用户名: 密码: 验证码:
应用RNA干扰技术抑制人巨细胞病毒UL122、UL54基因体外表达的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     人巨细胞病毒(HCMV)可造成人体多系统多方面的严重损害,应用RNA干扰技术抑制HCMV感染具有诱人的前景。HCMV UL122基因和UL54基因是HCMV复制和存活的必需基因,在HCMV与宿主细胞相互作用及抗HCMV药物作用中起不可或缺的作用。但是目前对UL122基因和UL54基因的有效小干扰RNA(siRNA)作用靶位尚缺乏全面的认识。因此有必要进一步研究,以明确UL122基因和UL54基因的有效siRNA作用靶位,开发其潜在应用价值,为应用RNA干扰技术抑制HCMV感染奠定实验基础。
     方法
     本研究主要包括以下四大部分:
     (1)融合蛋白表达载体的构建:设计引物应用PCR法从HCMV AD 169株DNA中扩增出UL122基因的优势表位相应区域以及UL54基因的全长,并克隆入pEGFP-N1质粒载体,构建pUL122-EGFP、pUL54-EGFP融合蛋白表达载体,实现UL122基因和UL54基因的体外表达。
     (2)短发夹结构RNA (shRNA)表达载体的构建:针对UL122及UL54基因设计siRNA作用靶位点,合成相应序列并克隆入pAVU6+27质粒载体,构建针对UL122和UL54基因的shRNA表达载体。
     (3)筛选高效作用靶位:将shRNA表达载体和融合蛋白表达载体共转染入AD293细胞,应用实时荧光定量PCR、流式细胞检测技术和倒置荧光显微镜从mRNA和蛋白质水平筛选出理想、高效的siRNA作用靶位。
     (4)慢病毒载体构建及转染:参照上述筛选出的高效siRNA作用靶位,构建能够表达shRNA的慢病毒载体,并将此慢病毒载体和融合蛋白表达载体转染细胞,应用流式和Western Blot法检测shRNA的慢病毒表达载体对HCMV目标基因体外表达的抑制作用。
     结果
     (1)本研究成功构建融合蛋白表达载体pUL122-EGFP和pUL54-EGFP,实现UL122基因和UL54基因的体外表达。该融合蛋白表达载体在转染后24小时和48小时均能表达绿色荧光,但是转染后48小时表达的绿色荧光明显强于转染后24小时表达的绿色荧光。
     (2)成功将一小段设计合成好的、具有形成shRNA能力的DNA序列插入pAVU6+27质粒载体U6启动子的下游,构建成具有表达shRNA能力的重组质粒载体,分别命名为psiUL122-1、psiUL122-2、psiUL122-3、psiUL54-1、psiUL54-2和psiUL54-3。
     (3)将融合蛋白表达载体pUL122-EGFP分别与shRNA表达载体psiUL122-1、psiUL122-2和psiUL122-3共转染。倒置荧光显微镜下发现转染后24h重组质粒载体psiUL122-1、psiUL122-2和psiUL122-3对融合蛋白的表达无明显抑制作用,转染后48hpsiUL122-1和psiUL122-2对融合蛋白荧光表达具有明显抑制作用,而psiUL122-3对融合蛋白荧光表达只有轻度抑制作用。流式(FCM)结果显示转染后48hpsiUL122-1、psiUL122-2和psiUL122-3对融合蛋白的抑制率分别为82.0±1.0%、79.5±2.5%和53.5±2.5%,与对照组相比差异有统计学意义(p<0.05),且psiUL122-1和psiUL122-2对pUL122-EGFP的抑制效果较psiUL122-3明显。荧光定量PCR结果显示psiUL122-1、psiUL122-2和psiUL122-3对融合蛋白mRNA的抑制率分别为97.3±0.6%、98.0±0.1%和90.0±3.5%。
     (4)将融合蛋白表达载体pUL54-EGFP分别与shRNA表达载体psiUL54-1、psiUL54-2和psiUL54-3共转染。倒置荧光显微镜下发现转染后24h重组质粒载体psiUL54-1、psiUL54-2和psiUL54-3对融合蛋白的表达无明显抑制作用,转染后48h psiUL54-1对融合蛋白荧光表达具有明显抑制作用,而psiUL54-2和psiUL54-3对融合蛋白表达只有轻微抑制作用。流式结果显示转染后48hpsiUL54-1对融合蛋白的抑制率为85.4±1.2%,与对照组相比具有显著差异(p<0.05),而psiUL54-2和psiUL54-3对融合蛋白的抑制率分别为14.9±2.9%和20.4±6.2%,与对照组相比没有显著差异(p>0.05)。荧光定量PCR结果显示psiUL54-1对pUL54-EGFP融合蛋白基因mRNA的抑制率为97.4±0.7%,与对照组相比差异有统计学意义(p<0.05),而psiUL54-2和psiUL54-3的抑制率分别为20.3±6.9%和28.2±5.6%,与对照组相比无显著差异(p>0.05)。
     (5)参照psiUL54-1对UL54基因体外表达的高效抑制作用,进一步成功构建针对UL54基因的慢病毒表达载体。将慢病毒载体与融合蛋白表达载体pUL54-EGFP共转染,倒置荧光显微镜下发现慢病毒载体PscSI-1对融合蛋白荧光表达在转染后24h有轻度抑制作用,在转染后48h和72h具有明显抑制作用,而慢病毒载体PscSI-2、PscSI-3和PscSI-4对融合蛋白荧光表达在各时间点均无明显抑制作用。Western Blot检测显示PscSI-1与融合蛋白表达载体在1:2和1:1比例下均有明显抑制作用,PscSI-3在1:1比例下有轻度抑制作用,而PscSI-2和PscSI-4在两种比例下均无明显抑制作用。
