用户名: 密码: 验证码:
携带流行毒株E2基因的重组猪瘟病毒C株的拯救与鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪瘟(Classical swine fever, CSF)是严重危害养猪业的传染病之一,具有高传染性和高致病性的特点。其病原为猪瘟病毒(CSFV),属黄病毒科瘟病毒属成员。CSFV是有囊膜的单股正链RNA病毒,基因组长约12.3kb。囊膜糖蛋白E2具有良好的免疫原性,可诱导机体产生中和抗体并对强毒的攻击提供保护。E2在病毒感染过程中也起着重要作用,与病毒吸附,侵入宿主细胞,细胞嗜性和毒力强弱有关。新近研究表明,在CSF流行地区,其症状呈现非典型化,甚至在免疫猪群中也有发病;CSFV流行毒株已经从以前的group 1转向group 2。有迹象表明我国目前使用的group 1兔化弱毒C株疫苗对group 2 CSFV流行毒株难以提供有效保护。本项目的是:(1)建立猪瘟病毒疫苗株和野毒株的鉴别RFLP技术体系;(2)分析我国浙江地区CSFV流行情况;(3)比较CSFV当前流行毒株与早期group 1强毒株和兔化弱毒C株在体外生长特性、囊膜糖蛋白E2的分子变异特征与抗原多样性方面的差异;(4)应用反向遗传学技术,构建基于兔化弱毒C株和携带目前流行毒株E2基因的重组病毒,为开发针对流行毒株的新型标记疫苗奠定基础。
     1、猪瘟病毒疫苗株和野毒株的鉴别RFLP技术
     在CSFV-E2基因的上、下游保守区域分别设计两对简并引物用于套式RT-PCR检测。结果表明,该体系具有很好的特异性和灵敏性,检测下限为1400拷贝数的CSFV基因组。根据不同毒株E2基因中MspⅠ酶切位点排布的不同,建立了鉴别检测疫苗株和野毒株的RFLP方法。应用此方法对2003-2008年浙江地区猪场采集的309份组织样品进行CSFV检测,结果发现91份样品能扩增出CSFV特异性条带,阳性PCR产物经MspⅠ酶切,22份样品中含有疫苗株;60份为野毒感染,其余9份能同时检出疫苗株与野毒株。选择4种限制性内切酶BglⅠ, DdeⅠ, DraⅠ和PstⅠ分别对38株流行毒株的E2基因进行酶切,流行毒株可被分为11个不同的RFLP亚型。以上结果表明,浙江地区存在CSFV的流行,且流行毒株在E2基因水平上存在较大差异。
     2、猪瘟病毒经典强毒株和流行毒株在PK-15细胞和ST细胞中的生长特性比较
     比较了两个流行毒株(QZ-07和HZ1-08)和石门株在PK-15和ST细胞中的生长特性。强毒石门株在PK-15细胞中的增殖效率明显高于其在ST细胞。在感染PK-15 48h后,滴度可达到107TCID50/ml,而在相同时间,在ST细胞中只能达到105.25TCID50/ml。而两流行毒株在PK-15细胞中的增殖水平明显低于ST细胞,尤其以HZ1-08更为明显。在ST细胞感染的48h后,HZ1-08的滴度可达到105TCID50/ml,而在PK-15细胞中滴度只有102.75TCID50/ml。IFA检测结果同样表明,在感染48小时后,石门株感染的PK-15细胞均为阳性,而HZ1-08只有零星几个荧光斑。虽然三个毒株在感染不同阶段,ST细胞内病毒滴度基本一致,但石门株在增殖过程中释放于上清中的病毒滴度明显高于两个流行毒株。细胞内外感染性病毒粒子的比例在一定程度上可以判断病毒毒力的强弱,根据以上体外生长特性可以初步推断两个流行毒株不属于强毒株。
     3、猪瘟病毒流行毒株的全基因组比较和基于E2基因的分子变异特征分析
     对弱毒C株、石门株和分离株QZ-07进行了全基因组测序,结合从GenBank中下载的22个CSFV的全基因组进行遗传进化关系分析。结果表明,25个毒株可以分为两个分支,C株和石门株处于一个分支,而QZ-07位于遗传关系较远的另一个分支。同义突变与非同义突变以及熵值分析结果表明,CSFV多聚蛋白的前1/3编码区(包括病毒的结构蛋白在内的区域)比后2/3编码与病毒RNA复制有关的非结构蛋白区域变异性大,3个结构蛋白和非结构NS5A比较高变,而NS3、NS4B和NS5B相对保守。
     我们进一步对2004-2008年内流行于浙江地区的34株CSFV囊膜糖蛋白E2的分子变异特征进行深入分析。结果表明,流行毒株属于group 2,除了2004年的一株病毒属于subgroup 2.2以外,其余毒株均属于subgroup 2.1,且都归于genotype 2.1b。而目前使用的疫苗C株属于group 1中的subgroup 1.1。全长E2的核苷酸和氨基酸序列比较结果表明,流行毒株之间核苷酸的同源性在94.6%-99.8%之间,氨基酸的同源性在94.9%-99.7%之间。与C株相比,核苷酸的同源性在81.6%-82.6%之间,氨基酸的同源性在87.4%-89.3%之间。同义突变与非同义突变以及熵值分析结果表明,在E2蛋白中,N端抗原区域的变异程度大于C端,抗原区内鉴定的2个高变区中与抗体相互作用的关键氨基酸位点处于正选择压力,且流行毒株与疫苗株在这些位点上差异很大。
     4、猪瘟病毒C株E2蛋白单克隆抗体的研制与鉴定
     为了进一步探索E2蛋白N端高变区域内与抗体识别相关的一些关键氨基酸位点差异对不同毒株抗原结构的影响,我们以C株E2为抗原免疫BALB/c小鼠,应用杂交瘤技术结合IFA筛选,获得了3株持续、稳定分泌小鼠抗E2的单克隆抗体的杂交瘤细胞株1E7、2B6和6B8。免疫印迹和ELISA鉴定结果表明,只有2B6能与变性的E2蛋白反应。E2蛋白N端的6个Cys残基通过相互形成二硫键对维持抗原区域的构象起到关键作用,任何Cys残基的突变将影响相应抗体对该区域的识别。我们通过真核细胞表达不同Cys突变的重组E2以鉴定不同单抗的识别区域,发现1E7和6B8识别位于抗原区域B/C中的构象表位,而2B6能与所有Cys突变的E2蛋白反应,进一步证实该单抗识别的是一线性表位,因此不受E2抗原区域二级结构的影响。应用上述单抗进行流行毒株E2抗原多样性分析,结果表明:单抗2B6识别的抗原表位只存在于group 1毒株中;而单抗1E7和6B8除了不能与LS-05和QZ2-06毒株E2发生反应(因为这两个毒株Cys737突变为Arg,破坏了B/C抗原区的构象),与大部分毒株(8/10)均能发生反应。但是1E7和6B8与流行毒株的反应性比group 1毒株要弱。
     5、携带流行毒株E2基因的重组猪瘟病毒C株构建与鉴定
     鉴于流行于我省的CSFV毒株的E2蛋白分子进化特征及抗原多样性,特别是与疫苗毒株C株相比存在较大差异,可能影响疫苗的免疫保护效力。因此,我们建立了CSFV-C株的反向遗传学操作系统,结合分子流行病学研究结果,构建了基于C株、携带流行CSFV毒株E2基因的重组病毒。首先,我们对覆盖CSFV-C株基因组的6个cDNA片段按一定的策略依次克隆于改造的低拷贝质粒,并插入于T7启动子下游,构建了C株的感染性克隆pA-FL22。以线性化的pA-FL22为模板,体外转录的RNA转染细胞后,荧光定量PCR和IFA检测结果表明,转录的RNA在ST细胞中的复制、翻译水平明显高于PK-15。获得的子代病毒FL22注射家兔,产生与亲本毒株C株相同的体温反应,脾脏肿大。作为遗传标记的NcoⅠ位点在子代病毒体内外复制增殖过程中能稳定遗传。在此基础上,构建并拯救了携带石门毒株和流行毒株HZ1-08的E2抗原区域(870bp)的重组病毒FL22-SM-E2和FL22-HZ-E2。两个重组病毒能够通过上述建立的MspⅠ酶切方法与C株相区别,而且重组病毒FL22-HZ-E2还能通过与C株E2单抗反应性的不同与C株相区别。因此,本试验建立的CSFV感染性克隆与重组病毒拯救体系是成功的。
     总之,本研究深入探索了目前流行于浙江地区CSFV-E2的分子变异特征,初步探明了它们与疫苗株在抗原结构上的差异,建立了CSFV野毒感染和疫苗毒株的鉴别检测和分型技术体系,特别是CSFV感染性克隆的构建与重组病毒拯救体系的成功建立为新型标记疫苗的开发,CSFV的复制机制和致病机理的深入研究奠定了良好基础。
Classical swine fever (CSF) is a highly contagious and often fatal disease of swine and wild boar, causing significant economic losses to the swine industry. The causative agent of the disease is classical swine fever virus (CSFV), a member of the Pestivirus genus within the Flaviviridae family. CSFV is an enveloped RNA virus with its genome size of approximately 12.3 kb. The structural glycoprotein E2 is the most immunogenic among the CSFV proteins, inducing neutralizing antibodies and protection against lethal challenge. It also plays multiple roles in viral life cycle, such as virus attachment, entry into target cells, cell tropsim as well as virulence determinant. Currently, the switch of virus populations from historical group 1 to group 2 has been reported and a trend to chronic form of the disease, even in a certain proportion of vaccinated pigs has been reported in the endemic areas. Therefore, the efficacy of the classical group 1 lapinized C-strain vaccine is facing challenge. The present study was aimed (1) to investigate the CSFV infection status in swine population in Zhejiang, (2) to establish an RFLP method for differential identification of the vaccine strain and field isolates, (3) to explore the genetic and antigenetic diversity of the E2 of field isolates, and (4) to develop recombinant C-strain-based vaccine candidate strains containing E2 genes from prevalent field isolates using the reverse genetics technology.
     1.Differential identification of field CSFV isolates and the vaccine strain by RFLP
