用户名: 密码: 验证码:
细胞凋亡在慢病毒介导hVEGF165-GFP基因转染内皮祖细胞移植治疗MODS中变化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多器官功能障碍综合症(multiple organ dysfunction syndrome, MODS)是重症监护病房患者的最常见死亡原因。严重的感染和感染性休克是其主要诱因。感染所致的脓毒症及非感染所致的全身炎症反应综合征(systemic inflammatory response syndrome, SIRS)相互作用,构成了一个复杂的网络。目前其发病机制尚不完全明确,临床上尚缺乏满意的治疗措施。随着干/祖细胞研究的不断深入,多器官功能障碍综合征的发病机制研究和临床治疗面临着新的契机。
     近年来研究发现:骨髓中有一群能够在生理性或病理性因素的刺激下,动员到外周血并分化为成熟内皮细胞(Endothelium cell, EC)以促进血管新生,并可以分化为相应的组织细胞进行损伤修复的祖细胞,这些细胞被称为内皮祖细胞(Endothelial progenitor cells, EPCs)。EPC过去被认为是胚胎时期血管新生最主要的细胞,而越来越多的证据显示EPCs也是出生后生理性及病理性血管形成最主要的细胞,并参与心、肝、肺、肾等单个器官障碍时的修复;同时迁徙到损伤部位的EPC还可以对不同的局部刺激(包括缺氧或缺血)作出生理反应,依次释放血管活性物质、生长因子以及参与免疫调节的细胞因子和趋化因子,参与创伤后的炎症反应。
     同时研究发现内皮细胞不仅是炎症反应的参与者,还是首先受损的靶细胞,并进而造成微血管损伤、微循环障碍,这可能是器官功能障碍的始发环节。大量的动物和临床实验都已经证明:当组织受到损伤时,尤其是缺血性损伤时,循环及组织中EPCs动员和增殖能力增强,并可以在组织内分化为内皮细胞替换功能障碍的内皮细胞、修补裸露的血管内皮损伤区,并参与缺血或损伤组织内新血管生成,从而改善缺血器官的功能;而如果创伤后EPCs的分化、迁徙功能发生严重障碍,则会导致损伤微循环严重损害而无法得到修复,甚至发生器官功能衰竭。
     既往研究发现与MODS有关的细胞因子有白介素(IL-1,IL-6)、肿瘤坏死因子(TNF)、热休克蛋白(HSP)、糖皮质激素和细菌产物如内毒素等,它们在导致SIRS/MODS细胞凋亡中具有潜在作用。通过对某些重要器官的细胞凋亡机制及其影响因素的研究可以更深入的了解MODS的机理,为临床更好的防治MODS提供实验依据。
     本研究通过内毒素+失血性休克制造出MODS的动物模型,在此基础上进行慢病毒介导VEGF-GFP基因转染EPCs移植治疗,动态观察移植前后动物生命体征的变化,血浆中IL-1β、TNF-α等炎性因子表达的变化,以及主要脏器的细胞凋亡情况,评价移植EPC防治MODS的效果,并对其作用机制进行初步探讨。全文共分四部分。
     第一部分目的:复制双相迟发型的兔MODS模型,为研究移植内皮祖细胞防治创伤后多器官功能障碍的研究提供实验基础。方法:将体重2.52±0.27Kg健康雄性家兔随机分为2组:实验组(M组)12只,施行失血性休克+内毒素血症复合因素;对照组(C)12只,施行假手术,予以股动静脉置管,不实施失血及内毒素注射。用自动分析仪检测WBC、GRAN、SALT、SAST、Cr、BUN、动脉血氧分压(PaO2),以判断器官功能,7天后处死存活动物,观察主要脏器的病理改变。结果:实验组(M组)WBC、GRAN、SALT、SAST、Cr、BUN均明显升高,动物死亡前显著高于正常值,PaO2明显下降。病理学改变主要表现为衰竭器官呈以炎症为主的非特异性改变。实验组MODS发生率为83.3%,死亡率为75%,显著高于对照组。结论:本实验采用二次打击方法,与临床实际相符,并且MODS的发生率及死亡率均高,操作简单,容易复制,是一个较成功的动物模型。
     第二部分目的:制备携带hVEGF165-GFPs双表达基因的慢病毒载体,体外转染内皮祖细胞,为EPC移植治疗做准备。方法:将目的基因VEFG165插入慢病毒过表达载体pWPXL-MOD,慢病毒包装质粒转染293T细胞,得到LV/hVEGF165-GFP,将LV/hVEGF165-GFP与EPCs共培养以转染EPCs。对LV/hVEGF165-GFP-EPCs进行其黏附、迁徙、增殖和血管生成功能进行检测。结果:慢病毒载体能表达目的基因VEGF,成功构建和包装了慢病毒载体;并证实EPCs经LV/hVEGF165-GFP转染后转染率达99%。其迁徙、增殖和血管生成等功能较未转染EPCs提高,P<0.05。结论:LV/hVEGF165-GFP对细胞无毒性,且能提高EPCs的粘附、迁徙及增殖能力。
     第三部分目的:研究细胞凋亡在慢病毒介导VEGF165-GFP基因转染EPCs移植治疗MODS中的变化及意义。方法:将体重2.52±0.27Kg健康雄性家兔随机分为3组:单纯MODS组(M)12只,施行失血性休克+内毒素复合因素;单纯内皮祖细胞移植组(ET)12只和慢病毒介导VEGF165-GFP基因转染内皮祖细胞移植组(VT)12只,在固定时间点,分别以1×107个细胞/Kg(体重)和1×107个转染后细胞/Kg(体重)的剂量进行移植治疗。用自动分析仪检测WBC、GRAN、SALT、SAST、Cr、BUN、动脉血氧分压(PaO2),以判断器官功能,7天后处死存活动物,观察主要脏器的病理改变。原位末端(TUNEL)法检测主要脏器细胞凋亡情况。RT-PCR法检测主要脏器caspase3mRNA表达情况。结果:VT组WBC、GRAN、GOT、GPT、Cr、BUN等指标在移植治疗后较M组及ET组均有明显改善,比较有统计学意义。VT组主要脏器细胞凋亡及caspase3mRNA表达均低于M组及ET组,P<0.01。VT组动物的MODS发生率和死亡率较M组及ET组明显减少,P<0.05。结论:移植慢病毒介导VEGF165-GFP基因转染EPCs治疗MODS,能减少MODS动物的细胞凋亡,明显的改善各个重要脏器的功能,降低动物的死亡率。
Multiple organ dysfunction syndrome (MODS) is the most frequent cause of death in patients admitted to intensive care units. Severe sepsis and septic shock are the primary causes of MODS and develop as a result of the host response to infection of Gram-neagitve and Gram-positive bacteria. Infections sepsis and nonsepsis systemic inflammatory response syndrome (SIRS) encompass a complex mosaic of interconnected events. The pathogenesis of MODS is not clear and there are not satisfactory therapic methods in clinic at present. With the development of clinical technologies of progenitor cells, the moment emerged in pathogenesis reaserchs and clinical therapy of MODS
     Recent research shows that EPC is one kind of progenitor cells from bone marrow which can be mobilized by physio-stimulation and patho-stimulation to peripheral blood to differentiate into mature endothelial cells (EC) to encourage angiogenesis and differentiate to different kind of cells to process repairing. EPCs were originally thought to be present only during embryonic development. However, accumulating evidence in the past several years suggested that EPCs were the major progenitor cells to participate inphysio-angiogenesis and patho-angiogenesis in adult lives. EPCs could particate in reparing of dysfunctions of heart、renal、liver and pulmonary and the EPCs which metastasized to pars affecta could be reacted to release the vasoactive substance、growth factors、immunoregulatory cytokines and chemotatic factors.