     结论
     1.融合蛋白表达载体pUL122-EGFP和pUL54-EGFP能够成功表达融合蛋白UL122-EGFP和UL54-EGFP,实现UL122基因和UL54基因的体外表达,又能通过融合蛋白表达后仍能发出绿色荧光。融合蛋白的表达在转染后48小时较为明显。
     2.UL122基因的靶位点618-638bp (psiUL122-1和1103-1123bp(psiUL122-2)是高效的siRNA作用靶位点,是应用RNA干扰抗HCMV感染基因治疗的潜在靶位点。UL122基因的靶位点1414-1434bp(psiUL122-3)不是高效的siRNA作用靶位点。
     3.靶位点1479-1497bp (psiUL54-1和PscSI-1)是一个高效的siRNA作用靶位点,是应用RNA干扰抗HCMV感染基因治疗的潜在靶位点。靶位点2419-2437bp(psiUL54-2)、靶位点2886-2904bp(psiUL54-3和PscSI-2)、靶位点3058-3076bp (PscSI-3)和靶位点419-437bp(PscSI-4)不是高效的siRNA作用靶位点。
     4.重组干扰质粒转染后48h对融合蛋白的抑制作用较明显,但转染24小时无明显抑制效果。
     5.与质粒载体相比,慢病毒载体是一种转染率高、起效快、抑制作用持久且高效的基因载体,具有重要的应用价值。
     6.慢病毒载体与质粒载体在筛选有效siRNA作用靶位方面具有一致性。
OBJECTIVES
     Human cytomegalovirus (HCMV) is a widespread human pathogen that causes serious consequences in different patients. RNA interference (RNAi) is a powerful and potent technique to treat HCMV infection. HCMV UL122 gene and UL54 gene are essential genes for HCMV replication and infection. The sufficient knowledge of effective RNAi target site in UL122 gene and UL54 gene is still in shortage. Therefore, it is of great importance to find the most effective RNAi target sites in HCMV UL122 gene and UL54 gene.
     Methods
     This study included four parts:
     (1) Construction of fusion protein expression vectors:A truncated cDNA fragment of UL122 gene and the full-length of cDNA of UL54 gene were amplified from the genomic cDNA of HCMV AD 169 strain and cloned into pEGFP-N1 to construct fusion protein expression recombinant plasmids pUL122-EGFP and pUL54-EGFP. These two vectors can express enhanced green fluorescence protein (EGFP) for detection.
     (2) Construction of small hairpin RNAs (shRNA) expression vectors:Target sites corresponding to the UL122 gene and UL54 gene were selected and cloned into plasmid pAVU6+27 to construct shRNA expression recombinant vectors.
     (3) Cotransfection of fusion protein expression vectors and shRNAs expression vectors:Fusion protein expression vectors and shRNAs expression vectors were contransfected into AD293 cells. The inhibition effects of the expression of fusion protein were detected by fluorescence microscope, flow cytometry (FCM) and fluorescence quantitative real-time PCR for the screening of the most effective RNAi target sites.