     RT-nested PCR (RT-nPCR) using the consensus-degenerate hybrid oligonucleotide primers targeted on the full-length E2 was used for detection of CFSV. The assay was able to detect as low as 1400 copies of CSFV genomic RNA. Vaccinated and infected CSFV strains could be differentiated by Mspl-based restriction fragment length polymorphism (RFLP) analysis. The assay was applied to identify CSFV isolates from 309 clinical specimens from 2003-2008 in Zhejiang. In 91 CSFV isolates,22 were identified as the C-strain,60 as field strains, and 9 as having both the C-strain and the field ones. RFLP of the RT-nPCR amplicons by BglⅠ, DdeⅠ, DraⅠand PstⅠwas used for subtyping of the field CSFV isolates. Thirty-eight field isolates were divided into 11 subtypes by this RFLP scheme, indicating the genetic diversity of the prevalent isolates in Zhejiang.
     2. Growth kinetics of prevalent field CSFV isolates and classical virulent isolate Shimen in PK-15 and ST cells
     Two field strains QZ-07 and HZ1-08 were isolated and their replication kinetics in PK-15 and swine testicle ST cell lines were compared with the classical virulent Shimen strain. The Shimen strain replicated more efficiently in PK-15 cells than in ST cells (107 TCID50/ml vs 105.25 TCID50/ml at 48 h post-infection). In contrast, two field strains displayed decreased replication in PK-15 cells (102.75 TCID50/ml for isolate HZ1-08 vs 105 TCID50/ml in ST cells). This was consistent with the protein expression kinetics. Only a few fluorescent foci were detected by IFA in HZ1-08-infected cells, while all cells were positive for Shimen-infected cells at 48h post-infection. Although the cell-associated virus titers were similar among three strains, the ratio of secreted virus versus cell-associated virus was different. The virulent strain Shimen secreted more progeny virus to the culture supernatants than the recent isolates. Considering the increased release of progeny virus particles from the cells as an attribute of high virulence, the prevalent isolates did not seem to have high virulence.
     3.Characterization of genetic variations of prevalent CSFV isolates in their full genomes and E2 genes
     The genome of the strain QZ-07, vaccine C-strain and virulent Shimen were determined. Phylogenetic analysis revealed two major clusters of 25 isolates including those retrieved from the GenBank representing other parts of China and other countries. C-strain and Shimen strain were clustered together, while strain QZ-07 fell into another cluster far away from these historical strains. The variability of the full-length polyprotein of these 25 isolates was analyzed by the differences between non-synonymous (dN) and synonymous (dS) rates and the entropy values. The first one third of the polyprotein covering all structural proteins was more variable than the last two thirds containing the nonstructural proteins essential for RNA replication. When the individual proteins were compared, three structural proteins and NS5A were more variable as compared with the relative conserved NS3, NS4B and NS5B proteins.
     Phylogenetic analysis of the E2 gene of 34 CSFV isolates from Zhejiang was further revealed that genotype 2.1b viruses became predominant in Zhejiang with 33 isolates clustered in 2.1b and only 1 isolate belonged to 2.2. Pairwise comparisons demonstrated that isolates in this study had an identity of 94.6%-99.8% at the nucleotide level and 94.9%-99.7% at the amino acid level. The identity ranged from 81.6% to 82.6% for nucleotide and 87.4%-89.3% for amino acids, as compared to the C-strain. Two variable regions in the antigenic domains as well as some positive selected positions located in the identified neutralizing epitopes or related to monoclonal antibodies (mAb) binding were defined. Moreover, these residues in mAb related positions were different between prevalent isolates and vaccine C-strain.
     4. Characterization of monoclonal antibodies against E2 of the CSFV vaccine strain
     Monoclonal antibodies to antigenic domains of glycoprotein E2 of C-strain were prepared and used to examine the effect of the variable regions and the specific positive selected positions on antigenic diversity between C-strain and recent field isolates. Three hybridoma cell lines secreting mAb (1E7,2B6 and 6B8) were produced by fusing mouse myeloma cells (SP2/0) with spleen cells from BALB/c immunized with the purified recombinant E2 protein (rE2). Western blot and ELISA analysis showed that only the mAb 2B6 could react with rE2. Six Cystine residues important for maintenance of the structure of antigenic domains of E2 were mutated in the backbone of nature C-strain E2 and expressed in PK-15 cells. Mutagenic analysis revealed that 1E7 and 6B8 reacted with the conformational epitopes located in antigenic domain B/C, while 2B6 reacted with all Cys mutant E2s independent of the secondary structure. Thus, mAb 2B6 was confirmed to react with a linear epitope. The reactivity of these three mAb with Shimen, QZ-07 and XS-08 indicated that the linear epitope recognized by 2B6 was specific for group 1 strains, while 1E7 and 2B6 reacted weakly with recent group 2 isolates. The reactivity patterns for prevalent isolates were further confirmed by the expression of different field isolates E2 in PK-15 cells. MAbs 1E7 and 2B6 did not react with mutants with substitution of the E2-Cys737 with Arg in the isolates LS-05 and QZ2-06 possibly due to the abolishment of the structure of antigenic domain B/C. This Cys mutant virus may escape from neutralizing antibodies against domain B/C in vivo.