     Also research finds that the endothelial cells are not only the damaged target cells, but also causes of blood capillary damage and dysfunction or the first component element of MODS. The massive animal and clinical experiments have already certificated that when tissues is damaged, especially ischemia, the proliferation, migration, differentiation of EPCs are reinforced into peripheral blood and turn into endothelial cells and replace the damaged endothelial cells in tissue. The denuded damaged vessel is repaired by new endothelial cells. EPCs can participate neovascularity in ischemia or damaged tissue and improve ischemia organs' function. If the proliferation, migration and differentiation of EPCs are seriously disturbanced after trauma, they would make the microcirculation unrepaired and MODS come bad to worse.
     Past studies showed that the cytokines related to MODS were concluded IL-1, IL-6, TNF, HSP, Glucocorticoid, LPS, and so on. They were associated with apoptosis. So we may be more in-depth understanding of the mechanism of MODS by studying the mechanism and influencing factors of apoptosis and provide the basis for clinical.
     The study was to replicate a rabbit model of MODS, and then did transplantation of EPCs transfected with LV/VEGF165-GFP gene. Then we observed vital signs of major organs and the expression of inflammatory cytokines, such as IL-1β, TNF-αand so on. Our purpose was to find the effect of the EPCs to prevent and treat MODS. The study includes three main parts.
     Part 1 Objective:To replicate a rabbit model of MODS which was characterized by the development of delayed two-phase process and it was the foundation of our investigation of transplantation of EPCs to prevent and treat MODS. Methods: Twenty-four healthy male rabbits weighing 2.25~2.79Kg were divided into two groups randomly. One group was subjected to hemorrhagic shock plus endotoxiemia (group M, n=12). Another group was normal control only with anesthesia and sham operation (group C, n=12). Blood specimens were collected every 24 hours during the seven-day observation for the detection of serum GPT, GOT, Cr, BUN and arterial blood gas analysis, which were used to judge if MODS occured by compared with the initial value of itself. Histological changes of the main organs were observed under light microscope (LM). Results:The mobidity and mortality of MODS in group M were 83.3% and 75.0% respectively, both much higher than group C. Conclusion:The two-hit model of MODS was a successful animal model which conforms to clinical course, also with high mobidity and mortality. And the model was easy to duplicate.
     Part 2 Objective:To construct the Lentivirus carrying hVEGF165-GFP gene, and transfect endothelial progenitor cells in vitro. Methods:The VEGF165 gene was ligated into the lentiviral overexpression vector pWPXL-MOD. Then we used lentiviral packaging plasmid to transfect 293T cells and got the LV/hVEGF165-GFP. The LV/hVEGF165-GFP was co-cultured with EPCs. Adhesion, migration, proliferation and angiogenesis function were observed after tranfected. Results:Lentiviral vector expressing the target gene VEGF was successfully constructed. It confirmed that the LV/hVEGF165-GFP's transfection rate was nearly 99%. After transfected, EPCs' migration, proliferation and angiogenesis were increased (P<0.05). Conclusion:LV/hVEGF165-GFP was non-toxic to EPCs, and can improve the EPCs' adhesion, migration and proliferation ability.