     (4) Construction of lentiviral vectors and contransfection:In order to explore the long term knock-down regulation of RNAi, we constructed lentiviral vectors according to the effective RNAi target sites screened out using plasmid vector. The lentiviral vectors were then cotransfected into 293T cells to eveluate its know-down effects by FCM and Western blot.
     Results
     (1) The fusion protein expression vectors pUL122-EGFP and pUL54-EGFP were successfully constructed. The fluorescence can be detected under fluorescence microscope 24 h and 48 h after transfection. The green fluorescence signals transfected after 48 h were stronger than the green fluorescence signals transfected after 24 h.
     (2) Six target sequences corresponding to the open reading frame of HCMV UL122 gene and UL54 gene were selected to construct siRNA expression vectors, which were designated as psiUL122-1, psiUL122-2, psiUL122-3, psiUL54-1, psiUL54-2 and psiUL54-3.
     (3) The shRNA expression vectors were then cotransfected into AD293 cells with fusion protein expression vectors. The difference of the expression of green fluorescence signals between different groups was not apparent 24 h post-cotransfection. However, the green fluorescence signals were significantly reduced 48 h post-cotransfection in the cells cotransfected with pUL122-EGFP and psiUL122-1, psiUL122-2 separately, whereas green fluorescence signal was slightly reduced in the cells cotransfected with pUL122-EGFP and psiUL122-3. The inhibitory effects of the siRNAs on the expression of EGFP were further quantitatively validated by FCM assay 48 h post-transfection. The EGFP expression of the cells transfected with psiUL122-1 and psiUL122-2 was decreased by 82.0%±1.0% and 79.5%±2.5%, respectively. However, psiUL122-3 resulted in a weak reduction in the EGFP expression with an inhibitory rate of 53.5%±2.5%. We then examined the knock-down effectiveness of siRNAs on mRNA level, which was analyzed by fluorescence quantitative real-time PCR at 48 h post-transfection. A remarkable reduction of the expression of pUL122-EGFP mRNA was produced by psiUL122-1 and psiUL122-2, with an inhibitory rate of 97.3%±0.6% and 98.0%±0.1%, respectively. And the inhibitory efficiency of psiUL122-3 was 90.0%±3.5%.
     (4) The fusion protein expression vector pUL54-EGFP was cotransfected with psiUL54-1, psiUL54-2 and psiUL54-3, respectively. The difference of the expression of green fluorescence signals between different groups was not apparent 24 h post-cotransfection. The green fluorescence signals were significantly reduced 48 h post-cotransfection in the cells cotransfected with pUL54-EGFP and psiUL54-1, whereas fluorescence signal was slightly reduced in the cells cotransfected with pUL54-EGFP and psiUL54-2, psiUL54-3 separately. When evaluated with FCM, the EGFP expression of the cells transfected with psiUL54-1 was decreased by 85.4%±1.2%. However, psiUL54-2 and psiUL54-3 resulted in a weak reduction in the EGFP expression with an inhibitory rate of 14.9%±2.9%和20.4%±6.2%, respectively. A significant reduction of pUL54-EGFP mRNA was produced by psiUL54-1 with an inhibitory rate of 97.4%±0.7%. And the inhibitory efficiency of psiUL54-2 and psiUL54-3 was 20.3%±6.9%and 28.2%±5.6%, respectively.
     (5) Lentiviral vectors were successfully constructed and contransfected into 293T cells with pUL54-EGFP. Lentiviral vector PscSI-1 was found to have a mild inhibition of pUL54-EGFP fluorescent signals 24 h after contransfection and the inhibition effects become remarkable 48 h and 72 h after contransfection under fluorescence microscope. However, PscSI-2、PscSI-3 and PscSI-4 showed no inhibition of pUL54-EGFP fluorescent signals. When PscSI-1 and pUL54-EGFP were cotransfected with 1:2 ratio and 1:1 ratio, Western blot analysis displayed that PscSI-1 have significant knock-down of pUL54-EGFP both at these two ratios. PscSI-3 had mild inhibition of pUL54-EGFP at the ratio of 1:1. PscSI-2 and PscSI-4 showed no inhibition of pUL54-EGFP at these two ratios.
     Conclusion
     1. Recombinant plasmids pUL122-EGFP and pUL54-EGFP can express fusion protein UL122-EGFP and UL54-EGFP. And the green fluorescence signals can be detected from these two fusion protein. The fusion protein expression is remarkable 48 h after transfection.
