe is essential for p300-mediated acetylation of p53. Genes Dev.2007,21 (7):848-861.
    [115]Tsukahara T, Kimura S, Ichimiya S, et al. Scythe/BAT3 regulates apoptotic cell death induced by papillomavirus binding factor in human osteosarcoma. Cancer Sci.2009,100 (1):47-53.
    [116]Preta G, Fadeel B. AIF and Scythe (Bat3) regulate phosphatidylserine exposure and macrophage clearance of cells undergoing Fas (APO-1)-mediated apoptosis. PloS One 2012,7 (10):e47328.
    [117]Grover A, Izzo A A. BAT3 regulates Mycobacterium tuberculosis protein ESAT-6-mediated apoptosis of macrophages. PLoS One 2012,7 (7):e40836.
    [118]Stefanovic S, Hegde R S. Identification of a targeting factor for posttranslational membrane protein insertion into the ER. Cell 2007,128 (6):1147-1159.
    [119]Mariappan M, Li X, Stefanovic S, et al. A ribosome-associating factor chaperones tail-anchored membrane proteins. Nature 2010,466 (7310):1120-1124.
    [120]Leznicki P, Clancy A, Schwappach B, et al. Bat3 promotes the membrane integration of tail-anchored proteins. J. Cell. Sci.2007,123 (Pt 13):2170-2178.
    [121]Claessen J H, Ploegh H. BAT3 Guides Misfolded Glycoproteins Out of the Endoplasmic Reticulum. PloS One 2011,6(12):e28542.
    [122]Hessa T, Sharma A, Mariappan M, et al. Protein targeting and degradation are coupled for elimination of mislocalized proteins. Nature 2011,475 (7356):394-397.
    [123]Kawahara H, Minami R, Yokota N. BAG6/BAT3:emerging roles in quality control for nascent polypeptides. J. Biochem.2013,153 (2):147-160.
    [124]Leznicki P, High S. SGTA antagonizes BAG6-mediated protein triage. Proc. Natl. Acad. Sci. U. S. A. 2012,109 (47):19214-19219.
    [125]Kutay U, Hartmann E, Rapoport T A. A class of membrane proteins with a C-terminal anchor. Trends. Cell. Biol.1993,3 (3):72-75.
    [126]KnoopS K, Barcena M, Limpens R W, et al. Ultrastructural characterization of arterivirus replication structures:reshaping the endoplasmic reticulum to accommodate viral RNA synthesis. J. Virol.2012, 86 (5):2474-2487.
    [127]Costers S, Lefebvre D J, Delputte P L, et al. Porcine reproductive and respiratory syndrome virus modulates apoptosis during replication in alveolar macrophages. Arch. Virol.2008,153 (8): 1453-1465.
    [128]Susin S A, Zamzami N, Castedo M, et al. Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J. Exp. Med.1996,184 (4):1331-1341.
    [129]Susin S A, Lorenzo H K, Zamzami N, et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999,397 (6718):441-446.
    [130]Otera H, Ohsakaya S, Nagaura Z, et al. Export of mitochondrial AIF in response to proapoptotic stimuli depends on processing at the intermembrane space. EMBO J.2005,24 (7):1375-1386.
    [131]Modjtahedi N, Giordanetto F, Madeo F, et al. Apoptosis-inducing factor:vital and lethal. Trends Cell Biol.2006,16 (5):264-272.
    [132]Miramar M D, Costantini P, Ravagnan L, et al. NADH oxidase activity of mitochondrial apoptosis-inducing factor. J. Biol. Chem.2001,276 (19):16391-16398.
    [133]Klein J A, Longo-Guess C M, Rossmann M P, et al. The harlequin mouse mutation downregulates apoptosis-inducing factor. Nature 2002,19 (6908):367-374.
    [134]Vahsen N C, Cande C, Briere J J, et al. AIF deficiency compromises oxidative phosphorylation. EMBO J.2004,23 (23):4679-4689.
    [135]Joza N, Oudit G Y, Brown D, et al. Muscle-specific loss of apoptosis-inducing factor leads to mitochondrial dysfunction, skeletal muscle atrophy, and dilated cardiomyopathy. Mol. Cell. Biol. 2005,25(23):10261-10272.
    [136]Delettre C, Yuste V J, Moubarak R S, et al. AIFsh, a novel apoptosis-inducing factor (AIF) pro-apoptotic isoform with potential pathological relevance in human cancer. J. Biol. Chem.2006, 281 (10):6413-6427.
    [137]Delettre C, Yuste V J, Moubarak R S, et al. Identification and characterization of AIFsh2, a mitochondrial apoptosis-inducing factor (AIF) isoform with NADH oxidase activity. J. Biol. Chem. 2006,281 (27):18507-18518.