     Part 3 Objective:To study the change of apoptosis in rabbits of multiple organ dysfunction syndrome by transplanting of endothelial progenitor cells transfected with LV/VEGF165-GFP gene. Methods:Thirty-six healthy male rabbits weighing 2.25~ 2.79Kg were divided into three groups randomly. One group was subjected to hemorrhagic shock plus endotoxiemia (group M, n=12), the group with no transplantation as the control group. Another group (group ET, n=12) was transplanted of EPCs with the 1×107 cells/ Kg body weight. The other group (group VT, n=12) was transplanted of EPCs transfected with LV-VEGF165-GFP gene with the 1 x 107 cells/Kg body weight. Blood specimens were collected every 24 hours during the seven-day observation for the detection of serum GPT, GOT, Cr, BUN and arterial blood gas analysis. Histological changes of the main organs were observed under light microscope. The apotosis of the main organs was tested by TUNEL. The caspase-3 mRNA of the main organs was measured by RT-PCR. Results: The WBC, GRAN, GOT, GPT, Cr, BUN and other indcators of VT group were significant improvement compared with ET group and M group. The apotosis and caspase3mRNA expression of main organs in VT group were lower than ET group and M group (P<0.01). The mobidity and mortality of VT group were lower than ET group and M group (P< 0.05). Conclusion:Transplantation of EPCs transfected with lentivirus-mediated VEGF165-GFP gene can reduce the MODS animal apoptosis, make a marked improvement of the function in main organs and reduce the animal's mortality.
引文
[1]Hassoun HT, Kone BC, Mercer DW, et al. Post-injury multiple organ failure:the role of the gut. Shock,2001; 15(1):1-10.
    [2]Schmidt H, Hoyer D, Wilhelm J, et al.The alteration of autonomic function in multiple organ dysfunction syndrome. Crit Care Clin,2008; 24(1):149-63.
    [3]Bone RC, BalK RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis.The ACCP/SCCM Consensus Conference Committee.American College of Chest Physicians/Society of Critical Care Medicine. Chest,1992; 101(6):1644-1655.
    [4]Tilney NL, Bailey GL, Morgan AP. Sequential system failure after rupture of abdominal aortic aneurysms:an unsolved problem in postoperative care. Ann Surg.1973; 178(2):117-122
    [5]Lagan AL, Melley DD, Evans TW, et al. Pathogenesis of the systemic inflammatory syndrome and acute lung injury:role of iron mobilization and decompartmentalization. Am J Physiol Lung Cell Mol Physiol.2008; 294(2):L161-174.
    [6]Chaudry IH. Rat and mouse of hypovolemic-traumatic shock.In:Schlag Q Redl H(ed): pathophysiology of shock, sepsis and organ failure. Germany:Springer-Verlag Berlin Heidelberg,1993; 371-374.
    [7]全竹富,黎介寿.腹腔感染致多器官功能障碍综合征的动物模型.中华实验外科杂志,1991,8:91.
    [8]Fry DE. Multiple organ disfunction syndrome.St Louis:Mosby Year Book,1992; 3-14.
    [9]Goris R J. Multiple organ disfunction syndrome and sepsis without bacteria. Arch Surg,1986; 121:897.
    [10]Thomas NJ,Carcillo JA,Herzer WA, et al. Chronic type Ⅳ Phosphodiesterase inhibition protects glomerμlar filtration rate and renal and mesenteric blood flow in a zymosan-induced model of multiple organ dysfunction syndrome treated with norepinephrine.J Pharmacol Exp Ther.2001; 296(1):168-174.
    [11]Volman TL, Goris RL, van der Laot M, et al. Organ dammage in zymosan-induced model of multiple organ dysfunction syndrome in mice is not mediated by inducible nitric oxide synthase. Crit Care Med.2002; 30(7):1553-1559.
    [12]BurdonD, Tiedje T, Pfeffer K, et al.The role of tumor necrosis factor in the development of multiple organ failure in a murine model. Crit Care Med.2000; 28(6):1962-1967.
    [13]盛志勇,董元林,等.缺血后肠源性感染与多器官功能衰竭.中华创伤杂志;1991,7:65.
    [14]Taniguchi T, Yamamoto K, Ohmoto N, et al. Effects of Propofol on hemodynamic and inflammatory responses to endotoxemia in rats. Crit Care Med.2000; 28(4):1101-1106.
    [15]Cirioni O, Giacometti A, Ghiselli R, et al. Single-dose intraperitoneal magainins improve survival in a gram-negative-pathogen septic shock rat model.Antimicrob Agents Chemother,2002; 46(1): 101-104.
    [16]Wang S.Clinical patterns and stages of multiple organ failure in the elderlyZhonghua Yi Xue Za Zhi.1990; 70(5):241-243.
    [17]Deitch EA. Multiple organ failure:pathothysiology and basic concepts of therapy. New York: Thieme,1990
    [18]Eissner K, Matz A, Smorodchenko A, et al. Chronic porcine two-hit model with hemorrhagic shock and pseudomonas aeruginosa sepsis. Eur Surg Res,2002; 34:61-67.
    [19]方国恩等.一种新的多器官衰竭动物模型的建立.第二军医大学学报,1995;16:86.
    [20]姚宁,方国恩,杜成辉,等.猪多器官功能障碍模型的建立.中华实验外科杂志,2005;22(1):108-109.
    [21]Bhatia M, Moochhala S.Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome [J]. Pathol.2004; 202(2):145-156.
    [1]Song J, Matsuda C, Kai Y, Nishida T, Nakajima K, Mizushima T, Kinoshita M, Yasue T, Sawa Y, Ito T. A novel sphingosine 1-phosphate receptor agonist,2-amino-2-propanediol hydrochloride (KRP-203), regulates chronic colitis in interleukin-10 gene-deficient mice.The Journal of pharmacology and experimental therapeutics.2008; 324(1):276-283.
    [2]Walzer T, Chiossone L, Chaix J, Calver A, Carozzo C, Garrigue-Antar L, Jacques Y, Baratin M, Tomasello E, Vivier E. Natural killer cell trafficking in vivo requires a dedicated sphingosine 1-phosphate receptor.Nature immunology.2007; 8(12):1337-1344.