     2. The target sites 618-638bp (psiUL122-1) and 1103-1123bp (psiUL122-2) of UL122 gene are effective RNAi target sites. The target site 1414-1434bp (psiUL122-3) is not an effective RNAi target site.
     3. The target sites 1479-1497bp (psiUL54-1 and PscSI-1) of UL54 gene is an effective RNAi target site. The target sites 2419-2437bp (psiUL54-2), 2886-2904bp (psiUL54-3 and PscSI-2),3058-3076bp (PscSI-3) and 419-437bp (PscSI-4) are not effective RNAi target sites.
     4. Recombinant shRNA expression plasmid vectors have the most effective inhibition of fusion protein at the time point of 48 h after cotransfection and have no significant inhibition at the time point of 24 h after cotransfection.
     5. Lentiviral vector is a kind of vector that shows inhibition effect quickly and has a higher transfection rate, more efficacious and stable knock-down effect, compared with plasmid vector.
     6. Lentiviral vector shows good accordance with plasmid vector for the the screening of effective RNAi target site.
引文
1. Einsele, H.,2002. Immunotherapy for CMV infection. Cytotherapy,4,435-6.
    2.张冬娜,赵军,薛立娟,and张文岚,2008.人巨细胞病毒感染及作用机制研究.中国生物制品学杂志,21,158-61.
    3.夏俊保,段巧建,and王明丽,2009.人巨细胞病毒与动脉粥样硬化的相关性研究进展.安徽医学,30,1244-47.
    4. Sanchez, V., and Spector, D. H.,2006. Cyclin-dependent kinase activity is required for efficient expression and posttranslational modification of human cytomegalovirus proteins and for production of extracellular particles. J Virol, 80,5886-96.
    5. Reuter, J. D., Gomez, D. L., Wilson, J. H., and Van Den Pol, A. N.,2004. Systemic immune deficiency necessary for cytomegalovirus invasion of the mature brain. J Virol,78,1473-87.
    6. Imai, Y., Shum, C., Martin, D. F., Kuppermann, B. D., et al.,2004. Emergence of drug-resistant cytomegalovirus retinitis in the contralateral eyes of patients with AIDS treated with ganciclovir. J Infect Dis,189,611-5.
    7. Carreno, M. R., Fuller, L., Mathew, J. M., Ciancio, G, et al.,2003. Human donor bone marrow cells induce in vitro "suppressor T cells" that functionally suppress autologous B cells. Hum Immunol,64,21-30.
    8. Derhovanessian, E., Larbi, A., and Pawelec, G.,2009. Biomarkers of human immunosenescence:impact of Cytomegalovirus infection. Curr Opin Immunol, 21,440-5.
    9. Pawelec, G., Derhovanessian, E., Larbi, A., Strindhall, J., et al.,2009. Cytomegalovirus and human immunosenescence. Rev Med Virol,19,47-56.
    10. Koch, S., Larbi, A., Ozcelik, D., Solana, R., et al.,2007. Cytomegalovirus infection:a driving force in human T cell immunosenescence. Ann N Y Acad Sci,1114,23-35.
    11.刘培贤,and郝素珍,2009.感染因素与冠心病的相关性研究.世界中西医结合杂志,4,29-31.
    12. Popovic, M., Paskas, S., Zivkovic, M., Burysek, L., et al., Human cytomegalovirus increases HUVEC sensitivity to thrombin and modulates expression of thrombin receptors. J Thromb Thrombolysis.
    13. Cheng, J., Ke, Q., Jin, Z., Wang, H., et al.,2009. Cytomegalovirus infection causes an increase of arterial blood pressure. PLoS Pathog,5, e1000427.
    14. Yi, L., Wang, D. X., and Feng, Z. J.,2008. Detection of human cytomegalovirus in atherosclerotic carotid arteries in humans. J Formos Med Assoc,107,774-81.
    15. Yi, L., Lin, J. Y., Gao, Y, Feng, Z. J., et al.,2008. Detection of human cytomegalovirus in the atherosclerotic cerebral arteries in han population in china. Acta Virol,52,99-106.
    16. Zhou, Y. F., Leon, M. B., Waclawiw, M. A., Popma, J. J., et al.,1996. Association between prior cytomegalovirus infection and the risk of restenosis after coronary atherectomy. N Engl J Med,335,624-30.