     5.Genetic rescuing and characterization of recombinant classical swine fever virus vaccine strains containing the E2 gene representing the prevalent field isolates
     Since the genetic and antigenic diversity was apparent between recent isolates from Zhejiang and the vaccine C-strain, the vaccine efficacy could be compromised. Thus, we used reverse genetics to engineer recombinant CSF viruses based on the vaccine C-strain and the genetic features of the isolates circulating in Zhejiang. The cDNA fragments covering the genome of the C-strain were assembled and inserted downstream of a T7 promoter to obtain the full-length cDNA clone of pA-FL22. The in vitro synthesis of full-length viral RNA derived from pA-FL22 proven to be replication-competent and infectious after electroporated into ST and PK-15 cells. Real-time PCR and IFA revealed that the RNA replication and protein translation was more efficiently in ST cells than in PK-15 cells. The recombinant virus FL22 recovered from the electroporated cells retained the properties of the parental C-strain in rabbit, fever and enlargement of the spleen. A silent point mutation at position 8036 of the genome which introduced an additional NcoⅠrestriction site as genetic tag was also retained during virus replication in vitro and in vivo. Two infectious recombinant CSF viruses were generated by exchanging the 830-bp region including the antigenic domains in pA-FL22 with the equivalent region of CSFV strains Shimen and HZ 1-08, respectively. The resulting recombinant viruses FL22-SM-E2 and FL22-HZ-E2 could be differentiated from FL22 by MspⅠbased RFLP assay, and virus FL22-HZ-E2 also changed mAb pattern same as the donor strain HZ 1-08. Therefore, the recombinant virus FL22-HZ-E2 may serve as the candidate strain for further marker vaccine development.
     In summary, our studies revealed the divergence of the prevalent CSFV isolates in Zhejiang and their antigenic variations to the vaccine C-strain. The RT-nPCR-based RFLP could be used for subtyping and differentiation of the field isolates from the vaccine strain. Successful rescuing of the recombinant viruses based on the vaccine strain would be of great use for development of anti-CSFV marker vaccines and for in-depth studies on the replication and pathogenesis of CSFV.
引文
[1]Horst HS, Huirne RB, Dijkhuizen AA. Risks and economic consequences of introducing classical swine fever into The Netherlands by feeding swill to swine. Rev Sci Tech 1997 Apr; 16(1):207-14.
    [2]Moennig V. Introduction to classical swine fever:virus, disease and control policy. Vet Microbiol 2000 Apr 13;73(2-3):93-102.
    [3]Paton DJ, McGoldrick A, Greiser-Wilke I, Parchariyanon S, Song JY, Liou PP, et al. Genetic typing of classical swine fever virus. Vet Microbiol 2000 Apr 13;73(2-3):137-57.
    [4]Mittelholzer C, Moser C, Tratschin JD, Hofmann MA. Analysis of classical swine fever virus replication kinetics allows differentiation of highly virulent from avirulent strains. Vet Microbiol 2000 Jun 12;74(4):293-308.
    [5]Kaden V, Lange E, Polster U, Klopfleisch R, Teifke JP. Studies on the virulence of two field isolates of the classical Swine Fever virus genotype 2.3 rostock in wild boars of different age groups. J Vet Med B Infect Dis Vet Public Health 2004 Jun;51(5):202-8.
    [6]Floegel-Niesmann G, Bunzenthal C, Fischer S, Moennig V. Virulence of recent and former classical swine fever virus isolates evaluated by their clinical and pathological signs. J Vet Med B Infect Dis Vet Public Health 2003 Jun;50(5):214-20.
    [7]Uttenthal A, Storgaard T, Oleksiewicz MB, de Stricker K. Experimental infection with the Paderborn isolate of classical swine fever virus in 10-week-old pigs:determination of viral replication kinetics by quantitative RT-PCR, virus isolation and antigen ELISA. Vet Microbiol 2003 Apr 2;92(3):197-212.
    [8]Moennig V, Floegel-Niesmann G, Greiser-Wilke I. Clinical signs and epidemiology of classical swine fever:a review of new knowledge. Vet J 2003 Jan;165(1):11-20.
    [9]Flores-Gutierrez GH, Infante F. Resolution of a classical swine fever outbreak in the United States-Mexico border region. Transbound Emerg Dis 2008 Dec;55(9-10):377-81.
    [10]Pereda AJ, Greiser-Wilke I, Schmitt B, Rincon MA, Mogollon JD, Sabogal ZY, et al. Phylogenetic analysis of classical swine fever virus (CSFV) field isolates from outbreaks in South and Central America. Virus Res 2005 Jun; 110(1-2):111-8.
    [11]Pan CH, Jong MH, Huang TS, Liu HF, Lin SY, Lai SS. Phylogenetic analysis of classical swine fever virus in Taiwan. Arch Virol 2005 Jun; 150(6):1101-19.
    [12]Deng MC, Huang CC, Huang TS, Chang CY, Lin YJ, Chien MS, et al. Phylogenetic analysis of classical swine fever virus isolated from Taiwan. Vet Microbiol 2005 Apr 10; 106(3-4):187-93.
    [13]de Arce HD, Ganges L, Barrera M, Naranjo D, Sobrino F, Frias MT, et al. Origin and evolution of viruses causing classical swine fever in Cuba. Virus Res 2005 Sep; 112(1-2):123-31.
    [14]Blacksell SD, Khounsy S, Boyle DB, Gleeson LJ, Westbury HA, Mackenzie JS. Genetic typing of classical swine fever viruses from Lao PDR by analysis of the 5'non-coding region. Virus Genes 2005 Dec;31(3):349-55.
    [15]Blacksell SD, Khounsy S, Boyle DB, Greiser-Wilke I, Gleeson LJ, Westbury HA, et al. Phylogenetic analysis of the E2 gene of classical swine fever viruses from Lao PDR. Virus Res 2004 Aug;104(1):87-92.
    [16]Jemersic L, Greiser-Wilke I, Barlic-Maganja D, Lojkic M, Madic J, Terzic S, et al. Genetic typing of recent classical swine fever virus isolates from Croatia. Vet Microbiol 2003 Oct 8;96(1):25-33.
    [17]Tu C, Lu Z, Li H, Yu X, Liu X, Li Y, et al. Phylogenetic comparison of classical swine fever virus in China. Virus Res 2001 Dec 4;81(1-2):29-37.
    [18]Biagetti M, Greiser-Wilke I, Rutili D. Molecular epidemiology of classical swine fever in Italy. Vet Microbiol 2001 Nov 26;83(3):205-15.
    [19]Greiser-Wilke I, Fritzemeier J, Koenen F, Vanderhallen H, Rutili D, De Mia GM, et al. Molecular epidemiology of a large classical swine fever epidemic in the European Union in 1997-1998. Vet Microbiol 2000 Nov 15;77(1-2):17-27.
    [20]Bartak P, Greiser-Wilke I. Genetic typing of classical swine fever virus isolates from the territory of the Czech Republic. Vet Microbiol 2000 Nov 15;77(1-2):59-70.
    [21]Widjojoatmodjo MN, van Gennip HG, de Smit AJ, Moormann RJ. Comparative sequence analysis of classical swine fever virus isolates from the epizootic in The Netherlands in 1997-1998. Vet Microbiol 1999 May;66(4):291-9.
    [22]Lowings P, Ibata G, De Mia GM, Rutili D, Paton D. Classical swine fever in Sardinia: epidemiology of recent outbreaks. Epidemiol Infect 1999 Jun;122(3):553-9.
    [23]Diaz de Arce H, Nunez JI, Ganges L, Barreras M, Teresa Frias M, Sobrino F. Molecular epidemiology of classical swine fever in Cuba. Virus Res 1999 Oct;64(1):61-7.
    [24]Vilcek S, Stadejek T, Takacsova I, Strojny L, Mojzis M. Genetic analysis of classical swine fever virus isolates from a small geographic area. Dtsch Tierarztl Wochenschr 1997 Jan;104(1):9-12.