    [3]Sriwiyanont P, Hachiya A, Pichens WL,et al. Lentiviral Vector-Mediated Gene Transfer to Human Hair Follicles. J Invest Dermatol.2009. Feb 26. [Epub ahead of print]
    [4]He T, Peterson TE, Holmuhamedov EL, et al. Human endothelial progenitor cells tolerate oxidative stress due to intrinsically high expression of manganese superoxide dismutase. Arterioscler Thromb Vasc Biol.2004 Nov; 24(11):2021-2027.
    [5]Tateishi-Yuyama E, Matsubara H, Murohara T, et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells:a pilot study and a randomised controlled trial. Lancet,2002 Aug 10; 360(9331):427-435.
    [6]Landmeser U, Eug berdiug N, Bahlmann FH, et al. Statin-induced improvement of endothelial progenitor cell mobilization, myocardial neovascularization, left ventricular function and survival after experimental myocardial infarction requires endothelial nitricoxide synthase.Circulation.2004; 110(14):1933-1939.
    [7]Helisch A, Schaper W. Arteriogenesis:the development and growth of collateral arteriesl.Microcirculation.2003; 10(1):83-97.
    [8]Murayama T, Tepper OM,Silver M, et al. Determination of bone marrow-derived endothelial progenitor cell significance in angiogenic growth factor-induced neovascularization in vivo.Exp Hematol,2002; 30(8):967-973.
    [9]Iwaguro H, Yamaguchi J, Kalka C, et al. Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration.Circulation,2002;12;105(6):732-738.
    [10]Geiger F, Lorenz H, Xu W, et al. VEGF producing bone marrow stromal cells (BMSC) enhance vascularization and resorption of a natural coral bone substitute. Bone,2007; 41(4):516-522.
    [11]de Nigris F, Balestrieri ML, Williams-Ignarro S, et al. Therapeutic effects of autologous bone marrow cells and metabolic intervention in the ischemic hindlimb of spontaneously hypertensive rats involve reduced cell senescence and CXCR4/Akt/eNOS pathways. J Cardiovasc Pharmacol,2007 Oct; 50(4):424-533.
    [12]Pfoiler A, Ikawa M, Dayn Y, et al.Transgenesis by lentiviral vectors:Lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos. Prec Nail Acad Sci USA,2002;99 (4):2140-2145,2988-2993.
    [13]Lai Z, Brady R O.Gene transfer into the central nervous system in rive using a recombinant lentivirus vector. J Neurosci Res,2002; 67(3):363-371.
    [14]Yu X, Zhan X, Cheng L, et al. Lentiviral vectors with two independent internal promoters transfer high-level expression of multiple transgenes to human hematopoietic stem. progenitor cells. Molecular Therapy,2003; 7 (6):827-838.
    [15]Kafri, T., Blomer, U., Peterson, D. A., Gage, F. H., and Verma, I. M. (1997) Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors. Nat. Genet.1997; 314-317.
    [16]Miyoshi H, Smith KA, Mosier DE, et al.Transduction of human CD34 cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors [J]. Science,1999; 283(5402):682-686.
    [1]Adrie C, Pinsky MR. The inflammatory balance in human sepsis. Intens Care Med 2000; 26:364-375.
    [2]Chapel A, Bertho JM, Hartley RS, et al. Mesenehymal stem cells home to injured tissues when co-infused with hematopoietie cells to treat a radiation-induced multi-organ failure syndrome. [J] Gene Med,2003; 5(12):1028-1038.
    [3]Kaushal S,Amiel GE,Guleserian KJ,et al.Functional small diameter neovessels created using endothelial progenitor cells expanded ex vivo[J].Nat Med,2001;7(9):1035-1040.
    [4]Walter DH, Rittig K, Bahlmann FH, et al.Statin therapy accelerates reendothelialization:a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells. Circulation 2002; 105:3017-3024.
    [5]Hill JM., Gloria Zalos, Guleserian KJ et al.Circulating Endothelial Progenitor Cells,Vascular Function, and Cardiovascular Risk. N. Engl. J. Med,2003; 348:593-600.
    [6]Hristov M, Erl W, Weber PC. Endothelial progenitor cells:mobilization, differentiation, and homing. Arterioscler Thromb Vasc Biol 2003; 23:1185-1189.
    [7]Boyle AJ, Schuster M, Witkowski P, et al.Additive effects of endothelial progenitor cells combined with ACE inhibition and beta-blockade on left ventricular function following acute myocardial infarction. J Renin Angiotensin Aldosterone Syst.2005;6(1):33-7
    [8]Li Jia, Srinivasa M, Srinivasula, et al.Apaf-1 protein deficiency confers resistance to cytochrome c-dependent apoptosis inhuman leukemia cells.Blood,2001; 98:414-421.
    [9]Cole L, Bellomo R, Journois D, et al.High-volume haemofiltration in human septic shock. Intensive Care Med.2001; 27(6):978-986.
    [10]Rogiers P, Zhang H, Smail N, et al. Continuous venovenous hemofiltration improves cardiac performance by mechanisms other than tumor necrosis factor-alpha attenuation during endotoxic shock. Crit Care Med.1999; 27(9):1848-1855.
    [11]Fiuza C, Bustin M, Talwar S,et al.Inflammation-promoting activity of HMGB1 on human microvaseular endothelial cells. Blood,2002; 101(7):2652-2660.
    [12]Hennessy M, Korbling Z. Circulating stem cells and tissue repair. Panminerva Med 2004; 46:1-11.
    [13]Florian Togel, Zhuma Hu, Schatteman GC, et al. Administered mesenchymal stem cells protect against ischemic acuterenal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol.2005; 289(1):F31-42
    [14]Patschan D, Plotkin M, Goligorsky MS. Therapeutic use of stem and endothelial progenitor cells in acute renal injury caira.Curr Opin Pharmacol.2006; 15(11):432-436.