    17. Suzuki, K., Murtuza, B., Suzuki, N., Khan, M., et al.,2002. Human cytomegalovirus immediate-early protein IE2-86, but not IE1-72, causes graft coronary arteriopathy in the transplanted rat heart. Circulation,106,1158-62.
    18. Michaelis, M., Doerr, H. W., and Cinatl, J., Jr.,2009. Oncomodulation by human cytomegalovirus:evidence becomes stronger. Med Microbiol Immunol, 198,79-81.
    19. Harkins, L., Volk, A. L., Samanta, M., Mikolaenko, I., et al.,2002. Specific localisation of human cytomegalovirus nucleic acids and proteins in human colorectal cancer. Lancet,360,1557-63.
    20. Samanta, M., Harkins, L., Klemm, K., Britt, W. J., et al.,2003. High prevalence of human cytomegalovirus in prostatic intraepithelial neoplasia and prostatic carcinoma. J Urol,170,998-1002.
    21. Cobbs, C. S., Harkins, L., Samanta, M., Gillespie, G. Y, et al.,2002. Human cytomegalovirus infection and expression in human malignant glioma. Cancer Res,62,3347-50.
    22. Blaheta, R. A., Weich, E., Marian, D., Bereiter-Hahn, J., et al.,2006. Human cytomegalovirus infection alters PC3 prostate carcinoma cell adhesion to endothelial cells and extracellular matrix. Neoplasia,8,807-16.
    23. Soderberg-Naucler, C.,2008. HCMV microinfections in inflammatory diseases and cancer. J Clin Virol,41,218-23.
    24. Mitchell, D. A., Xie, W., Schmittling, R., Learn, C., et al.,2008. Sensitive detection of human cytomegalovirus in tumors and peripheral blood of patients diagnosed with glioblastoma. Neuro Oncol,10,10-8.
    25. Scheurer, M. E., Bondy, M. L., Aldape, K. D., Albrecht, T., et al.,2008. Detection of human cytomegalovirus in different histological types of gliomas. Acta Neuropathol,116,79-86.
    26. Michaelis, M., Doerr, H. W., and Cinatl, J.,2009. The story of human cytomegalovirus and cancer:increasing evidence and open questions. Neoplasia,11,1-9.
    27. Bhorade, S. M., Lurain, N. S., Jordan, A., Leischner, J., et al.,2002. Emergence of ganciclovir-resistant cytomegalovirus in lung transplant recipients. J Heart Lung Transplant,21,1274-82.
    28. Limaye, A. P., Raghu, G, Koelle, D. M., Ferrenberg, J., et al.,2002. High incidence of ganciclovir-resistant cytomegalovirus infection among lung transplant recipients receiving preemptive therapy. J Infect Dis,185,20-7.
    29. Dunn, W., Chou, C., Li, H., Hai, R., et al.,2003. Functional profiling of a human cytomegalovirus genome. Proc Natl Acad Sci U S A,100,14223-8.
    30. Yu, D., Silva, M. C., and Shenk, T.,2003. Functional map of human cytomegalovirus AD 169 defined by global mutational analysis. Proc Natl Acad Sci US A,100,12396-401.
    31. Marchini, A., Liu, H., and Zhu, H.,2001. Human cytomegalovirus with IE-2 (UL122) deleted fails to express early lytic genes. J Virol,75,1870-8.
    32. White, E. A., Clark, C. L., Sanchez, V., and Spector, D. H.,2004. Small internal deletions in the human cytomegalovirus IE2 gene result in nonviable recombinant viruses with differential defects in viral gene expression. J Virol, 78,1817-30.
    33. Castillo, J. P., and Kowalik, T. F.,2002. Human cytomegalovirus immediate early proteins and cell growth control. Gene,290,19-34.
    34. Song, Y. J., and Stinski, M. F.,2005. Inhibition of cell division by the human cytomegalovirus IE86 protein:role of the p53 pathway or cyclin-dependent kinase 1/cyclin Bl. J Virol,79,2597-603.
    35. Murphy, E. A., Streblow, D. N., Nelson, J. A., and Stinski, M. F.,2000. The human cytomegalovirus IE86 protein can block cell cycle progression after inducing transition into the S phase of permissive cells. J Virol,74,7108-18.
    36. Petrik, D. T., Schmitt, K. P., and Stinski, M. F.,2006. Inhibition of cellular DNA synthesis by the human cytomegalovirus IE86 protein is necessary for efficient virus replication. J Virol,80,3872-83.