    [25]Stadejek T, Vilcek S, Lowings JP, Ballagi-Pordany A, Paton DJ, Belak S. Genetic heterogeneity of classical swine fever virus in Central Europe. Virus Res 1997 Dec;52(2):195-204.
    [26]Cha SH, Choi EJ, Park JH, Yoon SR, Kwon JH, Yoon KJ, et al. Phylogenetic characterization of classical swine fever viruses isolated in Korea between 1988 and 2003. Virus Res 2007 Jun;126(1-2):256-61.
    [27]Sabogal ZY, Mogollon JD, Rincon MA, Clavijo A. Phylogenetic analysis of recent isolates of classical swine fever virus from Colombia. Virus Res 2006 Jan;115(1):99-103.
    [28]Chen N, Hu H, Zhang Z, Shuai J, Jiang L, Fang W. Genetic diversity of the envelope glycoprotein E2 of classical swine fever virus:recent isolates branched away from historical and vaccine strains. Vet Microbiol 2008 Mar 18;127(3-4):286-99.
    [29]Liu L, Xia H, Wahlberg N, Belak S, Baule C. Phylogeny, classification and evolutionary insights into pestiviruses. Virology 2009 Mar 15;385(2):351-7.
    [30]Becher P, Avalos Ramirez R, Orlich M, Cedillo Rosales S, Konig M, Schweizer M, et al. Genetic and antigenic characterization of novel pestivirus genotypes:implications for classification. Virology 2003 Jun 20;311(1):96-104.
    [31]Schirrmeier H, Strebelow G, Depner K, Hoffmann B, Beer M. Genetic and antigenic characterization of an atypical pestivirus isolate, a putative member of a novel pestivirus species. J Gen Virol 2004 Dec;85(Pt 12):3647-52.
    [32]Stalder HP, Meier P, Pfaffen G, Wageck-Canal C, Rufenacht J, Schaller P, et al. Genetic heterogeneity of pestiviruses of ruminants in Switzerland. Prev Vet Med 2005 Nov 15;72(1-2):37-41; discussion 215-9.
    [33]Stahl K, Kampa J, Alenius S, Persson Wadman A, Baule C, Aiumlamai S, et al. Natural infection of cattle with an atypical 'HoBi'-like pestivirus-implications for BVD control and for the safety of biological products. Vet Res 2007 May-Jun;38(3):517-23.
    [34]Vilcek S, Ridpath JF, Van Campen H, Cavender JL, Warg J. Characterization of a novel pestivirus originating from a pronghorn antelope. Virus Res 2005 Mar;108(1-2):187-93.
    [35]Kirkland PD, Frost MJ, Finlaison DS, King KR, Ridpath JF, Gu X. Identification of a novel virus in pigs--Bungowannah virus:a possible new species of pestivirus. Virus Res 2007 Oct;129(1):26-34.
    [36]Finlaison DS, King KR, Frost MJ, Kirkland PD. Field and laboratory evidence that Bungowannah virus, a recently recognised pestivirus, is the causative agent of the porcine myocarditis syndrome (PMC). Vet Microbiol 2008 Dec 9.
    [37]Thabti F, Letellier C, Hammami S, Pepin M, Ribiere M, Mesplede A, et al. Detection of a novel border disease virus subgroup in Tunisian sheep. Arch Virol 2005 Feb;150(2):215-29.
    [38]Beer M, Reimann I, Hoffmann B, Depner K. Novel marker vaccines against classical swine fever. Vaccine 2007 Jul 26;25(30):5665-70.
    [39]Grummer B, Fischer S, Depner K, Riebe R, Blome S, Greiser-Wilke Ⅰ. Replication of classical swine fever virus strains and isolates in different porcine cell lines. Dtsch Tierarztl Wochenschr 2006 Apr; 113(4):138-42.
    [40]Vilcek S, Paton D, Lowings P, Bjorklund H, Nettleton P, Belak S. Genetic analysis of pestiviruses at the 3'end of the genome. Virus Genes 1999; 18(2):107-14.
    [41]Bjorklund HV, Stadejek T, Vilcek S, Belak S. Molecular characterization of the 3'noncoding region of classical swine fever virus vaccine strains. Virus Genes 1998;16(3):307-12.
    [42]Vilcek S, Belak S. Organization and diversity of the 3'-noncoding region of classical swine fever virus genome. Virus Genes 1997;15(2):181-6.
    [43]Kolupaeva VG, Pestova TV, Hellen CU. Ribosomal binding to the internal ribosomal entry site of classical swine fever virus. RNA 2000 Dec;6(12):1791-807.
    [44]Fletcher SP, Ali IK, Kaminski A, Digard P, Jackson RJ. The influence of viral coding sequences on pestivirus IRES activity reveals further parallels with translation initiation in prokaryotes. RNA 2002 Dec;8(12):1558-71.
    [45]Fletcher SP, Jackson RJ. Pestivirus internal ribosome entry site (IRES) structure and function: elements in the 5' untranslated region important for IRES function. J Virol 2002 May;76(10):5024-33.
    [46]Risatti GR, Borca MV, Kutish GF, Lu Z, Holinka LG, French RA, et al. The E2 glycoprotein of classical swine fever virus is a virulence determinant in swine. J Virol 2005 Mar;79(6):3787-96.
    [47]Ruggli N, Tratschin JD, Mittelholzer C, Hofmann MA. Nucleotide sequence of classical swine fever virus strain Alfort/187 and transcription of infectious RNA from stably cloned full-length cDNA. J Virol 1996 Jun;70(6):3478-87.
    [48]Moormann RJ, van Gennip HG, Miedema GK, Hulst MM, van Rijn PA. Infectious RNA transcribed from an engineered full-length cDNA template of the genome of a pestivirus. J Virol 1996 Feb;70(2):763-70.
    [49]Meyers G, Thiel HJ, Rumenapf T. Classical swine fever virus:recovery of infectious viruses from cDNA constructs and generation of recombinant cytopathogenic defective interfering particles. J Virol 1996 Mar;70(3):1588-95.
    [50]Mayer D, Thayer TM, Hofmann MA, Tratschin JD. Establishment and characterisation of two cDNA-derived strains of classical swine fever virus, one highly virulent and one avirulent. Virus Res 2003 Dec;98(2):105-16.
    [51]Fan Y, Zhao Q, Zhao Y, Wang Q, Ning Y, Zhang Z. Complete genome sequence of attenuated low-temperature Thiverval strain of classical swine fever virus. Virus Genes 2008 Jun;36(3):531-8.
    [52]Lin YJ, Chien MS, Deng MC, Huang CC. Complete sequence of a subgroup 3.4 strain of classical swine fever virus from Taiwan. Virus Genes 2007 Dec;35(3):737-44.
    [53]Li X, Xu Z, He Y, Yao Q, Zhang K, Jin M, et al. Genome comparison of a novel classical swine fever virus isolated in China in 2004 with other CSFV strains. Virus Genes 2006 Oct;33(2):133-42.
    [54]Wong ML, Peng BY, Liu JJ, Chang TJ. Cloning and sequencing of full-length cDNA of classical swine fever virus LPC strain. Virus Genes 2001;23(2):187-92.
    [55]Li H, Liu X, Li X, Han X, Tu C, Yin Z. [Molecular clone and sequence analysis of cDNA fragments of hog cholera virus strain C]. Wei Sheng Wu Xue Bao 1999 Dec;39(6):554-8.
    [56]Xu X, Zhang Q, Yu X, Liang L, Xiao C, Xiang H, et al. Sequencing and comparative analysis of a pig bovine viral diarrhea virus genome. Virus Res 2006 Dec; 122(1-2):164-70.
