用户名: 密码: 验证码:
移植经慢病毒介导hVEGF_(165)-GFP的双表达基因转染内皮祖细胞防治多器官功能障碍研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多器官功能障碍综合症(Multiple organ dysfunction syndrome, MODS)是重症监护病房内患者死亡的最常见原因。经过对MODS的深入研究,目前多数学者已认可MODS发生的重要机制之一为:当机体发生严重创伤后,因创伤本身及各种炎症反应的刺激,导致机体全身微血管内皮的损伤与修复失衡以及微循环障碍,从而引发多个器官功能的障碍。
     自1997年,Asahara等首先从外周血单个核细胞(Peripheral mononuclear cells, PMCs)里分离出内皮祖细胞(Endothelial progenitor cells,EPCs)以来。这类在生理性或病理性因素的刺激下能够从骨髓中动员到外周血并分化为成熟内皮细胞(Endothelium cells, ECs)以促进内皮修复及血管新生的细胞已受到人们的广泛重视,大量的体外实验及动物实验表明EPCs是个体出生后生理性及病理性促血管修复及新生的最主要的细胞,并参与心、肝、肺、肾等单个器官内微循环的修复。
     VEGF (Vascular endothelial growth factor, VEGF)是血管内皮特异丝裂原,能保持内皮细胞的稳定性,诱导血管生成、增加血管通透性及维持血管功能,是目前发现的最强效的促血管生成因子和促内皮祖细胞向内皮细胞分化的重要细胞因子。慢病毒(Lentivital vector, LV)载体系统具有高效而稳定的基因转移效率且毒副作用小,现已广泛的用于各种疾病的转基因治疗中。同时,可表达荧光信号的报告基因-绿色荧光蛋白(Green fluorescent protein GFP)已普遍的应用于观察活细胞内基因表达及移植细胞在体内定位的情况,使得在分子及细胞水平上实现示踪生物学的发生及变化过程成为可能。本研究以慢病毒为载体,将VEGF+GFP双表达基因转染至EPCs内,研究转染后的EPCs在体外的增殖、迁移、分化及对严重创伤后主要炎性因子的抗杀伤能力,在移植EPCs治疗后观察其在活体内的分布情况以及对严重创伤所引发的MODS的防治作用。
     本研究共分为三部分,首先在体外建立起EPCs的培养和鉴定体系;其次构建LV-VEGF-GFP载体系统并转染EPCs,体外鉴定其增殖、迁移、分化及对炎性因子的抗杀伤能力;最后将经转染的EPCs移植治疗MODS的动物,观察EPCs在体内的分布情况及移植后MODS的发生率和重要脏器的功能改善情况,评价移植EPCs防治MODS的效果,并对其作用机制进行初步探讨。
     第一部分兔骨髓内皮祖细胞的体外培养、鉴定和功能检测
     目的:优化兔骨髓EPCs的分离、培养、扩增和鉴定的方法,为移植EPCs防治MODS提供合理的技术平台。
     方法:用密度梯度离心法从兔骨髓中分离出单个核细胞,按照l×105/cm2的密度接种于培养皿内,使用添加了细胞因子和胎牛血清的内皮祖细胞专用培养液进行诱导分化培养,在固定时间进行消化、传代和扩增。同时,观察培养14天时P3代EPCs的生长情况,并通过细胞形态学特征、细胞的超微结构、免疫组化、流式细胞仪技术、乙酰化的低密度脂蛋白(Dil-Ac-LDL)和荆豆凝集素-1 (FITC-UEA-1)的吞噬功能、体外血管生成功能等方法对其进行鉴定。
     结果:培养48小时后逐渐出现梭形贴壁细胞(attaching cells, AT cells),并出现成簇现象,培养至第6天时的EPCs,已经开始出现成集落的贴壁细胞。在电镜下观察细胞;细胞内可检测到典型的Weibel-Palade小体。超过85%体外培养的贴壁细胞都特异性地摄取了Dil-Ac-LDL和FITC-UEA-1。免疫组化鉴定:CD133(+),CD34(+),CD31(++),KDR(++)。流式细胞仪技术鉴定:CD133的阳性率:18.23±7.12%;CD34的阳性率:47.71±14.85%;CD31的阳性率:71.61±13.51%;KDR的阳性率:87.24±11.40%。体外血管生成功能提示:EPCs在特殊的细胞培养环境中可以生成新生的血管。
     结论:利用密度梯度离心法可稳定的获得单个核细胞,经体外诱导培养后可获得纯度较高的,具有正常生理功能的EPCs。
     第二部分:含hVEGF165+GFP双表达基因的慢病毒载体的建立及感染EPCs后的功能鉴定
     目的:构建可稳定携带hVEGF165+GFP双表达基因的慢病毒载体,高效转染EPCs,提高EPCs增殖、迁移、分化、成血管以及对缺血缺氧和炎症因子的抵抗力。
     方法:设计并合成:hVEGF165的PCR引物:hVEGF165-F:5'-CGG GAT CCA TGA ACT TTC TGC TG-3'; hVEGF165-R:5'-CGA CGC GTC CGC CTC GGC TTG TCT-3'。以pDC316-hVEGF165质粒为模板进行PCR扩增。酶切回收产物经pWPXL-MOD质粒连接、转化,挑取阳性克隆并抽提质粒后利用限制性内切酶BamH I、Mlu I双酶切,电泳鉴定重组质粒后测序。
     采用四质粒系统的慢病毒包装质粒,其组成为pRsv-REV, pMDlg-pRRE, pMD2G以及含hVEGF165-GFP的pWPXL-MOD。其中pRsv-REV, pMDlg-pRRE, pMD2G含有病毒包装所必须的元件。质粒载体以磷酸钙法共转染293T细胞,转染后8h更换为完全培养基,培养48h后,收集富含慢病毒颗粒的细胞上清液,经浓缩后得到高滴度的慢病毒浓缩液,采用倍比稀释法检测病毒滴度。
     解冻经培养纯化的EPCs以1×106/cm2接种于培养瓶中,观察EPCs铺满60%皿底后更换培养液。稀释浓缩病毒,以MOI值为50感染EPCs,共孵育24h,细胞铺满80%-85%皿底后传代,经数次传代后可扩增细胞。对感染后的EPCs细胞进行增值、迁移、分化、成血管能力及凋亡实验检测。
     结果:经纯化浓缩后的慢病毒的最终滴度为5.0×108 TU/m。以MOI值为50转染EPCs其平均感染效率为87.9%±5.6%。经慢病毒感染后的EPCs的功能鉴定提示:迁移及成血管能力较未感染的EPCs略有增强;增值、分化及抗凋亡能力明显增强。
     结论:EPCs经慢病毒转染后可将hVEGF165-GFP双表达基因整合入细胞基因组中。EPCs的增值,迁移,分化,成血管及抗炎性杀伤能力得到增强,为在体外短时间能获得具有较强的抗炎性因子杀伤作用及较高靶向迁移能力的EPCs奠定基础。EPCs的分化能力的提高使得EPCs在体外向成熟内皮细胞转化的速度加快,降低了EPCs自我更新及体外传代的能力。
     第三部分移植未转染与经转染的EPCs防治创伤后多器官功能障碍的研究
     目的:旨在探讨移植经慢病毒转染的骨髓来源的EPCs对兔创伤后多器官功能障碍治疗的有效性和安全性的研究,同时比较经转染与未转染的EPCs进行移植治疗后的疗效差异。
     方法:预先抽取实验动物骨髓,按照前述的方法进行EPCs的分离、培养和扩增。利用二次打击建立双相迟发型家兔MODS动物模型,将达到MODS的动物随机分为五组,以1×107个细胞/Kg体重为回输剂量,按照:A组:转染LV-hVEGF165-GFP的EPCs实验组(12只);B组:转染LV-GFP的EPCs实验组(12只);C组:未经转染的EPCs实验组(12只);同时以D组:肌注hVEGF165治疗组及E组:未行任何干预的MODS(12只)及作为对照组。观察不同实验组的EPCs进行移植治疗后EPCs在体内的分布态势对机体各个重要脏器的改善情况。