    37. Hsu, C. H., Chang, M. D., Tai, K. Y., Yang, Y T., et al.,2004. HCMV IE2-mediated inhibition of HAT activity downregulates p53 function. EMBO J, 23,2269-80.
    38. Noris, E., Zannetti, C., Demurtas, A., Sinclair, J., et al.,2002. Cell cycle arrest by human cytomegalovirus 86-kDa IE2 protein resembles premature senescence. J Virol,76,12135-48.
    39. Lunardi, C., Dolcino, M., Peterlana, D., Bason, C., et al.,2007. Endothelial cells' activation and apoptosis induced by a subset of antibodies against human cytomegalovirus:relevance to the pathogenesis of atherosclerosis. PLoS One,2, e473.
    40. Taylor, R. T., and Bresnahan, W. A.,2005. Human cytomegalovirus immediate-early 2 gene expression blocks virus-induced beta interferon production. J Virol,79,3873-7.
    41. Scholz, M., Doerr, H. W., and Cinatl, J.,2001. Inhibition of cytomegalovirus immediate early gene expression:a therapeutic option? Antiviral Res,49, 129-45.
    42. Mercorelli, B., Sinigalia, E., Loregian, A., and Palu, G,2008. Human cytomegalovirus DNA replication:antiviral targets and drugs. Rev Med Virol, 18,177-210.
    43. Scott, G M., Isaacs, M. A., Zeng, F., Kesson, A. M., et al.,2004. Cytomegalovirus antiviral resistance associated with treatment induced UL97 (protein kinase) and UL54 (DNA polymerase) mutations. J Med Virol,74, 85-93.
    44. Boivin, G, Goyette, N., Gilbert, C., Roberts, N., et al.,2004. Absence of cytomegalovirus-resistance mutations after valganciclovir prophylaxis, in a prospective multicenter study of solid-organ transplant recipients. J Infect Dis, 189,1615-8.
    45. Reischig, T., Opatrny, K., Jr., Bouda, M., Treska, V, et al.,2002. A randomized prospective controlled trial of oral ganciclovir versus oral valacyclovir for prophylaxis of cytomegalovirus disease after renal transplantation. Transpl Int, 15,615-22.
    46. Cihlar, T., Fuller, M. D., and Cherrington, J. M.,1998. Characterization of drug resistance-associated mutations in the human cytomegalovirus DNA polymerase gene by using recombinant mutant viruses generated from overlapping DNA fragments. J Virol,72,5927-36.
    47. Chou, S., Lurain, N. S., Thompson, K. D., Miner, R. C., et al.,2003. Viral DNA polymerase mutations associated with drug resistance in human cytomegalovirus. J Infect Dis,188,32-9.
    48. Agrawal, N., Dasaradhi, P. V, Mohmmed, A., Malhotra, P., et al.,2003. RNA interference:biology, mechanism, and applications. Microbiol Mol Biol Rev, 67,657-85.
    49. Scherr, M., Morgan, M. A., and Eder, M.,2003. Gene silencing mediated by small interfering RNAs in mammalian cells. Curr Med Chem,10,245-56.
    50. Shlomai, A., and Shaul, Y,2003. Inhibition of hepatitis B virus expression and replication by RNA interference. Hepatology,37,764-70.
    51. Szweykowska-Kulinska, Z., Jarmolowski, A., and Figlerowicz, M.,2003. RNA interference and its role in the regulation of eucaryotic gene expression. Acta Biochim Pol,50,217-29.
    52. Pooggin, M., Shivaprasad, P. V, Veluthambi, K., and Hohn, T.,2003. RNAi targeting of DNA virus in plants. Nat Biotechnol,21,131-2.
    53. Jia, Q., and Sun, R.,2003. Inhibition of gammaherpesvirus replication by RNA interference. J Virol,77,3301-6.
    54. Ui-Tei, K., Naito, Y., Takahashi, F., Haraguchi, T., et al.,2004. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res,32,936-48.
    55. Kretschmer-Kazemi Far, R., and Sczakiel, G.,2003. The activity of siRNA in mammalian cells is related to structural target accessibility:a comparison with antisense oligonucleotides. Nucleic Acids Res,31,4417-24.
    56. Bohula, E. A., Salisbury, A. J., Sohail, M., Playford, M. P., et al.,2003. The efficacy of small interfering RNAs targeted to the type 1 insulin-like growth factor receptor (IGFIR) is influenced by secondary structure in the IGFIR transcript. J Biol Chem,278,15991-7.