    [138]Nakagawa T, Zhu H, Morishima N, et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 2000,403 (6765):98-103.
    [139]Wang Y, Dawson V L, Dawson T M. Poly(ADP-ribose) signals to mitochondrial AIF:a key event in parthanatos. Exp. Neurol.2009,218 (2):193-202.
    [140]Yu S W, Wang H, Poitras M F, et al. Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 2002,297 (5579):259-263.
    [141]Yu S W, Andrabi S A, Wang H, et al. Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death. Proc. Natl. Acad. Sci. U. S.A.2006,103 (48):18314-18319.
    [142]Oh K H, Yang S W, Park J M, et al. Control of AIF-mediated cell death by antagonistic functions of CHIP ubiquitin E3 ligase and USP2 deubiquitinating enzyme. Cell Death Differ.2011,18 (8): 1326-1336.
    [143]Mate M J, Ortiz-Lombardia M, Boitel B, et al. The crystal structure of the mouse apoptosis-inducing factor AIR Nat. Struct. Biol.2002,9 (6):442-446.
    [144]Wilkinson J C, Wilkinson A S, Galban S, et al. Apoptosis-inducing factor is a target for ubiquitination through interaction with XIAP. Mol. Cell. Biol.2008,28 (1):237-247.
    [145]Lewis E M, Wilkinson A S, Davis N Y, et al. Nondegradative ubiquitination of apoptosis inducing factor (AIF) by X-linked inhibitor of apoptosis at a residue critical for AIF-mediated chromatin degradation. Biochemistry 2011,50 (51):11084-11096.
    [146]Ferri K F, Jacotot E, Blanco J, et al. Apoptosis Control in Syncytia Induced by the HIV Type 1-Envelope Glycoprotein Complex:Role of Mitochondria and Caspases. J. Exp. Med.2000,192 (8): 1081-1092.
    [147]Cavanagh D. Nidovirales:a new order comprising Coronaviridae and Arteriviridae. Arch. Virol. 1997,142 (3):629-633.
    [148]Dea S, Gagnon C A, Mardassi H, et al. Current knowledge on the structural proteins of porcine reproductive and respiratory syndrome (PRRS) virus:comparison of the North American and European isolates. Arch. Virol.2000,145 (4):659-688.
    [149]Ropp S L, Wees C E, Fang Y, et al. Characterization of Emerging European-Like Porcine Reproductive and Respiratory Syndrome Virus Isolates in the United States. J. Virol.2004,78 (7): 3684-3703.
    [150]Du Y, Lu Y, Qi J, et al. Complete genome sequence of a moderately pathogenic porcine reproductive and respiratory syndrome virus variant strain. J. Virol.2012,86 (24):13883-13884.
    [151]Zhou Z, Li X, LIU Q, et al. Complete genome sequence of two novel Chinese virulent porcine reproductive and respiratory syndrome virus variants. J. Virol.2012,86 (11):6373-6374.
    [152]Zhang G., Lu W, Chen Y, et al. Complete genome sequence of two variant porcine reproductive and respiratory syndrome viruses isolated from vaccinated piglets. J. Virol.2012,86 (20):11396-11397.
    [153]Li B, Fang L, Liu S, et al. The genomic diversity of Chinese porcine reproductive and respiratory syndrome virus isolates from 1996 to 2009. Vet. Microbiol.2010,146 (3-4):226-237.
    [154]An T Q, Tian Z J, Xiao Y, et al. Origin of highly pathogenic porcine reproductive and respiratory syndrome virus, China. Emerg. Infect. Dis.2010,16 (2):365-367.
    [155]Liu D, Zhou R, Zhang J, et al. Recombination analyses between two strains of porcine reproductive and respiratory syndrome virus in vivo. Virus Res.2011,155 (2):473-486.
    [156]Xu Y Z, Zhou Y J, Zhang S R, et al. Stable expression of foreign gene in nonessential region of nonstructural protein 2 (Nsp2) of porcine reproductive and respiratory syndrome virus:applications for marker vaccine design. Vet. Microbiol.2012,159(1-2):1-10.
    [157]Wang F X, Wen Y J, Yang B C, et al. Role of non-structural protein 2 in the regulation of the replication of the porcine reproductive and respiratory syndrome virus in MARC-145 cells:effect of gene silencing and over expression. Vet. Microbiol.2012,161 (1-2):58-65.
    [158]Miller L C, Laegreid W W, Bono J L, et al. Interferon type I response in porcine reproductive and respiratory syndrome virus-infected MARC-145 cells. Arch. Virol.2004,149 (12):2453-2563.