    [57]Murray CL, Jones CT, Rice CM. Architects of assembly:roles of Flaviviridae non-structural proteins in virion morphogenesis. Nat Rev Microbiol 2008 Sep;6(9):699-708.
    [58]Ruggli N, Summerfield A, Fiebach AR, Guzylack-Piriou L, Bauhofer O, Lamm CG, et al. Classical swine fever virus can remain virulent after specific elimination of the interferon regulatory factor 3-degrading function of Npro. J Virol 2009 Jan;83(2):817-29.
    [59]Tratschin JD, Moser C, Ruggli N, Hofmann MA. Classical swine fever virus leader proteinase Npro is not required for viral replication in cell culture. J Virol 1998 Sep;72(9):7681-4.
    [60]La Rocca SA, Herbert RJ, Crooke H, Drew TW, Wileman TE, Powell PP. Loss of interferon regulatory factor 3 in cells infected with classical swine fever virus involves the N-terminal protease, Npro. J Virol 2005 Jun;79(11):7239-47.
    [61]Seago J, Hilton L, Reid E, Doceul V, Jeyatheesan J, Moganeradj K, et al. The Npro product of classical swine fever virus and bovine viral diarrhea virus uses a conserved mechanism to target interferon regulatory factor-3. J Gen Virol 2007 Nov;88(Pt 11):3002-6.
    [62]Heimann M, Roman-Sosa G, Martoglio B, Thiel HJ, Rumenapf T. Core protein of pestiviruses is processed at the C terminus by signal peptide peptidase. J Virol 2006 Feb;80(4):1915-21.
    [63]Rumenapf T, Stark R, Meyers G, Thiel HJ. Structural proteins of hog cholera virus expressed by vaccinia virus:further characterization and induction of protective immunity. J Virol 1991 Feb;65(2):589-97.
    [64]Sainz IF, Holinka LG, Lu Z, Risatti GR, Borca MV. Removal of a N-linked glycosylation site of classical swine fever virus strain Brescia Erns glycoprotein affects virulence in swine. Virology 2008 Jan5;370(1):122-9.
    [65]Tews BA, Schurmann EM, Meyers G. Mutation of cysteine 171 of pestivirus Erns RNase prevents homodimer formation and leads to attenuation of classical swine fever virus. J Virol 2009 Mar 4.
    [66]van Gennip HG, Hesselink AT, Moormann RJ, Hulst MM. Dimerization of glycoprotein E(rns) of classical swine fever virus is not essential for viral replication and infection. Arch Virol 2005 Nov;150(11):2271-86.
    [67]Tews BA, Meyers G. The pestivirus glycoprotein Erns is anchored in plane in the membrane via an amphipathic helix. J Biol Chem 2007 Nov 9;282(45):32730-41.
    [68]Langedijk JP. Translocation activity of C-terminal domain of pestivirus Erns and ribotoxin L3 loop. J Biol Chem 2002 Feb 15;277(7):5308-14.
    [69]Langedijk JP, Middel WG, Meloen RH, Kramps JA, de Smit JA. Enzyme-linked immunosorbent assay using a virus type-specific peptide based on a subdomain of envelope protein E(rns) for serologic diagnosis of pestivirus infections in swine. J Clin Microbiol 2001 Mar;39(3):906-12.
    [70]Lin M, Trottier E, Pasick J. Antibody responses of pigs to defined Erns fragments after infection with classical swine fever virus. Clin Diagn Lab Immunol 2005 Jan; 12(1):180-6.
    [71]Lin M, Trottier E, Mallory M. Enzyme-linked immunosorbent assay based on a chimeric antigen bearing antigenic regions of structural proteins Erns and E2 for serodiagnosis of classical swine fever virus infection. Clin Diagn Lab Immunol 2005 Jul;12(7):877-81.
    [72]He DM, Qian KX, Shen GF, Zhang ZF, Li YN, Su ZL, et al. Recombination and expression of classical swine fever virus (CSFV) structural protein E2 gene in Chlamydomonas reinhardtii chroloplasts. Colloids Surf B Biointerfaces 2007 Mar 15;55(1):26-30.
    [73]Schneider R, Unger G, Stark R, Schneider-Scherzer E, Thiel HJ. Identification of a structural glycoprotein of an RNA virus as a ribonuclease. Science 1993 Aug 27;261(5125):1169-71.
    [74]Hausmann Y, Roman-Sosa G, Thiel HJ, Rumenapf T. Classical swine fever virus glycoprotein E rns is an endoribonuclease with an unusual base specificity. J Virol 2004 May;78(10):5507-12.
    [75]Meyers G, Saalmuller A, Buttner M. Mutations abrogating the RNase activity in glycoprotein E(rns) of the pestivirus classical swine fever virus lead to virus attenuation. J Virol 1999 Dec;73(12):10224-35.
    [76]Bruschke CJ, Hulst MM, Moormann RJ, van Rijn PA, van Oirschot JT. Glycoprotein Erns of pestiviruses induces apoptosis in lymphocytes of several species. J Virol 1997 Sep;71(9):6692-6.
    [77]Ronecker S, Zimmer G, Herrler G, Greiser-Wilke I, Grummer B. Formation of bovine viral diarrhea vims E1-E2 heterodimers is essential for virus entry and depends on charged residues in the transmembrane domains. J Gen Virol 2008 Sep;89(Pt 9):2114-21.
    [78]Hulst MM, Moormann RJ. Inhibition of pestivirus infection in cell culture by envelope proteins E(rns) and E2 of classical swine fever virus:E(rns) and E2 interact with different receptors. J Gen Virol 1997Nov;78(Pt 11):2779-87.
    [79]Hulst MM, van Gennip HG, Moormann RJ. Passage of classical swine fever virus in cultured swine kidney cells selects virus variants that bind to heparan sulfate due to a single amino acid change in envelope protein E(rns). J Virol 2000 Oct;74(20):9553-61.
    [80]Hulst MM, van Gennip HG, Vlot AC, Schooten E, de Smit AJ, Moormann RJ. Interaction of classical swine fever virus with membrane-associated heparan sulfate:role for virus replication in vivo and virulence. J Virol 2001 Oct;75(20):9585-95.
    [81]Hulst MM, Westra DF, Wensvoort G, Moormann RJ. Glycoprotein E1 of hog cholera virus expressed in insect cells protects swine from hog cholera. J Virol 1993 Sep;67(9):5435-42.
    [82]Risatti GR, Holinka LG, Fernandez Sainz I, Carrillo C, Lu Z, Borca MV. N-linked glycosylation status of classical swine fever virus strain Brescia E2 glycoprotein influences virulence in swine. J Virol 2007 Jan;81(2):924-33.
    [83]van Rijn PA, van Gennip HG, de Meijer EJ, Moormann RJ. Epitope mapping of envelope glycoprotein El of hog cholera virus strain Brescia. J Gen Virol 1993 Oct;74 (Pt 10):2053-60.
    [84]Lin M, Lin F, Mallory M, Clavijo A. Deletions of structural glycoprotein E2 of classical swine fever virus strain alfort/187 resolve a linear epitope of monoclonal antibody WH303 and the minimal N-terminal domain essential for binding immunoglobulin G antibodies of a pig hyperimmune serum. J Virol 2000 Dec;74(24):1 1619-25.
    [85]Zhang F, Yu M, Weiland E, Morrissy C, Zhang N, Westbury H, et al. Characterization of epitopes for neutralizing monoclonal antibodies to classical swine fever virus E2 and Erns using phage-displayed random peptide library. Arch Virol 2006 Jan;151(1):37-54.
    [86]Peng WP, Hou Q, Xia ZH, Chen D, Li N, Sun Y, et al. Identification of a conserved linear B-cell epitope at the N-terminus of the E2 glycoprotein of Classical swine fever virus by phage-displayed random peptide library. Virus Res 2008 Aug;135(2):267-72.