     结果:E组:单纯MODS实验组动物死亡率为75%(12只死亡9只);而A组:移植LV/hVEGF165-GFP-EPCs组的死亡率为25%(12只死亡3只);B组:移植LV-GFP-EPCs组动物的死亡率为58.3%(12只死亡7只);C组:普通EPCs组动物的死亡率50%(12只死亡6只);D组:肌注hVEGF165组动物的死亡率为83.3%(12只死亡10只)。同时A组实验动物的生存时间(136.48±42.27小时)也较其他各组(B组:87.79±24.12小时;C组90.34±23.92小时;D组:59.21±20.35小时;E组:63.45±23.55小时)明显延长(P<0.01)。
     结论:移植经慢病毒介导的hVEGF165-GFP双表达基因转染的内皮祖细胞可以有效的抵抗严重创伤后机体内环境炎性因子对EPCs的杀伤作用并促进创伤后的微循环修复,防止MODS的发生和发展,同时可改善MODS动物的预后以及延长生存时间。
     小结:机体发生炎症的创伤时,体内EPCs的数量减少及功能障碍可能是MODS发生发展的重要原因之一,移植的内皮祖细胞可以在机体发生MODS后向不同组织迁徙或归巢,对微循环具有重要的修复及血管新生作用,以改善创伤后缺血缺氧引起的脏器功能障碍,而经慢病毒介导的hVEGF165-GFP基因转染的EPCs可以对创伤后的全身炎症反应所产生的主要炎性因子具有较好的抗杀伤能力,且针对损伤器官及循环具有更好的靶向治疗作用,可较好的防止MODS的发生和发展,同时可改善MODS动物的预后以及延长生存时间。
Multiple organ dysfunction syndrome (MODS) has been the most frequent cause of death in patients admitted to intensive care units. In recent years, most of researchers have made a common agreement that one of the most important mechanisms of MODS is the unbalance between the injuries and repair to systemic capillary vascular endothelium, when the body gets severe injury.
     Since Ashara firstly isolated the endothelial progenitor cells (EPCs) from peripheral mononuclear cells in 1997, researchers had paid more and more attention on EPCs because these cells have a pivotal potency that they could differentiate into matured endothelial cells and then repair the endothelium. Most of the EPCs circulating in the peripheral blood come from bone marrow in the stimulation of all kinds of physiogenic or pathological factors. Numerous experiments in vitro or in vivo have demonstrated that, in the physiogenic or pathological conditions, EPCs are the most important cells that can repair vascular endothelium and promote the angiogenesis of organs. Furthermore the injuries of microcircu-lation in the single organ such as heart, liver, lung and kidney could be repaired by EPCs too.
     Vascular endothelial growth factor (VEGF)is a special mitogen for vascular endothelium. It can maintain the homeostasis of endothelial cells, induce the vascularization, enhance vascular permeability and maintain normal function of vessels. It is deem to the most superactive factor that can promote vascularization happen and make EPCs defferentiate into endothelial cells (ECs). Since the carrier system of lentivital vector (LV) has high and stable effectiveness for gene transfer and low adverse effect, it has been used more and more comprehensively in transgenes therapy for all kinds of diseases. In addition, the green fluorescent protein (GFP),which can express the fluorescent signal, has been used to observe gene expression and site-specific of transplantation cells in vivo. The discovery of GFP makes the development and variation of biological tracing come true in molecular and cellular level. In our research, we used the lentivral vectors to transfect the double express gene-hVEGF165-GFP with EPCs. Secondly, we studied the function of post-transfected EPCs in proliferation, immigration, differentiation and antiapoptotic ability for inflammatory environment. At length, we transplanted either untransfected or post-transfected EPCs into the MODS animal in order to figure out their distribution in vivo and observe the preventive and therapeutic effect of MODS.