    57. Reynolds, A., Leake, D., Boese, Q., Scaringe, S., et al.,2004. Rational siRNA design for RNA interference. Nat Biotechnol,22,326-30.
    58. Tilesi, F., Fradiani, P., Socci, V., Willems, D., et al.,2009. Design and validation of siRNAs and shRNAs. Curr Opin Mol Ther,11,156-64.
    59. Takasaki, S.,2009. Methods for selecting effective siRNA sequences by using statistical and clustering techniques. Methods Mol Biol,487,1-39.
    60. Overhoff, M., Alken, M., Far, R. K., Lemaitre, M., et al.,2005. Local RNA target structure influences siRNA efficacy:a systematic global analysis. J Mol Biol,348,871-81.
    61. Schubert, S., Grunweller, A., Erdmann, V. A., and Kurreck, J.,2005. Local RNA target structure influences siRNA efficacy:systematic analysis of intentionally designed binding regions. J Mol Biol,348,883-93.
    62. Barrasa, M. I., Harel, N. Y., and Alwine, J. C.,2005. The phosphorylation status of the serine-rich region of the human cytomegalo virus 86-kilodalton major immediate-early protein IE2/IEP86 affects temporal viral gene expression. J Virol,79,1428-37.
    63. Valdez, B. C., Perlaky, L., Cai, Z. J., Henning, D., et al.,1998. Green fluorescent protein tag for studies of drug-induced translocation of nucleolar protein RH-II/Gu. Biotechniques,24,1032-6.
    64. Skosyrev, V. S., Rudenko, N. V., Yakhnin, A. V., Zagranichny, V. E., et al.,2003. EGFP as a fusion partner for the expression and organic extraction of small polypeptides. Protein Expr Purif,27,55-62.
    65. Takahashi, Y, Nishikawa, M., and Takakura, Y,2009. Nonviral vector-mediated RNA interference:its gene silencing characteristics and important factors to achieve RNAi-based gene therapy. Adv Drug Deliv Rev,61, 760-6.
    66.羊正纲,陈智,徐宁,倪勤,et al.,2004载体法筛选乙型肝炎病毒S基因小干扰RNA靶位体系的建立.中华肝脏病杂志,12,515-18.
    67.卓建新,蒋磊,陈日曙,and李继承,2006.SiRNA特异性抑制cyclin D1的表达及其shRNA表达质粒的构建.实用癌症杂志,21,120-29.
    68. Cichutek, K.,2006. Lessons learned from gene therapy concerning and the use of integrating vectors and the possible risk of insertional oncogenesis. Dev Biol (Basel),123,29-34; discussion 55-73.
    69. Su, J., Zhu, Z., Xiong, F., and Wang, Y.,2008. Hybrid cytomegalovirus-U6 promoter-based plasmid vectors improve efficiency of RNA interference in zebrafish. Mar Biotechnol (NY),10,511-7.
    70. Cahill, A. L., Moore, J. M., Sabar, F. I., and Harkins, A. B.,2007. Variability in RNA interference in neuroendocrine PC 12 cell lines stably transfected with an shRNA plasmid. J Neurosci Methods,166,236-40.
    71. Livak, K. J., and Schmittgen, T. D.,2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods,25,402-8.
    72. Reynolds, A., Anderson, E. M., Vermeulen, A., Fedorov, Y., et al.,2006. Induction of the interferon response by siRNA is cell type-and duplex length-dependent. RNA,12,988-93.
    73. Scacheri, P. C., Rozenblatt-Rosen, O., Caplen, N. J., Wolfsberg, T. G., et al., 2004. Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc Natl Acad Sci U S A, 101,1892-7.
    74. Snove, O., Jr., and Holen, T.,2004. Many commonly used siRNAs risk off-target activity. Biochem Biophys Res Commun,319,256-63.
    75. Lupberger, J., Brino, L., and Baumert, T. F.,2008. RNAi:a powerful tool to unravel hepatitis C virus-host interactions within the infectious life cycle. J Hepatol,48,523-5.
    76. Meng, Z., Xu, Y, Wu, J., Tian, Y, et al.,2008. Inhibition of hepatitis B virus gene expression and replication by endoribonuclease-prepared siRNA. J Virol Methods,150,27-33.