    [15]Taniguchi E, Kin M, Torimura T, et al. Endothelial progenitor cell transplantation improves the survival following liver injury in mice. Gastroenterology,2006; 130(2):521-531.
    [16]Eitaro Taniguchi, Motoaki Kin, Takuji Torimura, et al. Endothelial Progenitor Cell Transplantation Improves the Survival Following Liver Injury in Mice. Gastroenterology 2006; 130:521-531.
    [17]Kalka C, Masuda H, Takahashi T, et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci USA.2000; 97(7):3422-3428.
    [18]Ikenaga S, Hamano K, Nishida M, et al. Autologous bone marrow implantation induced angiogenesis and improved deteriorated exercise capacity in a rat ischemic hindlimb model. J Surg Res. 2001;96(2):277-283.
    [19]Tateishi-Yuyama E, Matsubara H, Murohara T, et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells:a pilot study and a randomised controlled trial.Lancet.2002 Aug 10; 360(9331):427-435.
    [20]Landmeser U, Eug berdiug N, Bahlmann FH, et al. Statin-induced improvement of endothelial progenitor cell mobilization, myocardial neovascularization, left ventricular function and survival after experimental myocardial infarction requires endothelial nitricoxide synthase.Circulation.2004; 110(14):1933-1939.
    [21]Helisch A, Schaper W. Arteriogenesis:the development and growth of collateral arteriesl.Microcirculation,2003; 10(1):83-97.
    [22]Murayama T, Tepper OM,Silver M, et al. Determination of bone marrow-derived endothelial progenitor cell significance in angiogenic growth factor-induced neovascularization in vivo.Exp Hematol.2002; 30(8):967-97
    [23]Iwaguro H, Yamaguchi J, Kalka C, et al. Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation,2002; 105(6):732-738.
    [24]Geiger F, Lorenz H, Xu W, et al.VEGF producing bone marrow stromal cells (BMSC) enhance vascularization and resorption of a natural coral bone substitute. Bone.2007;41(4):516-22.
    [25]de Nigris F, Balestrieri ML, Williams-Ignarro S, et al.Therapeutic effects of autologous bone marrow cells and metabolic intervention in the ischemic hindlimb of spontaneously hypertensive rats involve reduced cell senescence and CXCR4/Akt/eNOS pathways.J Cardiovasc Pharmacol,2007 Oct; 50(4):424-433.
    [26]Maeda K, Abello PA, Abraham MR, et al.Endotoxin induces organ-specific endothelial cell injury. Shock 1995; 3(1):46-50.
    [27]Leist M, Gantner F, Bohlinger I, et al.Tumor necrosis factor-induced hepatocyte apoptosis precedes liver failure in experimental murine shock models. Am J Pathol,1995; 146(5):1220-1234.
    [28]Bhatia M. Apotosis versus necrosis in actue pancreatitis. Am J Physiol Gastrointest Liver Physiol. 2004; 286(2):189-196.
    [29]Goetz FW, Planas JV, MacKenzieS.Tumor necrosis factors.Dev Comp Immunol,2004; 28 (5): 487-497.
    [30]Vanden Berghe T, Denecker Q Brouckaert G, et al. More than one way to die:methods to determine T NF-induced apoptosis and necrosis.Methods Mol Med,2004; 98:101-126.
    [31]MeldrumD R.Tumor necrosis factor in the heart.Am J Physiol,1998; 274(3):577-579.
    [32]Fernando P, Kelly JF, Balazsi K, et al.Caspase 3 activity is required for skeletal muscle differentiation. PNAS,2002; 99(17); 11025-11030.
    [33]Okuyama R, Nguyen BC, Talora C, et al.High commitment of embryonic keratinoeytes to terminal differentiation through a Notchl caspase 3 regulatory mechanism. Dev Cell,2004; 6(4):551-562.
    [34]Oomman S, Strahlendorf H, Dertien J, et al. Bergmann glia utilizeactive caspase-3 for differentiation.Brain Res,2006; 1078(1):19:34.
    [35]Mogi M, Togari A.Activation of caspases is required for osteoblastic differentiation.J Biol Chem, 2003; 278(48):47477-47482.
    [36]Miura M, Chen XD, Allen MR, et al.A crucial role of Caspase-3 in osteogenic differentiation of bone marrow stromal stern cells. J Clin Invest,2004; 114(12):1704-1713.
    [37]Choi JH, Hur J, Yoon CH, et al. Augmentation of therapeutic angiogenesis using genetically modified human endothelial progenitor cells with altered glycogen synthase kinase-3beta activity. J Biol Chem.2004 Nov 19; 279(47):49430-49438
    [38]Beausejour C. Bone marrow-derived cells:the influence of aging and cellular senescence. Handb Exp Pharmacol.2007;(180):67-88.
    [1]Asahara T,Murohara T,Sullivan A,et al. Isolation of putative progenitor endothelial cells for angiogenesis [J].Science,1997; 275:964-967.
    [2]Reyes M,Dudek A,Jahaordar R,et al.Origin of endothelial progenitors in human postnatal bone marrow[J].Clin Invest,2002;109(3):337-346.
    [3]Martinez, Estrada OM, Munoa SY, Julve J, et al. Human adipose tissue as a source of Flk-1(+) cells: new method of diferentiaion and expansion [J].Cardiovasc Res,2005; 65(2):328-333.
    [4]Assmus B, Schachinger V, Teupe C, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI).Circulation,2002; 106:3009-3017.
    [5]Suda T, Takakura N, Oike Y. Hematopoiesis and angiogenesis [J]. Int J Hematol,2000; 71(2):99-107.
    [6]Schatteman GC. Adult bone marrow-derived hemangioblasts, endothelial cell progenitors, and EPCs [J].Curr Top Dev Biol,2004; 64:141-180.