    [87]Dong XN, Chen Y, Wu Y, Chen YH. Candidate multi-peptide-vaccine against classical swine fever virus induced potent immunity with serological marker. Vaccine 2005 May 25;23(28):3630-3.
    [88]Dong XN, Chen YH. Spying the neutralizing epitopes on E2 N-terminal by candidate epitope-vaccines against classical swine fever virus. Vaccine 2006 May 8;24(19):4029-34.
    [89]Dong XN, Chen YH. Candidate peptide-vaccines induced immunity against CSFV and identified sequential neutralizing determinants in antigenic domain A of glycoprotein E2. Vaccine 2006 Mar 10;24(11):1906-13.
    [90]Dong XN, Chen YH. Marker vaccine strategies and candidate CSFV marker vaccines. Vaccine 2007 Jan 4;25(2):205-30.
    [91]Dong XN, Qi Y, Ying J, Chen X, Chen YH. Candidate peptide-vaccine induced potent protection against CSFV and identified a principal sequential neutralizing determinant on E2. Vaccine 2006 Jan 23;24(4):426-34.
    [92]Dong XN, Wei K, Liu ZQ, Chen YH. Candidate peptide vaccine induced protection against classical swine fever virus. Vaccine 2002 Dec 13;21(3-4):167-73.
    [93]Yu M, Wang LF, Shiell BJ, Morrissy CJ, Westbury HA. Fine mapping of a C-terminal linear epitope highly conserved among the major envelope glycoprotein E2 (gp51 to gp54) of different pestiviruses. Virology 1996 Aug 1;222(1):289-92.
    [94]Elbers K, Tautz N, Becher P, Stoll D, Rumenapf T, Thiel HJ. Processing in the pestivirus E2-NS2 region:identification of proteins p7 and E2p7. J Virol 1996 Jun;70(6):4131-5.
    [95]Harada T, Tautz N, Thiel HJ. E2-p7 region of the bovine viral diarrhea virus polyprotein: processing and functional studies. J Virol 2000 Oct;74(20):9498-506.
    [96]Chew CF, Vijayan R, Chang J, Zitzmann N, Biggin PC. Determination of pore-lining residues in the hepatitis C virus p7 protein. Biophys J 2009 Jan;96(2):L10-2.
    [97]Meshkat Z, Audsley M, Beyer C, Gowans EJ, Haqshenas G. Reverse genetic analysis of a putative, influenza virus M2 HXXXW-like motif in the p7 protein of hepatitis C virus. J Viral Hepat 2009 Mar; 16(3):187-94.
    [98]Lackner T, Muller A, Pankraz A, Becher P, Thiel HJ, Gorbalenya AE, et al. Temporal modulation of an autoprotease is crucial for replication and pathogenicity of an RNA virus. J Virol 2004 Oct;78(19):10765-75.
    [99]Kummerer BM, Tautz N, Becher P, Thiel H, Meyers G. The genetic basis for cytopathogenicity of pestiviruses. Vet Microbiol 2000 Nov 15;77(1-2):117-28.
    [100]Moser C, Stettler P, Tratschin JD, Hofmann MA. Cytopathogenic and noncytopathogenic RNA replicons of classical swine fever virus. J Virol 1999 Sep;73(9):7787-94.
    [101]Warrener P, Collett MS. Pestivirus NS3 (p80) protein possesses RNA helicase activity. J Virol 1995 Mar;69(3):1720-6.
    [102]Xu J, Mendez E, Caron PR, Lin C, Murcko MA, Collett MS, et al. Bovine viral diarrhea virus NS3 serine proteinase:polyprotein cleavage sites, cofactor requirements, and molecular model of an enzyme essential for pestivirus replication. J Virol 1997 Jul;71(7):5312-22.
    [103]Moulin HR, Seuberlich T, Bauhofer O, Bennett LC, Tratschin JD, Hofmann MA, et al. Nonstructural proteins NS2-3 and NS4A of classical swine fever virus:essential features for infectious particle formation. Virology 2007 Sep 1;365(2):376-89.
    [104]Agapov EV, Murray CL, Frolov I, Qu L, Myers TM, Rice CM. Uncleaved NS2-3 is required for production of infectious bovine viral diarrhea virus. J Virol 2004 Mar;78(5):2414-25.
    [105]Tautz N, Kaiser A, Thiel HJ. NS3 serine protease of bovine viral diarrhea virus: characterization of active site residues, NS4A cofactor domain, and protease-cofactor interactions. Virology 2000 Aug 1;273(2):351-63.
    [106][In case of hog cholera in pregnant swine:abortion or euthanasia?]. Tijdschr Diergeneeskd 2001 Apr 15;126(8):295-6.
    [107]Brass V, Pal Z, Sapay N, Deleage G, Blum HE, Penin F, et al. Conserved determinants for membrane association of nonstructural protein 5A from hepatitis C virus and related viruses. J Virol 2007 Mar;81(6):2745-57.
    [108]Horter DC, Yoon KJ, Zimmerman JJ. A review of porcine tonsils in immunity and disease. Anim Health Res Rev 2003 Dec;4(2):143-55.
    [109]Appel N, Pietschmann T, Bartenschlager R. Mutational analysis of hepatitis C virus nonstructural protein 5A:potential role of differential phosphorylation in RNA replication and identification of a genetically flexible domain. J Virol 2005 Mar;79(5):3187-94.
    [110]Appel N, Zayas M, Miller S, Krijnse-Locker J, Schaller T, Friebe P, et al. Essential role of domain Ⅲ of nonstructural protein 5 A for hepatitis C virus infectious particle assembly. PLoS Pathog 2008 Mar;4(3):el000035.
    [111]Masaki T, Suzuki R, Murakami K, Aizaki H, Ishii K, Murayama A, et al. Interaction of hepatitis C virus nonstructural protein 5A with core protein is critical for the production of infectious virus particles. J Virol 2008 Aug;82(16):7964-76.
    [112]Xiao M, Li H, Wang Y, Wang X, Wang W, Peng J, et al. Characterization of the N-terminal domain of classical swine fever virus RNA-dependent RNA polymerase. J Gen Virol 2006 Feb;87(Pt 2):347-56.
    [113]Xiao M, Zhang CY, Pan ZS, Wu HX, Guo JQ. Classical swine fever virus NS5B-GFP fusion protein possesses an RNA-dependent RNA polymerase activity. Arch Virol 2002 Sep; 147(9):1779-87.
    [114]Xiao M, Wang Y, Chen J, Li B. Characterization of RNA-dependent RNA polymerase activity of CSFV NS5B proteins expressed in Escherichia coli:Virus Genes 2003 Aug;27(1):67-74.
    [115]Clavijo A, Zhou EM, Vydelingum S, Heckert R. Development and evaluation of a novel antigen capture assay for the detection of classical swine fever virus antigens. Vet Microbiol 1998 Feb 28;60(2-4):155-68.
    [116]Narita M, Kimura K, Tanimura N, Ozaki H. Immunohistochemical detection of hog cholera virus antigen in paraffin wax-embedded tissues from naturally infected pigs. J Comp Pathol 1999 Oct;121(3):283-6.
    [117]Kaden V, Hubert P, Strebelow G, Lange E, Steyer H, Steinhagen P. [Comparison of laboratory diagnostic methods for the detection of infection with the virus of classical swine fever in the early inspection phase:an experimental study]. Berl Munch Tierarztl Wochenschr 1999 Feb;112(2):52-7.
    [118]Haegeman A, Dewulf J, Vrancken R, Tignon M, Ribbens S, Koenen F. Characterisation of the discrepancy between PCR and virus isolation in relation to classical swine fever virus detection. J Virol Methods 2006 Sep;136(1-2):44-50.