     There were three parts in our study. In the first part, we constructed and optimized the system for the isolation、cultivation and identification of EPCs in order to proliferate EPCs fastly in vitro. In the second part, we constructed the carrier system of LV-hVEGF165-GFP to transfect with EPCs and identified the function of post-transfected EPCs in proliferation, immigration, differentiation and anti-apoptosis ability to inflammatory environment. In the third part, we transplanted the untransplanted or post-transplanted EPCs into animal model respectively to observe these cells'distribution in vivo and then investigated the mobidity and mortality of MODS animals. In the last part, we would assess the value of EPCs' transplantation and make an approach to the putative mechanism of MODS.
     Part 1 Isolation, Cultivation, Identification of endothelial progenitor cells from rabbit bone marrow in vitro
     Objective:to optimize the system for isolation, cultivation and identification of endothelial progenitor cells from rabbit bone marrow for transplantation.
     Methods:BMMCs were isolated by the method of density gradient centrifugation from bone marrow and cultured as 1×106/cm2 original density with specific culture medium for EPCs. After14 days of cultivation, the P3-EPCs were identificated by taking up Dil-ac-LDL and FITC-UEA-1、flow cytometry testing、immunohistochemistry testing、ultrastructural organization testing and the functoin of angiogenesis testing.
     Result:The attaching cells appeared after 48h culture, and these cells got clustering after 6 days culture. The Weibel-Palade body, which is the special characteristics for EPCs, appeared in our cultured cells. And more than 80% EPCs could take up Dil-Ac-LDL and FITC-UEA-1. CD133 (+),CD34 (+),CD31 (++),KDR (++) appeared in these cells by immunohistochemistry testing. Our cultured cells also were positive in angiogenesis testing.
     Conclusion:Density gradient centrifugation is a stable method to isolate BMMCs from the peripheral blood. It could provide very pure EPCs by this specific cell-culture way in vitro. Further more, these EPCs have all the normal function that they should have!
     Part 2:Construct a lentiviral vectors that carry both hVEGF165 and GFP Gene, Identify the function of those post-transfected EPCs
     Objective:to construct the lentivital vectors that can stably carry the double express gene of hVEGF165-GFP and can transfect with EPCs high effectively. To improve the EPCs' ability of proliferation、migration、differentiation, angiogenesis and the resistance for ischemia、anoxia、inflammatory factors.
     Methods:Firstly, we designed the hVEGF165 PCR primers:hVEGF165-F:5'-CGG GAT CCA TGA ACT TTC TGC TG-3'; hVEGF165-R:5'-CGA CGC GTC CGC CTC GGC TTG TCT-3'. Secondly, the plasmid of pDC316-hVEGF165 was used to be the template to amplify hVEGF165 by PCR. Combination and transformation would be performed when both the products of PCR and the plasmid of pWPXL-MOD had been cut by the enzyme of BamH I、Mlu I. This new acquired plasmid of pWPXL-MOD, which contains the exogenous gene of hVEGF165-GFP, was spreaded on the LB plate and incubated at 37℃overnight. As soon as the monoclones appeared on the plate 12-16 hours later, they would be picked up and expanded to extract the plasmids DNA. Thirdly, these acquired plasmids DNA were cut by the restriction enzyme of BamH I、Mlu I, and then the fragments of these recombinant plasmids DNA were identifed by electrophoresis. When the size of fragment had been confirmed, the sequence of targeting gene would be checked to make asure that it was definitely correct.
     We used the four plasmids system to package the lentivrial vector, including pRsv-REV, pMDlg-pRRE, pMD2G and the recombinant plasmid of pWPXL-MOD which contained the exogeneous gene of hVEGF165-GFP. The three orther plasmids of pRsv-REV、pMDlg-pRRE and pMD2G had all the imperative components for viral packaging. After these four plasmids had been prepared, they would be used to transfect with 293T cells in the protocol of calcium phosphate precipitation.8 hours after transfection, the current medium must be changed to the maximal medium and these 293T cells should be continued to culture for 48-72 hours untill the viral vectors were secreted from them. The supernatant, which contained abundant lentiviral vectors, was collected to concentrate to high concentrated solution. In the last step, the virus titer was measured by means of coubling dilution.
     The pure frozen EPCs were thawed and planted into the culture dish in the density of 1×105/cm2. As soon as the EPCs had become 60% confluence on the bottom of dish, the culture medium should be changed. At the same time, the concentrated lentiviral vectors were diluted to transfect with EPCs in the MOI for 50. These EPCs were co-cultured with lentiviral vectors for 24h and would be passaged as soon as they were 80%-85% confluence. These post-transfected EPCs could be amplified to a large number after several passages. At last step, we identified the function of these acquired EPCs in proliferation、migration、differentiation, angiogenesis and the resistance for ischemia、anoxia、inflammatory factors.
     Result:The final titer of lentiviral vectors was 5.0×108 TU/m in the concentrated viral solution. For these viral vectors, the average of efficiency for transfection was 87.9%±5.6%, when EPCs were transfected in the MOI for 50. The function of post-transfected EPCs showed that the ability of migration and angiogenesis were a little bit more enhanced, however, the proliferation、differentiation and the anti-apoptotic ability were significantly enhanced.