    77. Kusov, Y, Kanda, T., Palmenberg, A., Sgro, J. Y, et al.,2006. Silencing of hepatitis A virus infection by small interfering RNAs. J Virol,80,5599-610.
    78.赵淑萍,马德花,孙芳,姜玉珍,et al.,2007针对VEGF基因的小分子干扰RNA对子宫内膜癌细胞VEGF基因表达及增殖的影响.中华妇产科杂志,42,771-73.
    79. Zhang, W., Xie, C. M., and Li, Z. P.,2007. Expression of aquaporin-1 in rat pleural mesothelial cells and its specific inhibition by RNA interference in vitro. Chin Med J (Engl),120,2278-83.
    80. Chiu, Y L., and Rana, T. M.,2002. RNAi in human cells:basic structural and functional features of small interfering RNA. Mol Cell,10,549-61.
    81. Manjunath, N., Wu, H., Subramanya, S., and Shankar, P.,2009. Lentiviral delivery of short hairpin RNAs. Adv Drug Deliv Rev,61,732-45.
    82. Rubinson, D. A., Dillon, C. P., Kwiatkowski, A. V., Sievers, C., et al.,2003. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet,33, 401-6.
    83. Dissen, G. A., Lomniczi, A., Neff, T. L., Hobbs, T. R., et al.,2009. In vivo manipulation of gene expression in non-human primates using lentiviral vectors as delivery vehicles. Methods,49,70-7.
    84. Wong, L. F., Goodhead, L., Prat, C., Mitrophanous, K. A., et al.,2006. Lentivirus-mediated gene transfer to the central nervous system:therapeutic and research applications. Hum Gene Ther,17,1-9.
    1. Brennan DC,2001. Cytomegalovirus in renal transplantation. J Am Soc Nephrol, 12,848.
    2.方峰,董永绥,1999.巨细胞病毒和巨细胞病毒感染的诊断.中华儿科杂志,37.397-399.
    3. Pass RE Cytomegalovirus infection[J]. Pediat r Rev,2002,23 (5):163-170.
    4. Trincado DE, Rawlinson WD,2001. Congenital and perinatal infectionswith cytomegalovirus. J Pediat r Chil d Health,37,187-192.
    5.闻良珍,吴圣楣,吕绳敏,et al.,1996三城市孕妇巨细胞病毒感染及其母婴传播的流行病学调查.中华妇产科杂志,31,714.
    6. Azam AZ, Vial Y, Fawer CL, et al.,2001. Prenatal diagonsis of congenital cytomegalovirus infection. Obstet. Gynecol,97,443-448.
    7. Revello,MG, Zavattoni M, Furione M, et al.,2002. Diagnosis and Outcome of preconceptional and periconceptional primary human cytomegalovirusinfections. J Infect Dis,186,553-557.
    8. Boppana SB, Rivera LB, Fowler KB, et al.,2001. Intrauterine transmissoion ofcytomegalovirus to infants of women with preconceptional immunity. N Engl J Med,344,1366-1371.
    9. 罗征秀,陈坤华,and刘渝,2001.重庆地区儿童巨细胞病毒肺炎特异性IgM检测的临床意义.实用儿科临床杂志,16,297-298.
    10.赵武,刘欣,and陈兰举,2005.婴儿巨细胞病毒肺炎24例.实用儿科临床杂志,20,326-327.
    11. Pass RF,2002. Cytomegalovirus infection. Pediat r Rev,23,163-170.
    12.郭红梅,and朱启镕,2004.先天性巨细胞病毒感染研究进展.国外医学儿科学分册,31,231-233.
    13.闫淑媛,and陈平洋,2005.人巨细胞病毒感染的实验室诊断研究进展.国外医学儿科学分册,32,284-287.
    14. Bhatia J, Shah BV, Mehta AP, et al.,2004. Comparing serology, antigenemia assay and polymerase chain reaction for the diagnosis of cytomegalovirus infection in renal transp lant patients. J Assoc Physicians India,52,297-300.
    15. Olderbrug N, Lam KM, Khan MA, et al.,2000. Evaluation of human cytomegalovirus gene exp ression in thoracic organ transp lant recip ients using nucleic acid sequence2based amp lification. Transp lantation,70,1209-1215.
    16.温晓红,吴小燕,and邵芝荣,2004.婴儿巨细胞病毒肺炎23例临床及X线特点.蚌埠医学院学报,29,252-253.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700