    [119]Vydelingum S, Tao T, Balazsi K, Hecker R. Comparison of a reverse transcription-polymerase chain reaction assay and virus isolation for the detection of classical swine fever virus. Rev Sci Tech 1998 Dec;17(3):674-81.
    [120]Clavijo A, Lin M, Riva J, Mallory M, Lin F, Zhou EM. Development of a competitive ELISA using a truncated E2 recombinant protein as antigen for detection of antibodies to classical swine fever virus. Res Vet Sci 2001 Feb;70(1):1-7.
    [121]Jamnikar Ciglenecki U, Grom J, Toplak I, Jemersic L, Barlic-Maganja D. Real-time RT-PCR assay for rapid and specific detection of classical swine fever virus:comparison of SYBR Green and TaqMan MGB detection methods using novel MGB probes. J Virol Methods 2008 Feb;147(2):257-64.
    [122]Liu L, Widen F, Baule C, Belak S. A one-step, gel-based RT-PCR assay with comparable performance to real-time RT-PCR for detection of classical swine fever virus. J Virol Methods 2007 Feb;139(2):203-7.
    [123]Ophuis RJ, Morrissy CJ, Boyle DB. Detection and quantitative pathogenesis study of classical swine fever virus using a real time RT-PCR assay. J Virol Methods 2006 Jan;131(1):78-85.
    [124]Risatti G, Holinka L, Lu Z, Kutish G, Callahan JD, Nelson WM, et al. Diagnostic evaluation of a real-time reverse transcriptase PCR assay for detection of classical swine fever virus. J Clin Microbiol 2005 Jan;43(1):468-71.
    [125]Li Y, Zhao JJ, Li N, Shi Z, Cheng D, Zhu QH, et al. A multiplex nested RT-PCR for the detection and differentiation of wild-type viruses from C-strain vaccine of classical swine fever virus. J Virol Methods 2007 Jul;143(1):16-22.
    [126]Zhao JJ, Cheng D, Li N, Sun Y, Shi Z, Zhu QH, et al. Evaluation of a multiplex real-time RT-PCR for quantitative and differential detection of wild-type viruses and C-strain vaccine of Classical swine fever virus. Vet Microbiol 2008 Jan 1;126(1-3):1-10.
    [127]Pan CH, Jong MH, Huang YL, Huang TS, Chao PH, Lai SS. Rapid detection and differentiation of wild-type and three attenuated lapinized vaccine strains of classical swine fever virus by reverse transcription polymerase chain reaction. J Vet Diagn Invest 2008 Jul;20(4):448-56.
    [128]van Gennip HG, van Rijn PA, Widjojoatmodjo MN, Moormann RJ. Recovery of infectious classical swine fever virus (CSFV) from full-length genomic cDNA clones by a swine kidney cell line expressing bacteriophage T7 RNA polymerase. J Virol Methods 1999 Mar;78(1-2):117-28.
    [129]Yoo D, Welch SK, Lee C, Calvert JG. Infectious cDNA clones of porcine reproductive and respiratory syndrome virus and their potential as vaccine vectors. Vet Immunol Immunopathol 2004 Dec 8;102(3):143-54.
    [130]Cranwell MP, Otter A, Errington J, Hogg RA, Wakeley P, Sandvik T. Detection of Border disease virus in cattle. Vet Rec 2007 Aug 11;161(6):211-2.
    [131]Courtenay AE, Henderson RG, Cranwell MP, Sandvik T. BVD virus type 2 infection and severe clinical disease in a dairy herd. Vet Rec 2007 May 19;160(20):706-7.
    [132]van Gennip HG, van Rijn PA, Widjojoatmodjo MN, de Smit AJ, Moormann RJ. Chimeric classical swine fever viruses containing envelope protein E(RNS) or E2 of bovine viral diarrhoea virus protect pigs against challenge with CSFV and induce a distinguishable antibody response. Vaccine 2000 Oct 15;19(4-5):447-59.
    [133]Liang D, Sainz IF, Ansari IH, Gil LH, Vassilev V, Donis RO. The envelope glycoprotein E2 is a determinant of cell culture tropism in ruminant pestiviruses. J Gen Virol 2003 May;84(Pt 5):1269-74.
    [134]Reimann I, Depner K, Trapp S, Beer M. An avirulent chimeric Pestivirus with altered cell tropism protects pigs against lethal infection with classical swine fever virus. Virology 2004 Apr 25;322(1):143-57.
    [135]Van Gennip HG, Vlot AC, Hulst MM, De Smit AJ, Moormann RJ. Determinants of virulence of classical swine fever virus strain Brescia. J Virol 2004 Aug;78(16):8812-23.
    [136]Risatti GR, Holinka LG, Fernandez Sainz I, Carrillo C, Kutish GF, Lu Z, et al. Mutations in the carboxyl terminal region of E2 glycoprotein of classical swine fever virus are responsible for viral attenuation in swine. Virology 2007 Aug 1;364(2):371-82.
    [137]Doceul V, Charleston B, Crooke H, Reid E, Powell PP, Seago J. The Npro product of classical swine fever virus interacts with IkappaBalpha, the NF-kappaB inhibitor. J Gen Virol 2008 Aug;89(Pt 8):1881-9.
    [138]Bauhofer O, Summerfield A, Sakoda Y, Tratschin JD, Hofmann MA, Ruggli N. Classical swine fever virus Npro interacts with interferon regulatory factor 3 and induces its proteasomal degradation. J Virol 2007 Apr;81(7):3087-96.
    [139]Bauhofer O, Summerfield A, McCullough KC, Ruggli N. Role of double-stranded RNA and Npro of classical swine fever virus in the activation of monocyte-derived dendritic cells. Virology 2005 Dec 5;343(1):93-105.
    [140]Moser C, Tratschin JD, Hofmann MA. A recombinant classical swine fever virus stably expresses a marker gene. J Virol 1998 Jun;72(6):5318-22.
    [141]Mayer D, Hofmann MA, Tratschin JD. Attenuation of classical swine fever virus by deletion of the viral N(pro) gene. Vaccine 2004 Jan 2;22(3-4):317-28.
    [142]Iqbal M, Poole E, Goodbourn S, McCauley JW. Role for bovine viral diarrhea virus Erns glycoprotein in the control of activation of beta interferon by double-stranded RNA. J Virol 2004 Jan;78(1):136-45.
    [143]Xia YH, Chen L, Pan ZS, Zhang CY. A novel role of classical swine fever virus E(rns) glycoprotein in counteracting the newcastle disease virus (NDV)-mediated IFN-beta Induction. J Biochem Mol Biol 2007 Sep 30;40(5):611-6.
    [144]Gallei A, Blome S, Gilgenbach S, Tautz N, Moennig V, Becher P. Cytopathogenicity of classical Swine Fever virus correlates with attenuation in the natural host. J Virol 2008 Oct;82(19):9717-29.
    [145]Risatti GR, Holinka LG, Lu Z, Kutish GF, Tulman ER, French RA, et al. Mutation of E1 glycoprotein of classical swine fever virus affects viral virulence in swine. Virology 2005 Dec 5;343(1):116-27.
    [146]Xiao M, Gao J, Wang Y, Wang X, Lu W, Zhen Y, et al. Influence of a 12-nt insertion present in the 3'untranslated region of classical swine fever virus HCLV strain genome on RNA synthesis. Virus Res 2004 Jun 15;102(2):191-8.
    [147]Wang Y, Wang Q, Lu X, Zhang C, Fan X, Pan Z, et al.12-nt insertion in 3' untranslated region leads to attenuation of classic swine fever virus and protects host against lethal challenge. Virology 2008 May 10;374(2):390-8.
    [148]Fernandez-Sainz I, Holinka LG, Gavrilov BK, Prarat MV, Gladue D, Lu Z, et al. Alteration of the N-linked glycosylation condition in El glycoprotein of Classical Swine Fever Virus strain Brescia alters virulence in swine. Virology 2009 Mar 30;386(1):210-6.