    [7]Rafii S,Oz M.C., Seldomridge J.A.,et al.Characterization of human hematopoietic cells arising on the textured surface of left ventricular devices.Ann Thorac Surg,1995; 60:1627-1632.
    [8]Asahara T,M asuda H,Takahashi T,et al.Bone marrow origin of endothelial progenitor cells responsible for postnatal Vasculogenesis in physiological and pathological neoVascularization[J].Circ Res,1999;85(3):221-228.
    [9]Kaushal S,Amiel GE,Guleserian KJ,et al.Functional small diameter neovessels created using endothelial progenitor cells expanded ex vivo[J].Nat Med,2001;7(9):1035-1040.
    [10]Maeda M, Fukui A, Nakamma T et al. Progenitor endothelial cells on vascular grafts:An ultrastructural study [J]. J Biomed Mater Res,2000; 51:55-60.
    [11]Blocklet D,Toungouz M,Berkenbcom G,et al.Myocardial homing of nonmobilized peripheral-blood CD34 cells after intracoronary injection[J].Stem Cells,2006; 24(2):333-336.
    [12]Dimmeler S. Circulating endothelial precursors:identifcation of functional subpopulations.Blood, 2005; 106:2231-2232.
    [13]Yin AH, Miraglia S, Zanjani ED, et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood,1997; 90:5002-5012.
    [14]Peichev M, Naiyer AJ, Pereira D, et al.Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors[J]. Blood,2000; 95(3):952-958.
    [15]Handgretinger R, Gordon PR, Leimig T, et al. Biology and plasticity of CD133+ hematopoietic stem cells. Ann N Y Acad Sci,2003; 996:141-151.
    [16]Elsheikh E,Uzunel M,He Z,et al. Only a specific subset of human peripheral blood monocytes has endothelial like functional capacity. Blood,2005; 106:2347-2355.
    [17]Harraz M, Jiao C, Hanlon HD, Hartley RS, Schatteman GC:CD34-blood-derived human endotheliai cell progenitors. Stem Cells,2001; 19:304-312.
    [18]Schmeisser A, Garlichs CD, Zhang H, et al. Monocytes coexpress endotheliai and macrophagocytic lineage markers and form cord-like structures in Matrigel under angiogenic conditions. Cardiovasc Res 2001; 49:671-680
    [19]Quirici N, Soligo D, Caneva L, et al.Diferentiationand expansion of endothelial cells from human bone marrow CD133 cells [J].Br J Haematol,2001; 115(1):186-194.
    [20]Hilbe W,Dimhofer S,Oberwassedechner F,et al.CD133 positive endothelial progenitor cells contribute to the tumour vasculaturein non-small cell lung cancer [J]. Clin Pathol,2004; 57(9):965-969.
    [21]Devin JK, Vaughan DE,Blevins LS Jr, et al. Low-dose growth hormone administration mobilizes endothelial progenitor cells in healthy adults. Growth Horm IGF Res.2008; 18(3),253-263.
    [22]George J, Shmilovich H, Deutsch V, et al. Comparative analysis of methods for assessment of circulating endothelial progenitor cells. Tissue Eng.2006; 12(2):331-335.
    [23]Gehling UM, Ergun S, Schumacher U, et al.In vitro differentiation of endothelial cells from AC 133 positive progenitor cells. Blood,2000; 95:3106-3112.
    [24]Salven P, Mustjoki S, Alitalo R et al. VEGFR-3 and CD 133 identify a population of CD34+ lymphatic/vascular endothelial precursor cells. Blood 2003; 101:168172.
    [25]Fadini GP, Baesso I, Albiero M, et al. Technical notes on endothelial progenitor cells:ways to escape from the knowledge plateau. Atherosclerosis,2008 Apr; 197(2):496-503.
    [26]Kim SY, Park SY, Kim JM, et al. Differentiation of endothelial cells from human umbilical cord blood AC133-CD14+ cells. Ann Hematol.2005; 84(7):417-22.
    [27]Allen J, Khan S, Serrano MC, et al. Characterization of porcine circulating progenitor cells:toward a functional endothelium. Tissue Eng Part A.2008; 14(1):183-94.
    [28]Lin Y, Weisdorf DJ, Solovey A, et al. Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest,2000; 105:71-77.
    [29]Gill M, Dias S, Hattori K. Vascular trauma induces rapid but transient mobilization of VEGFR2(+) AC133(+)endothelial precursor cells. Circ Res 2001; 88:167-174.
    [30]Hristov M, Erl W, Linder S, et al.:Apoptotic bodies from endothelial cells enhance the number and initiate the differentiation of human endothelial progenitor cells in vitro, Blood,2004; 104:2761-2766.
    [31]Ruel, M., Suuronen, E. J., Song, J., et al. Effects of off-pump versus on-pump coronary artery bypass grafting on function and viability of circulating endothelial progenitor cells. J. Thorac Cardiovasc Surg,2005; 130:633-639.
    [32]Takahashi T, Kalka C, Masuda H, et al. Ischeimia and cytokineinduced mobilization of bone marrow-derived endothelial progenitor cells for neovescularization. Nat Med,1999; 5:434-438.
    [33]Hattori K, Heissig B, Wu Y, et al. Placental growth factor reconstitutes he-matopoiesis by recruiting VEGFRl(+)stem cells from bone-marrow microenvironment. Nat Med 2002; 8:841-849.
    [34]Urbich C, Dernbach E, Zeiher AM, et al. Double-edged role of statins in angiogenesis signaling. Circ Res 2002; 90:737-744.
    [35]Rosenzweig A. circulating endothelial progenitors-cells as biomarkers. N Engl J Med,2005; 353: 1055-1057.