     Conclusion:When EPCs were transfected by our four plasmids system lentiviral vectors, the gene of hVEGF165-GFP carried by viral vectors could be transfered into these cells' genome. Furthermore this exogenous hVEGF165-GFP gene could enhance the function of EPCs in proliferation、migration、differentiation、angiogenesis and anti-apoptotic ability. These carriers of lentiviral vectors could play a critical role in the acquirement of high anti-apoptotic and more powerfully targeted migratory EPCs. However, the improvement for the ability of post-transfected EPCs in differentiation made these kinds of projenitor cells transfer to mature cells faster than untransfected ones. This characteristic could reduce the self-renewal potentiality of EPCs in vitro.
     Part3:Transplantation of untransfected and post-transfected endothelial progenitor cells to prevent and treat MODS
     Objective:to investigate the effect of transplantion of the post-transfected EPCs that come from bone marrow and assess their clinical value on post-trauma multiple organ dysfunction syndrome treatment. Moreover, we aim to compare the effect of treatment in the transplantation with the untransfected and post-transfected EPCs.
     Methods:Experimental animal bone marrow was in advance taken in accordance with the aforementioned method for EPCs isolation, culturation and amplification. The MODS animals were randomly divided into five groups:A:transplantation with LV/ hVEGF165-GFP-EPCs to the MODS animals (12 rabbits); B:transplantation with LV-GFP-EPCs to the MODS animals (12 rabbits); C:transplantation with untransfected EPCs to the MODS animals (12 rabbits); D:intramuscular injections of hVEGF165 to the MODS animals (12 rabbits); E:none treatment for MODS animals as the control group (12 rabbits). The distribution of transplanted EPCs in main organs was observed in the use of fluorescence microscope and the improvement of these main organs was also assessed after transplantation.
     Result:The mortality of the experimental animals for untransfected EPCs transplantation group (50%; 6/12) was significantly higher than those of LV/hVEGF165-GFP-EPCs transplantation group (25%; 6/12), but lower than those of injection of hVEGF165 group (83.3%,10/12) and MODS group (75%; 9/12) (P<0.05), however, there was no statistical difference to LV-GFP-EPCs group(58.3%; 7/12) (P<0.05). In addition, the survival time of experimental animal in LV/hVEGF165-GFP-EPCs group (136.48±42.27hours) was significantly longer than those in LV-GFP-EPCs group (87.79±24.12 hours), untransfected EPCs group (90.34±23.92 hours), injecting hVEGF165 group(59.21±20.35 hours) and MODS group(63.45±23.55 hours). Moreover, the examine result of WBC, GRAN, SALT, SAST, Cr, BUN in LV-GFP-EPCs group had no difference to those in untransfected EPCs group, but was slightly worse than those in LV-VEGF-GFP-EPCs group, and significantly better than those in the control group.
     Conclusion:In our study, we proved that exogenous hVEGF165 gene could significantly improve the anti-apoptotic ability of the EPCs when they had been transferred into EPCs gemone. Furthermore, these post-transfecetd EPCs definitely could enhance the repair ability for microcirculation. In short, EPCs transplantation could improve the post-traumatic rehabilitation and reduce the mobidity and mortality of MODS animals.
     Summary:When the body suffers to severe inflammatory trauma, the reduction and dysfunction of EPCs may be the key point in the development of MODS. Since the transplanted EPCs could migrate to different organs or tissue and transfer to vascular ECs in vivo, these EPCs might play a critical role to repair the microcirculation and could enhance the ability of angiogenesis, both of which can ameliorate the organs'dysfunction. When EPCs were transfected by the lentiviral vectors that carried hVEGF165-GFP gene, they could become stronger in the anti-apoptotic ability for SIRS and possess higher target therapeutical effect on the injured organs and circulation. These transplanted EPCs could prevent MODS, improve the MODS animal's prognosis and extend their survival time.
引文
1. Winter V, Czeslick E, Sablotzki A. Sepsis and multiple organ dysfunctions--pathophysiology and the topical concepts of treatment. Anesteziol Reanimatol.2007;(5):66-72.
    2. Botha AJ, Moore FA, Gμleserian KJ et al.Early neutophil sequestration after injury:A pathogenic mechanism for multiple organ failure.J Trauma.1995;39:411-417.
    3. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative endothelial progenitorcells for angiogenesis. Science.1997;275:964-7.
    4. Yoon CH, Hur J, Oh YI, Park KW, et al. Intercellular adhesion molecμle-1 is upregulated in ischemic muscle, which mediates trafficking of endothelial progenitor cells. Arterioscler Thromb Vasc Biol.2006; 26 (5):1066-72. Epub 2006 Feb 23.
    5. de Nigris F, Balestrieri ML, Williams-Ignarro S, et al. Therapeutic effects of autologous bone marrow cells and metabolic intervention in the ischemic hindlimb of spontaneously hypertensive rats involve reduced cell senescence and CXCR4/Akt/eNOS pathways.J Cardiovasc Pharmacol. 2007;50(4):424-33.
    6. Ikenaga S, Hamano K, Nishida M, et al. Autologous bone marrow implantation induced angiogenesis and improved deteriorated exercise capacity in a rat ischemic hindlimb model. J Surg Res.2001;96 (2):277-283.
    7. Tateishi-Yuyama E, Matsubara H, Murohara T, et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells:a pilot study and a randomised controlled trial. Lancet.2002;360(9331):427-35.
    8. Rodriguez-Losada, N, Garcia-Pinilla, J. M. Jimenez-Navarro, M. F.lynnet dagriorglynnet. Endothelial progenitor cells in cell-based therapy for cardiovascular disease. Cell Mol Biol (Noisy-le-grand),2008,54(1):11-23.
    9. Clavel, C., Verfaillie, C. M. Bone-marrow derived cells and heart repair. Curr Opin Organ Transplant,2008,13 (1):36-43.