    [149]Risatti GR, Holinka LG, Carrillo C, Kutish GF, Lu Z, Tulman ER, et al. Identification of a novel virulence determinant within the E2 structural glycoprotein of classical swine fever virus. Virology 2006 Nov 10;355(1):94-101.
    [150]de Smit AJ, van Gennip HG, Miedema GK, van Rijn PA, Terpstra C, Moormann RJ. Recombinant classical swine fever (CSF) viruses derived from the Chinese vaccine strain (C-strain) of CSF virus retain their avirulent and immunogenic characteristics. Vaccine 2000 May 8; 18(22):2351-8.
    [151]Wehrle F, Renzullo S, Faust A, Beer M, Kaden V, Hofmann MA. Chimeric pestiviruses: candidates for live-attenuated classical swine fever marker vaccines. J Gen Virol 2007 Aug;88(Pt 8):2247-58.
    [152]Widjojoatmodjo MN, van Gennip HG, Bouma A, van Rijn PA, Moormann RJ. Classical swine fever virus E(rns) deletion mutants:trans-complementation and potential use as nontransmissible, modified, live-attenuated marker vaccines. J Virol 2000 Apr;74(7):2973-80.
    [153]van Gennip HG, Bouma A, van Rijn PA, Widjojoatmodjo MN, Moormann RJ. Experimental non-transmissible marker vaccines for classical swine fever (CSF) by trans-complementation of E(rns) or E2 of CSFV. Vaccine 2002 Feb 22;20(11-12):1544-56.
    [154]Hofmann MA. Construction of an infectious chimeric classical swine fever virus containing the 5'UTR of bovine viral diarrhea virus, and its application as a universal internal positive control in real-time RT-PCR. J Virol Methods 2003 Dec; 114(1):77-90.
    [155]van Oirschot JT. Vaccinology of classical swine fever:from lab to field. Vet Microbiol 2003 Nov 7;96(4):367-84.
    [156]Nobre RJ, de Almeida LP, Martins TC. Complete genotyping of mucosal human papillomavirus using a restriction fragment length polymorphism analysis and an original typing algorithm. J Clin Virol 2008 May;42(1):13-21.
    [157]Menzo S, Ciavattini A, Bagnarelli P, Marinelli K, Sisti S, Clementi M. Molecular epidemiology and pathogenic potential of underdiagnosed human papillomavirus types. BMC Microbiol 2008;8:112.
    [158]Sareyyupoglu B, Akan M. Restriction fragment length polymorphism typing of infectious bursal disease virus field strains in Turkey. Avian Dis 2006 Dec;50(4):545-9.
    [159]Parchariyanon S, Inui K, Pinyochon W, Damrongwatanapokin S, Takahashi E. Genetic grouping of classical swine fever virus by restriction fragment length polymorphism of the E2 gene. J Virol Methods 2000 Jun;87(1-2):145-9.
    [160]Katayama K, Kurihara C, Fukushi S, Hoshino FB, Ishikawa K, Nagai H, et al. Characterization of the hog cholera virus 5'terminus. Virus Genes 1995;10(2):185-7.
    [161]Ishikawa K, Nagai H, Katayama K, Tsutsui M, Tanabayashi K, Takeuchi K, et al. Comparison of the entire nucleotide and deduced amino acid sequences of the attenuated hog cholera vaccine strain GPE-and the wild-type parental strain ALD. Arch Virol 1995; 140(8):1385-91.
    [162]Sanchez O, Barrera M, Rodriguez MP, Frias MT, Figueroa NE, Naranjo P, et al. Classical swine fever virus E2 glycoprotein antigen produced in adenovirally transduced PK-15 cells confers complete protection in pigs upon viral challenge. Vaccine 2008 Feb 13;26(7):988-97.
    [163]Li N, Qiu HJ, Zhao JJ, Li Y, Wang MJ, Lu BW, et al. A Semliki Forest virus replicon vectored DNA vaccine expressing the E2 glycoprotein of classical swine fever virus protects pigs from lethal challenge. Vaccine 2007 Apr 12;25(15):2907-12.
    [164]Legocki AB, Miedzinska K, Czaplinska M, Plucieniczak A, Wedrychowicz H. Immunoprotective properties of transgenic plants expressing E2 glycoprotein from CSFV and cysteine protease from Fasciola hepatica. Vaccine 2005 Mar 7;23(15):1844-6.
    [165]van Rijn PA, Miedema GK, Wensvoort G, van Gennip HG, Moormann RJ. Antigenic structure of envelope glycoprotein E1 of hog cholera virus. J Virol 1994 Jun;68(6):3934-42.
    [166]Suradhat S, Damrongwatanapokin S, Thanawongnuwech R. Factors critical for successful vaccination against classical swine fever in endemic areas. Vet Microbiol 2007 Jan 17; 119(1):1-9.
    [167]Ganges L, Nunez JI, Sobrino F, Borrego B, Fernandez-Borges N, Frias-Lepoureau MT, et al. Recent advances in the development of recombinant vaccines against classical swine fever virus: cellular responses also play a role in protection. Vet J 2008 Aug; 177(2):169-77.
    [168]Dewulf J, Laevens H, Koenen F, Mintiens K, de Kruif A. Efficacy of E2-sub-unit marker and C-strain vaccines in reducing horizontal transmission of classical swine fever virus in weaner pigs. Prev Vet Med 2004 Oct 14;65(3-4):121-33.
    [169]Dortmans JC, Loeffen WL, Weerdmeester K, van der Poel WH, de Bruin MG. Efficacy of intradermally administrated E2 subunit vaccines in reducing horizontal transmission of classical swine fever virus. Vaccine 2008 Feb 26;26(9):1235-42.
    [170]Wensvoort G, Terpstra C, de Kluijver EP, Kragten C, Warnaar JC. Antigenic differentiation of pestivirus strains with monoclonal antibodies against hog cholera virus. Vet Microbiol 1989 Nov;21(1):9-20.
    [171]Nam JH, Faulk K, Engle RE, Govindarajan S, St Claire M, Bukh J. In vivo analysis of the 3' untranslated region of GB virus B after in vitro mutagenesis of an infectious cDNA clone:persistent infection in a transfected tamarin. J Virol 2004 Sep;78(17):9389-99.
    [172]Almazan F, Dediego ML, Galan C, Escors D, Alvarez E, Ortego J, et al. Construction of a severe acute respiratory syndrome coronavirus infectious cDNA clone and a replicon to study coronavirus RNA synthesis. J Virol 2006 Nov;80(21):10900-6.
    [173]Fang Y, Rowland RR, Roof M, Lunney JK, Christopher-Hennings J, Nelson EA. A full-length cDNA infectious clone of North American type 1 porcine reproductive and respiratory syndrome virus:expression of green fluorescent protein in the Nsp2 region. J Virol 2006 Dec;80(23):11447-55.
    [174]St-Jean JR, Desforges M, Almazan F, Jacomy H, Enjuanes L, Talbot PJ. Recovery of a neurovirulent human coronavirus OC43 from an infectious cDNA clone. J Virol 2006 Apr;80(7):3670-4.
    [175]Donaldson EF, Yount B, Sims AC, Burkett S, Pickles RJ, Baric RS. Systematic assembly of a full-length infectious clone of human coronavirus NL63. J Virol 2008 Dec;82(23):1 1948-57.
    [176]Yamada K, Takahashi M, Hoshino Y, Takahashi H, Ichiyama K, Tanaka T, et al. Construction of an infectious cDNA clone of hepatitis E virus strain JE03-1760F that can propagate efficiently in cultured cells. J Gen Virol 2009 Feb;90(Pt 2):457-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700