    [36]Iwakura A,Luedemann C,Shastry S, et al. Estrogen-mediated,endothelial nitric oxide synthase-dependent mobilization of bone marrow-derived endothelial progenitor cells contributes to reendothelialization after arterial injury. Circulation,2003; 108:3115-3121.
    [37]Sugawara J, Saito-Mitsui M, Hoshiai T, et al. circulating endothelial progenitor cells during pregnancy. J Clin Endocrinol Metab,2005; 90:1845-1848.
    [38]Heissig B, Hattori K, Dias S, et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP29 mediated release of kit2 ligand[J]. Cell,2002; 109:625.
    [39]Rafii S, Meeus S, Dias S, et al. Contribution of marrow-derived progenitors to vascular and cardiac regeneration. Semin Cell Dev Biol 2002; 13:61-67.
    [40]Fons P, Herault JP, Delesque N, et al. VEGF-R2 and neuropilin-1 are involved in VEGF-A-induced differentiation of human bone marrow progenitor cells. J Cell Physiol 2004; 200:351-359.
    [41]HILL J M,Zalos G,Halcox J P,et al.Circulating Endothelial Progenitor Cells,Vascular Function,and Cardiovascular Risk [J].N Engl J Med,2003;348(7):593-600.
    [42]Werner N, Kosiol S, Schiegl T,et al. circulating endothelial progenitor cells and cardiovascular outcomes [J]. N Engl J Med,2005; 353:999-1007.
    [43]Imanishi T, Moriwaki C, Hano T, et al. Endothelial progenitor cell senescence is accelerated in both experimental hypertensive rats and patients with essential hypertension. [J] Hypertens,2005; 23: 1831-1837.
    [44]Simper D, Stalbocrger PG, Panetta CJ, et al. Smooth muscle progenitor cells in human blood. Circulation,2002; 106:1199-1204.
    [45]Walter D H, Rittig K, Bahlmann F H, et al. statin therapy accelerate reendothelialization [J]. Circulation,2002; 105(25):3017-3024.
    [46]Badorff C, Brandes RP, Popp R, et al.Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation,2003; 107:1024-1032.
    [47]Verma S, Li SH, Badiwala MV, et al. Endothelin antagonism and interleukin-6 inhibition attenuate the proatherogenic effects of C-reactive protein.Circulation,2002; 105:1890-1896
    [48]Butzal M., S.Loges, M.Schweizer, et al. Rapamycin inhibits proliferation and differentiation of human endothelial progenitor cells in vitro.Exp Cell Res,2004; 300:65-71.
    [49]Zeng L, Xiao Q, Margariti A, et al. HDAC3 is crucial in shearand VEGF-induced stem cell diferentiation toward endothelial cells [J].Cell Biol,2006; 25,174(7):1059-1069.
    [50]Cetrulo CL Jr, Knox KR, Brown DJ, et al. Stem Cells and Distraction Osteogenesis:Endothelial Progenitor Cells Home to the Ischemic Generate in Activation and Consolidation. Plast Reconstr Surg, 2005;116:1053-1064.
    [51]Tepper OM, Capla JM, Galiano RD,et al. Adult vasculogenesis occurs through in situ recruitment,proliferation,and tubulization of circulating bone marrow derived cells[J].Blood,2005; 105: 1068-1077.
    [52]Murayama T, Losordo D, Isner J, et al. Determination of bone marrowderived endothelial progenitor cell significance in angiogenic growth factorinduced neovascularization [J]. Exp Hematol, 2002; 30:967-972.
    [53]Ceradini DJ, Kulkarni AR, Callaghan MJ, et al. homing to hypoxia:HIF-1 as a mediator of progenitor cell recruitment to injured tissue. Trends Cardiovasc Med 2005; 15:57-63
    [54]Hiasa K, Ishibashi M, Ohtani K, et al. Gene transfer of stromal cell-derived factor-1 alpha enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthase-related pathway:Next-generation chemokine therapy for therapeutic neovascularization. Circulation,2004; 109:2454-2461.
    [55]Li B, Sharpe EE, Maupin AB, et al. VEGF and P1GF promote adult vasculogenesis by enhancing EPC recruitment and vessel fonnation at the site of tumor neovascularization [J]. FASEB,2006; 20(9):1495-1497.
    [56]Asahara T, Takahashi T, Masuda H, et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells [J]. EMBO,1999; 18(14):3964-3972.
    [57]PerlingeiroRC, KybaM, Bodie S, et al. a role for thrombopoietin in hemangioblast development [J]. Stem Cells,2003; 21(3):272-280.
    [58]Yamamoto K, Sokabe T, Watabe T, et al. Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro [J]. Am J Physiol Heart Cire Physiol,2005; 288(4):1915-1924.
    [59]Capillo M, Mancuse P, Gobbi A, et al. Continuous infusion of endostatin inhibits differentiation, mobilization, and clonogenie potential of endothelial cell progenitors [J]. Clin Cancer Res,2003; 9(1):377-382.
    [60]Watabe T, Nishihara A, Mishima K, et al. TGF-beta recept kinase inhibitor enhances growth and integrity of embryonic stem cell derived endothelial cells [J]. Cell Biol,2003; 163(6):1303-1311.
    [61]Suzuki Y, Komi Y, Ashinu H, et al. Retinoic acid controls blood vessel formation by modulating endothelial and mural cell interaction via suppression of Tie2 signaling in vascular progenitor cells [J]. Blood,2004; 104(1):166-169.
    [62]Verma S, Kuliszewski MA, Li SH, et al. C-reactive protein attenuates endothelial progenitor cell survival, differentiation, and funetion:further evidence of a mechanistic link between C-reactive protein and cardiovascular disease [J]. Circulation,2004; 109(17):2058-2067.
    [63]Loomans CJ, de Koning EJ, Staal FJ, et al. Endothelial progenitor cell dysfunction:a novel concept in the pathogenesis of vascular complications of type 1 diabetes [J]. Diabetes,2004; 53(1):195-199.