    10. Landmeser U, Eug berdiug N, Bahlmann FH, et al. Statin-induced improvement of endothelial progenitor cell mobilization, myocardial neovascularization, left ventricμlar function and survival after experimental myocardial infarction requires endothelial nitricoxide synthase. Circulation,2004; 110 (14):1933-1939.
    11. Naldini L, Blomer U, Gallay P, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science,1996,272:263-267.
    12. Naldini L, Blomer U, Gage FH, et al. Eficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci USA,1996,93:11382-11388.
    13. Zufferey R, Nagy D, Mandel RJ, et al. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol,1997,15:871-875.
    14. Miyoshi H, Takahashi M, Gage FH, et al. Stable and efi cient gene transfer into the retina using an HIV-based lentiviral vector. Proc Natl Acad Sci USA,1997,94:10319-10323.
    15. Goldman MJ, Lee PS, Yang JS, et al. Lentiviral vectors for gene therapy of cystic fibrosis. Hum Gene Ther,1997,8:2261-2268.
    1、 Deitch EA. Multiple organ failure:pathothysiology and basic concepts of therapy. New York:Thieme, 1990.
    2、Chaudry I H. Rat and mouse of hypovolemic-traumatic shock. In:Schlag G, Redl H(ed): pathophysiology of shock, sepsis and organ failure. Germany:Springer-Verlag Berlin Heidelberg,1993, 3.
    3、Asahara T, Murohara T, Sullivan A, et al. Isolation of putative endothelial progenitorcells for angiogenesis. Science,1997;275:964-7.
    4、 Ott I, Keller U, Knoedler M, et al. Endothelial-like cells expanded from CD34+blood cells improve left ventricular function after experimental myocardial infarction. FASEB J.2005;19(8):992-994.
    5、 Devin JK, Vaughan DE, Blevins LS Jr, et al. Low-dose growth hormone administration mobilizes endothelial progenitor cells in healthy adults. Growth Horm IGF Res.2007 Dec 29.
    6、 George J, Shmilovich H, Deutsch V, et al. Comparative analysis of methods for assessment of circulating endothelial progenitor cells. Tissue Eng.2006;12(2):331-5
    7、 Gehling, U. M., Ergun, S., Schumacher, U.lynnetwwwdagriorglynnet. In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood, 2000,95(10):3106-3112.
    8、 Yin, T., Ma, X., Zhao, L. lynnetwwwdagriorglynnet. Angiotensin Ⅱ promotes NO production, inhibits apoptosis and enhances adhesion potential of bone marrow-derived endothelial progenitor cells. Cell Res,2008.
    9、Kawamoto, A., Tkebuchava, T., Yamaguchi, J.lynnetwwwdagriorglynnet. Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation,2003,107(3):461-468.
    10、 Fadini GP, Baesso I, Albiero M, et al. Technical notes on endothelial progenitor cells:ways to escape from the knowledge plateau. Atherosclerosis.2008 Apr;197(2):496-503.
    11、 Kim SY, Park SY, Kim JM, et al. Differentiation of endothelial cells from human umbilical cord blood AC133-CD14+cells. Ann Hematol.2005;84(7):417-22.
    12、Allen J, Khan S, Serrano MC, et al. Characterization of porcine circμlating progenitor cells:toward a functional endothelium. Tissue Eng Part A.2008;14(1):183-94.
    13、Hristov, M., Erl, W.,13、Weber, P. C. Endothelial progenitor cells:isolation and characterization[J]. Trends Cardiovasc Med,2003,13(5):201-206.
    14、 Langer H, May AE, Daub K, et al.Adherent platelets recruit and induce differentiation of murine embryonic endothelial progenitor cells to mature endothelial cells in vitro. Circ Res.2006;98(2):e2-10
    1. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative endothelial progenitorcells for angiogenesis. Science,1997; 275:964-7.
    2. Boyle AJ, Schuster M, Witkowski P, et al. Additive effects of endothelial progenitor cells combined with ACE inhibition and beta-blockade on left ventricular function following acute myocardial infarction. J Renin Angiotensin Aldosterone Syst.2005 Mar;6(1):33-7,
    3. Orlic D, Kajstura J, Chimenti S, Limana F, et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA.2001 Aug 28;98(18): 10344-10349.
    4. Strauer BE, Brehm M, Zeus T, et al. Immcomnary, human autologous stem celltransplantation for myocardial regeneration following myocardial infarction. Dtsch Med Wochenschr.2001; 126(34-35):932-938.
    5. Schachinger V, Assmus B, Britten MB, et al. Transplantation of progenitor cells and regeneration enhancement, in acute myocardial infarction:Final one-year results of the TOPCARE-AMI Trial. J Am Coll Cardiol.2004;44(8):1690-1699.
    6. Hristov, M., Weber, C. Endothelial progenitor cells in vascular repair and Remodeling [J]. Pharmacol Res,2008,58(2):148-151.
    7. Sheehy, A. M., Gaddis, N. C., Choi, J. O., and Malim, M. H. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral VIF protein. Mol Ther 2002; 4:57-66.
    8. Kafri, T, Blomer, U, Peterson, D,A, Gage, F,H and Verma, I, M (1997). Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors. Nat. Genet.1997,314-317.
    9. Naldini L, Blomer U, Gallay P, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector[J]. Science,1996,272(5259):263-267.
    10. Wu X, Wakefield JK, Liu H, et al. Development of a novel translentiviral vector that affords predictable safety. Mol Ther 2000; 2:47-55.
    11. Kafri T, Van PH, Gage FH, et al. Lentivirus vectors:regμlated gene expression. Mol Ther, 2000; 1(6):516-521.
    12. Baron, U., Gossen, M., and Bujard, H. Tetracycline-controlled transcription in eukaryotes:Novel transactivators with graded transactivation potential. Nucleic Acids Res.1997,25:2723-2729.