    [159]Beura L K, Sarkar S N, Kwon B, et al. Porcine reproductive and respiratory syndrome virus nonstructural protein lbeta modulates host innate immune response by antagonizing IRF3 activation. J. Virol.2010,84 (3):1574-1584.
    [160]Skaug B, Chen Z J. Emerging role of ISG15 in antiviral immunity. Cell 2010,143(2):187-190.
    [161]Blomstrom D C, Fahey D, Kutny R, et al. Molecular characterization of the interferon-induced 15-kDa protein. Molecular cloning and nucleotide and amino acid sequence. J. Biol. Chem.1986, 261 (19):8811-8116.
    [162]D'Cunha J, Knight E Jr, Haas A L, et al. Immunoregulatory properties of ISG15, an interferon-induced cytokine. Proc.Natl. Acad. Sci. U. S. A.1996,9(93):211-215.
    [163]D'Cunha J, Ramanujam S, Wagner R J, et al. In vitro and in vivo secretion of human ISG 15, an IFN-induced immunomodulatory cytokine. J. Immunol.1996,157 (9):4100-4108.
    [164]Li Y, Xue C, Wang L, et al. Genomic analysis of two Chinese strains of porcine reproductive and respiratory syndrome viruses with different virulence. Virus Genes 2010,40 (3):374-381.
    [165]Wang F X, Yan B C, Wen Y J, et al. Genomic characterization of porcine reproductive and respiratory syndrome virus TJM vaccine strain. I. R. J. M.2012,3 (5):191-201.
    [166]Ni Y Y, Huang Y W, Cao D, et al. Establishment of a DNA-launched infectious clone for a highly pneumovirulent strain of type 2 porcine reproductive and respiratory syndrome virus:identification and in vitro and in vivo characterization of a large spontaneous deletion in the Nsp2 region. Virus Res.2011,160 (1-2):264-273.
    [167]Klionsky D J, Emr S D. Autophagy as a regulated pathway of cellular degradation. Science 2000, 290(5497):1717-1721.
    [168]Deretic V, Saitoh T, Akira S. Autophagy in infection, inflammation and immunity. Nat. Rev. Immunol.2013,13 (10):722-737.
    [169]Richards A L, Jackson W T. How positive-strand RNA viruses benefit from autophagosome maturation. J. Virol.2013,87 (18):9966-9972.
    [170]Faure M, Lafont F. Pathogen-induced autophagy signaling in innate immunity. J. Innate. Immun. 2013,5 (5):456-470.
    [171]Tao Y, Ren X F. Cell autophagy and virus infection. Bing Du Xue Bao 2013,29 (1):76-84.
    [172]Chen Q, Fang L, Wang D, et al. Induction of autophagy enhances porcine reproductive and respiratory syndrome virus replication. Virus Res.2012,163 (2):650-655.
    [173]Liu Q, Qin Y, Zhou L, et al. Autophagy sustains the replication of porcine reproductive and respiratory virus in host cells. Virology 2012,429 (2):136-147.
    [174]Meier P, Finch A, Evan G., et al. Apoptosis in development. Nature,2000,407(6805):796-801.
    [175]Hengartner M O. Apoptosis:corralling the corpses. Cell 2001,104 (3):325-328.
    [176]Williams G T. Programmed cell death:apoptosis and oncogenesis. Cell 1991,65 (7):1097-1098.
    [177]Roulston A, Marcellus R C, Branton P E, et al. Viruses and apoptosis. Annu. Rev. Microbiol.1999, 53 (577-628).
    [178]Fuentes-Gonzalez A M, Contreras-Paredes A, Manzo-Merino J, et al. The modulation of apoptosis by oncogenic viruses. Virol. J.2013,10:182.
    [179]Mengeling W L, Lager K M, Vorwald A C, et al. Safety and efficacy of vaccination of pregnant gilts against porcine reproductive and respiratory syndrome. Am. J. Vet. Res.1999,60 (7):796-801.
    [180]Labarque G, Reeth K V, Nauwynck H, et al. Impact of genetic diversity of European-type porcine reproductive and respiratory syndrome virus strains on vaccine efficacy. Vaccine 2004,22 (31-32): 4183-4190.
    [181]De Lima M, Kwon B, Ansari I H, et al. Development of a porcine reproductive and respiratory syndrome virus differentiable (DIVA) strain through deletion of specific immunodominant epitopes. Vaccine 2008,26 (29-30):3594-3600.
    [182]Fang Y, Christopher-Hennings J, Brown E, et al. Development of genetic markers in the non-structural protein 2 region of a US type 1 porcine reproductive and respiratory syndrome virus: implications for future recombinant marker vaccine development. J. Gen. Virol.2008,89 (Pt 12): 3086-3096.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700