    [64]Heeschen C, Lehmann R, Honold J, et al. profoundly reduced neovascularization capacity of bone malTOW mononuclear ceils derived from patients with chronic ischemic heart disease. Circulation, 2004; 109:1615-1622.
    [65]Kawamoto A, TkebuchaVa T, Yamaguchi JL, et al. Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neova secularization ofinyocardial ischemia [J]. Circulation,2003; 107(3):461-468.
    [66]Kawamoto A, Iwasaki H, Kusano K, et al. CD34-positive cells exhibit increased potency and safety flor therapeutic neovascularization after myocardial infarction compared with total mononuclear cells [J]. Circulation,2006; 114(20):2163-2169.
    [67]Murasawa S, Kawamoto A, Horii M, et al. Niche-dependent trans lineage commitment of endothelial progenitor cells, not cell fusion in general, into myocardial lineage cells[J].Arterioscler Thromb Vasc Biol,2005; 25(7):1388-1394.
    [68]Kalka C, M asuda H, Takahashi T, et al. Transplantation of ex vivo expanded endothelial progenitor cells flor therapeutic neovascularization [J]. Proc Natl Acad Sci,2000; 97(7):3422-3427.
    [69]Shirota T, Yasui H, Shimokawa H, et al. Fabrication of endothelial progenitor cell(EPC)-seeded intravascular stent devices and in vivo endothelialization on hvbrid vascular tissue [J]. Bio Materials, 2003; 24(13):2295-2302.
    [70]Carter AJ, Aggarwal M, Kopia GA, et al. Long-term effects of polymer-based, slow release,sirolimus-eluting stents aporcine coronary model [J]. Cardiovasc Res,2004; 63(4):617-624.
    [71]Kutryk MJ, van Dortmont LM, de Crom RP, et al. Seeding of intravascular stents by the xenotransplantation of genetically modied endothelial cells [J]. Semin Interv Cardiol,1998; 3(3-4): 217-220.
    [72]Hoerstrup SP, Kadner A, Breymann C, et al. Living, autologous pulmonary atery conduits tissue engineered from human umbilical cord cells.Ann Thorac Surg,2002; 74:46-52.
    [73]Walles T, Giere B, Hofmann M, et al. Experimental generation of a tissue-engineered functional and vascularized trachea[J]. Thorac Cardiovasc Surg,2004; 128:900-906.
    [74]Schmidt D, Breymann C, Weber A, et al. Umbilical Cord Blood Derived Endothelial Progenitor Cells for Tissue Engineering of Vascular Grafts. Ann Thorac Surg,2004; 78:2094-2098.
    [75]Wu X, Rahkin Aikawa E, Guleserian K J,et al. Tissue-engineered microvessels on three-dimensional biodegradable scaffolds using human endothelial progenitor cells. [J] Am J Physiol Heart Circ Physiol,2004; 287(2):H480-H487.
    [76]Schultheiss D, Gabouev Al, Cebotari S et al. Biological vascularized matrix for bladder tissue engineering:Matrix preparation, reseeding technique and short-term implantation in a porcine model. J. Urol.2005; 173:276-280.
    [77]Chapel A, Bertho JM, Hartley RS, et al. Mesenehymal stem cells home to injured tissues when co-infused with hematopoietie cells to treat a radiation-induced multi-organ failure syndrome. [J] Gene Med,2003; 5(12):1028-1038.
    [78]G 6 mez-Cerezo JF, Paga n, Munoz B, et al. The role of endothelial progenitor cells and statins in endothelial function:a review. Cardiovasc Hematol Agents Med Chem,2007; 5(4):265-272.
    [79]HeT, Smith LA, Harrington S, et al. Transplantation of circulating endothelial progenitor cells restores endothelial function of denuded rabbit carotid arteries. Stroke,2004; 35(10):2378-2384.
    [80]TaniguchiE, KinM, TorimuraT, et al. Endothelial progenitor cells transplantation improves the survival following liver injury in mice. Gastroenterology,2006; 130(2):521-531.
    [81]de MgTis F, Balestrieri ML, Williams Ignarro S, et al. Therapeutic effects of antologous bone marrow cells and metab olic intervention in the isehemic hindlimb of spontaneously hypertensive rats involve reduced cell senescence and CXCR4/Akt/eNOS pathways [J]. Cardiovasc Pharmacol,2007; 50(4):424433.
    [82]Miyamoto M, YasutakeM, TakanoH, et al. Therapeutic angiogenesis by autologous bone marrow cell implantmion for refractory chronic peripheral arterial disease using assessment of neovaseularization by 99mTc-tetrofosmin (TF) perfusion scintigraphy. Cell Transplant,2004; 13(4): 429-437.
    [83]Arafat W O, Casado E, Wang M, et al. genetically modified CD34+cells exert a cytotoxic by stander effect on human endothelial and cancer cells. Clin Cancer Res,2000; 6(11):4442-4448.
    [84]Ferrari N, Glod J, Lee J, et al.Bone marrow-derived endothelial progenitor-like cells as angiogenesis-selective gene targeting vectors. Gene Ther,2003; 10(8):647-656.
    [85]Backer M V, Gaynutdinov T I, Patel V, et al. Vascular endothelial growth factor selectively targets boronated dendrimers to tumor vasculature. Mol Cancer Ther,2005; 4(9):1423-1429.
    [86]Stoll B R, Migliorini C, Kadambi A.A. mathematical model of the contribution of endothelial progenitor cells to angiogenesis in tumors:implications for antiangiogenic therapy. Blood,2003; 102(7): 2555-2561.
    [87]Garcia-Barros M, Paris F, Cordon-Cardo C, et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science,2003; 300(5622):1155-1159.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700