    13. Douglas J L, Lin W Y, Panis M L, et al. Eficient human immunodefieieney virus-based vector transduction of unstimμlated human mobilized peripheral bood cd34+cells in the SCID-huthy/liv model of human t cell lymphopoiesis. Hum GeneTher,2001,12:401-413.
    14. Von schvedler U, Kornbluth R S, Troon D. The nuclear localization signal of the matrix protein
    of human immunodeficieney virus type 1 allows the establishment of infection inmaerophages and quiscent t lymphocytes. Proc Natl Acad Sci USA,1994,91:6992.
    15. Ferram N, Alitalo K. Clinical applications of angiogenic growth actors and their inhibitors. NatMed,1999,5(12):1359 1364.
    16. Murohara T, Horowitz J R, Silver M, el ol. Vascular endothelial growth factor vascular permeability factor enhances vascular permeability via nitric oxide and prostacyclin. Circulation,1998,97(1):99-107.
    17. Iwaguro H, Yamaguchi J, Kalka C, et al. Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation.2002;12;105(6):732-8.
    18. Miyoshi H, Smith KA, Mosier DE, et al. Transduction of human CD34 cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors[J]. Science,1999,283(5402): 682-686.
    19. Zhao Y, Glesne D, Huberman E. A human peripheral blood monocytederived subset acts as pluripotent stem cells. Proc Natl Acad Sci,2003; 100:2426-2431.
    20. Mancuso, P., Peccatori, F., Rocca, A.lynnetwwwdagriorglynnet. Circulating endothelial cell number and viability are reduced by exposure to high altitude. Endothelium,2008,15(1): 53-58.
    21. You, D., Cochain, C., Loinard, C.lynnetwwwdagriorglynnet. Hypertension impairs postnatal vasculogenesis:role of antihypertensive agents. Hypertension,2008,51(6):1537-1544.
    22. Chang, E. I., Loh, S. A., Ceradini, D. J.lynnetwwwdagriorglynnet. Age decreases endothelial progenitor cell recruitment through decreases in hypoxia-induciblefactor 1 alpha stabilization during ischemia. Circulation,2007,116(24):2818-2829.
    23. Martin, K., Stanchina, M., Kouttab, N.lynnetwwwdagriorglynnet. Circulating endothelial cells and endothelial progenitor cells in obstructive sleep apnea. Lung,2008,186(3): 145-150.
    24. Hristov, M., Erl, W., Weber, P. C. Endothelial progenitor cells:mobilization, differentiation, and homing. Arterioscler Thromb Vasc Biol,2003,23(7):1185-1189.
    25. Salinas I, Meseguer J, Esteban MA.Antiproliferative effects and apoptosis induction by probiotic cytoplasmic extracts in fish cell lines. Vet Microbiol.2008; 126(1-3):287-94.
    26. Wilhelm C, Bal L, Smirnov P, et al.Magnetic control of vascular network formation with magnetically labeled endothelial progenitor cells. Biomaterials.2007;28(26):3797-806.
    1. Tilney NL, Bailey GL, Morgan AP. Sequential system failure after rupture of abdominal aortic aneurysms:an unsolved problem in postoperative care. Ann Surg.1973; 178(2): 117-122
    2. Bone RC, Sprung CL, Sibbald WJ. Definition for sepsis and organ failure. Crit Care Med.1992; 20(6):724-726.
    3. Annane D, Aegerter P, Jars-Guincestre MC, et al. Current epidemiology of septic shock:the CUB-Rea Network. Am JRespir Crit Care Med.2003; 168(2):165-172.
    4. Fabian TC. What's new in trauma and critical care. J Am Coll Surg.2001; 192 (2):276-286.
    5. Hassoun HT, Kone BC, Mercer DW, et al. Post-injury multiple organ failure:the role of the gut. Shock,2001; 15(1):1-10.
    6. O berholzer A, Keel M, Zellweger R, et al. Incidence of septic complications and multiple organ failure in severely injured patients is sex specific. J Trauma.2000;48 (5):932-937.
    7. Baue AE, Durham R, Faist E. Systemic inflammatory response syndrome (SIRS), multiple organ dysfunction syndrome (MODS), multiple organ failure (MOF):are we winning the battle. Shock. 1998; 10(2):79-89.
    8. Alberti C, Brun-Buisson C, Burchardi H, et al. Epidemiology of sepsis and infection in ICU patients from an international μlticentre cohort study. Intensive Care Med.2002; 28(4):108-121.
    9. Goris H, de Boer F, van der Waaij D. Myelopoiesis in experimentally contaminated specific pathogen-free and germfree mice during oral administration of polymyxin. Infect Immun.1985; 50(2):437-441.
    10. Hennessy M, Korbling Z. Circμlating stem cells and tissue repair. Panminerva Med 2004; 46: 1-11.
    11. Florian Togel, Zhuma Hu, Schatteman GC, et al. Administered mesenchymal stem cells protect against ischemic acuterenal failure throμgh differentiation-independent mechanisms. Am J Physiol Renal Physiol.2005;289(1):F31-42.
    12. Chapel A, Bertho JM, Hartley RS, et al. Mesenchymal stem cells home to injured tissues when co-infused with hematopoietic cells to treat a radiation-induced multiple organ failure syndrome. J Gene Med.2003;5(12):1028-38.
    13. Cole L, Bellomo R, Journois D, et al. High-volume haemofiltration in human septic shock. Intensive Care Med.2001,27(6):978-86.
    14. Rogiers P, Zhang H, Smail N, et al. Continuous venovenous hemofiltration improves cardiac performance by mechanisms other than tumor necrosis factor-alpha attenuation during endotoxic shock. Crit Care Med.1999,27 (9):1848-55.
    15. Fiuza C, Bustin M,Talwar S,et al.Inflammation-promoting activity of HMGB1 on human microvaseμlar endothelial cells. Blood.2002,101(7):2652-2660.
    16. Patschan D, Plotkin M, Goligorsky MS. Therapeutic use of stem and endothelial progenitor cells in acute renal injury. Curr Opin Pharmacol.2006;15(11):432-436.
    17. Taniguchi E, Kin M, Torimura T, et al. Endothelial progenitor cell transplantation improves the survival following liver injury in mice. Gastroenterology.2006; 130(2):521-31.
    18. Rosochacki SJ, Maejczyk M, Green fluorescent protein as a molecular marker in microbiology Acta Microbiol Pol,2002; 51 (3):2-5-216.
    19. Simone M, Marques and Joaquim C. G Esteves da Silva. Firefly bioluminescence:A Mechanistic Aprrocach of luciferase catalyzed reactions. IUBMB Life.2009 Jan:61(1):6-17.
    20. Hirschi KK. Gooddle MA. Hematopoietic, vascular and cardiac fates of bone marrow, derived stem cells. Gene Ther.2002,9(10):648-652.
    21. Zhao Y, Glesne D, Huberman E. A human peripheral blood monocytederived subset acts as pluripotent stem cells. Proc Natl Acad Sci 2003;100:2426-2431.
    22. Takahashi T, Kalka C, Masuda H, et al. Ischemia and cytokine induced mobilization of bone marrow derived endothelial progitor cells for neovascularization. Nat Med,1999,5:434-438.
    23. MireiUe AM, Mark B, Todd G, et al. GM. CSF and SDF treatment induces netvasculogenesis in a mouse ischemic hind limb model JAm CoB Surg,2004,199 (3):105-108.
    24. Asahara T. Takahashi T。 Masuda H, et al. VEGF contributes to postnatal covascularization by mobilizing bone marrow-derived endothelial progenitor cells. EBMO J,1999,18(14): 3964-3972.
    25. Smadja DM, Bieche I, Helley D, et al. Increased VEGFR2 expression during human late endothelial progenitor cells expansion enhances in vitro angiogenesis with up-regμlation of integrin alpha(6). J Cell Mol Med.2007;11(5):1149-61.
    26. Landmeser U, Eug berding N, Bahlmann FH, et al. Statin-induced improvement of endothelial progenitor cell mobilization, myocardial neovascularization, left ventricular function and survival after experimental myocardial infarction requires endothelial nitricoxide synthase. Circulation. 2004;110(14):1933-193.
    27. Capetandes A, Zhuang M, Haque FN, et al. Vascular endothelial growth factor is increased by human pulmonary cells stimulated with Dermatophagoides sp. extract. Allergy Asthma Proc. 2007;28(3):324-330.
    28. Murayama T, Tepper OM,Silver M, et al. Determination of bone marrow-derived endothelial progenitor cell significance in angiogenic growth factor-induced neovascularization in vivo. Exp Hematol.2002;30(8):967-972.
    29. Sengenes C, Miranville A, Maumus M, et al. Chemotaxis and Differentiation of Human Adipose Tissue CD34+/CD31-Progenitor Cells:Role of SDF-1 Released by Adipose Tissue Capillary Endothelial Cells.-Stem Cells.2007; [Epub ahead of print].
    30. Iwaguro H, Yamaguchi J, Kalka C, et al. Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration.Circulation,2002,105(6):732-738.
    31. Kalka C, Masuda H, Takahashi T, et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization Proc Natl Acad Sci USA,2000,97 (7):3422-3427.
    32. Crosby, J. R., Kaminski, W. E., Schatteman, G.lynnetwwwdagriorglynnet. Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation. Circ Res,2000, 87(9):728-730.
    33. Hill JM, Zalos G, Halcox JP, et al. Circulating endothelial progenitor cells vascular function and cardiovascular risk. N Engl J Med,2003,348:593-600.
    34. Schmidt-Lucke C, Rossig L, Fichtlscherer S, et al. Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events. Circulation,2005,111,2981-2987.
    1. Buckley TA, Gomersall CD, Ramsay SJ. Validation of the multiple organ dysfunction syndrome (MODS) score in critically ill medical and surgical patients. Intensive Care Med.2003; 29(12): 2216-2222.
    2. Lois C, Hong E J, Pease S, et al. Gennline transmission and tissue:specific expression of transgenes delivered by lentiviral vectors. Science,2002,295:868-872.
    3. Naldini L, Blomer U, Gallay P, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science,1996,272:263-267.
    4. Federico M. Lantiviruses a8 gene delivery vectors. Curt Opin Biotechnol,1999,10(5):448-453.
    5. Dull T, Zuferey R, Kelly M, et al. A thirdgeneration lentivirus vector with a conditional packaging system. J Virol,1998,72(11):8463-8471.
    6. Dougherty JP, Temin HM. A promoterlessretroviral vector indicates that there are sequences in U3 required for 3'RNA processing. Proc Natl Acad Sci USA,1987,84(5):1197-1201.
    7. Yu SF, yon Ruden T, Kantof PW, et al. Selfinactivating retroviral vectors designed for transfer of whole genes into mammalian cells. Proc Natl Aoad Sci USA,1986,83(10):3194-3198.
    8. Nakajima T, Nakamaru K, Hasegawa M, et al. Development of novel simian immunodeficiency virus vectors carrying a dual gene expression system. Hum Gene Therapy,2000,11:1863-1867.
    9. Miyoshi H, Smith KA, Mosier DE, et al. Transduction of human CD34 cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors [J]. Science,1999,283(5402):682-686.
    10. Kafri T, Blomer U, Petemon DA, et al. Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors. Nat Gene,1997,17(3):314-317
    11. Sriwiyanont P, Hachiya A, Pichens WL, et al. Lentiviral Vector-Mediated Gene Transfer to Human Hair Follicles. J Invest Dermatol.2009.Feb 26.
    12. Naldini L, Blomer U, Gage FH, et al. Eficient h'ansfer, integration, and sustained long-term of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci USA,1996, 92(21):11382-11388.
    13. Zuferey R, Nagy D, Mandel RJ, et al. Mutiply attenuated lentiviral vector achieved eficient gene delivery in vivo. Nat Biotechnol,1997,15(9):871-875.
    14. Pfoiler A, Ikawa M, Dayn Y, et al. Transgenesis by lentiviral vectors:Lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos. Prec Nail Acad Sci USA, 2002,99:2140-2145.
    15. Lai Z, Brady R O. Genetransferintothe central nervous system in rive using a recomb inant lntivirus vector. JNeurosci Res.2002,67:363-371.
    16. Yu X, Zhan X, Cheng L, et al. Lentiviral vectors with two independent internal promoters transfer high-level expression of multiple transgenes to human hematopoietic stem, progenitor cells. Molecular Therapy,2003,7:827-838
    17. Stripecke R. Lentiviral vector-mediated genetic programming of mouse and human dendritic cells. Methods Mol Biol.2009; 506:139-58.
    18. Zhao J, Pettigrew GJ, Thomas J, et al. Lentiviral vectors for delivery of genes into neonatal and adult ventricμlar cardiac myocytes in vitro and in vivo.Basic Res Cardiol,2002 Sep; 97(5):348-358.
    19. Pawliuk R, Westerman KA, Fabry M E, et al, Correction of sickle cell disease in transgenic mouse models by gene therapy. Science,2001 Dec;14; 294(5550):2368-2371
    20. Nguyen TH, Oberholzer J, Birraux J,et al, Highly efficient lentiviral vector-mediated transduction of nondividing, fully reimplantable primary hepatocytes. Mol Ther,2002 Aug; 6(2):199-209.
    21. Zahler MH, Irani A, M alhi H, et al. The application of a lentiviral vector for gene transfer in fetal human hepatocytes. J Gene Med,2000,2:186-193
    22. Adrie C, Pinsky MR. The inframmatory balance in human sepsis. Interns Care Med.2000;26:364-375.
    23. Hennessy M, Korbling Z, Circulating stem cells and tissue repair. Panminerva Med.2004;26:1-11
    24. Chapel A, Bertho JM, Hartley RS, et al. Mesenchymal stem cells home to injured tissues when co-infused with hematopoietic cells to treat a radiation-induced mμlti-organ failure syndrome. J Gene Med 2003;5(12):1028-38
    25. Okajima K. Multiple organ failure associated with severe infection-the molecular mechanism (s) and new therapeutic strategies. Nippon Rinsho.2007 Mar 28;65 Suppl 3:619-26.
    26. Kaushal S, Amiel GE, Guleserian KJ, et al. Functional small diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat Med,2001;7:1035-40
    27. Kawamoto A, Tkebuchava T, Yamaguchi JI, dal. Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation,2003,107(3):461-468.
    28. Kawamoto A, Gwon HC, Iwaguro H, et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation,2001,103(5):634-837.
    29. Orlic D, Kajstura J, Chimenti S. et al. Transplanted adult bone manrrow cells repair myocardial infarcts in mice. Ann NY Acad Sci,2001,938:221-229.
    30. Assmus KC, Meyer GP, Lots J, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction:the BOOST randomised controlled clinical trial. Lancet.2002; 245(7029):101-118.
    31. Shi Q, Ralli S, Wu MH, et al. Evidence for circulating bone marrow derived endothelial progenitor cells. Blood,1998,92:362-367.
    32. Griese DP, Achatz S, Batzlsperger CA, et al. Vascular gene delivery of anticoagμlants by transplantation of retrovirally transduced endothelial progenitor cells. Cardiovasc Res,2003, 58(2):469-477.
    33. Zhao Y, Glesne D, Huberman E. A human peripheral blood monocytederived subset acts as pluripotent stem cells. Proc Natl Acad Sci 2003; 100:2426-2431.
    34. Landmeser U, Eug berdiμg N, Bahlmann FH, et al. Statin-induced improvement of endothelial progenitor cell mobilization, myocardial neovascularization, left ventricular function and survival after experimental myocardial infarction requires endothelial nitricoxide synthase. Circulation. 2004;110(14):1933-1939.
    35. Helisch A, Schaper W. Arteriogenesis:the development and growth of collateral arteries. Microcircu lation.2003,10(1):83-97.
    36. Smadja DM, Bieche I, Helley D, et al. Increased VEGFR2 expression during human late endothelial progenitor cells expansion enhances in vitro angiogenesis with up-regμlation of integrin alpha (6). J Cell Mol Med.2007; Sep-Oct;11 (5):1149-61.
    37. Murayama T, Tepper OM,Silver M, et al. Determination of bone marrow-derived endothelial proge-nitor cell significance in angiogenic growth factor-induced neovascularization in vivo.Exp Hematol.2002; 30 (8):967-97.
    38. Iwaguro H, Yamaguchi J, Kalka C, et al. Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation.2002;12;105(6):732-8.
    39. Geiger F, Lorenz H, Xu W, et al. VEGF producing bone marrow stromal cells (BMSC) enhance vascularization and resorption of a natural coral bone substitute. Bone.2007;41(4):516-22.
    40. Nigris F, Balestrieri ML, Williams-Ignarro S, et al. Therapeutic effects of autologous bone marrow cells and metabolic intervention in the ischemic hindlimb of spontaneously hypertensive rats involve reduced cell senescence and CXCR4/Akt/eNOS pathways. J Cardiovasc Pharmacol.2001 Oct;50 (4):424-33.
    41. Kalka C, Macuda H, Takahashi T. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proe Natl Acad Sci USA.2000,97:3422-3427.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700