用户名: 密码: 验证码:
基于球状蛋白和葡聚糖自组装制备具有核壳结构的纳米凝胶及其作为药物载体的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的不断进步和发展,各学科知识不断交叉和相互渗透。纳米科技与生命医学的结合,使人类在疾病诊断、治疗等方面获得了新的认识和途径,纳米载药体系就是其中一个很有生命力的研究方向。化学家将生命科学的自组装引入到化学领域,通过分子水平上的自组装来构筑各种组装体已经发展成为制备纳米功能材料的主要手段。在这一背景下,两亲性高分子自组装得到的具有核壳结构的纳米粒子由于具备长循环等特点,在药物载体领域有着广阔的应用前景。当前研究较多的是合成高分子纳米载药体系,但其前体制备繁琐,常常需要使用有机溶剂,还存在成本和使用安全问题。另一方面,蛋白质和多糖等天然高分子来源广泛,具有良好的生物降解性和生物相容性,和很多药物分子存在较强的相互作用,在药物制剂领域已有广泛的应用。但是,目前基于蛋白质和多糖自组装制备具有核壳结构的纳米粒子及其用作药物载体的研究报道尚少。
     本文中,我们引入了两个在食品加工中常见的反应——Maillard反应和蛋白质加热凝胶化反应来实现球状蛋白和葡聚糖的组装。蛋白质在加热条件下变性并发生凝胶化,通过Maillard反应共价结合到蛋白质上的葡聚糖抑制了蛋白质宏观聚集形成了纳米凝胶。这种纳米凝胶表面山葡聚糖组成,其核由球状蛋白热交联网络结构组成,在生理pH和离子强度下具有很高的稳定性和储存稳定性。制备过程在全水相环境中进行,不使用有机溶剂、表面活性剂以及其它有毒试剂。此外,我们还利用药物和蛋白质的次价键作用,实现纳米凝胶高载药量和缓释的目的。具体包括了以下四个部分的工作:
     第一部分选用溶菌酶和葡聚糖进行组装制备溶菌酶-葡聚糖纳米凝胶,介绍了一种新型的基于球状蛋白和亲水性多糖的具有核壳结构的纳米凝胶的制备方法,并对此类纳米凝胶的形成机理、结构、性质以及药物负载性能进行了研究。我们首先通过溶菌酶与葡聚糖进行Maillard反应制备了溶菌酶-葡聚糖共价结合物,然后通过加热诱导此共价结合物凝胶化得到溶菌酶-葡聚糖纳米凝胶。我们详细考察了制备纳米凝胶过程中的各种影响因素,得到了最佳的制备条件,在最佳制备条件下可以得到单分散的粒径约200 nm的纳米凝胶粒子。溶菌酶-葡聚糖纳米凝胶粒子基本呈球形,具有核壳结构,其核由溶菌酶组成,其壳由葡聚糖组成,其溶胀收缩比为30。溶菌酶-葡聚糖纳米凝胶在很宽pH范围内和高离子强度下都不发生二次聚集或解离,粒径不随pH值的变化而变化。溶菌酶-葡聚糖纳米凝胶溶液很稳定,4℃储存期可达6个月以上,其冻干粉末样品可重新水合分散。我们还选用布洛芬为药物模型,研究了不同pH值下溶菌酶-葡聚糖纳米凝胶对布洛芬的包埋,结果表明溶菌酶-葡聚糖纳米凝胶适合于包埋疏水性药物。此外,我们还发现其它球状蛋白质和葡聚糖也可以通过类似方法组装得到纳米凝胶,证明了这种纳米凝胶制备方法具有普适性。
     第二部分选用在生物医药领域广泛应用的牛血清白蛋白和葡聚糖进行组装制备白蛋白-葡聚糖纳米凝胶。首先通过白蛋白和葡聚糖进行Maillard反应制备了白蛋白-葡聚糖共价结合物,然后加热白蛋白-葡聚糖共价结合物溶液即可得到白蛋白-葡聚糖纳米凝胶。我们详细研究了制备过程中的各种影响因素,得到了白蛋白-葡聚糖纳米凝胶的最佳制备条件,在最佳制备条件下可以得到单分散的粒径约200 nm的纳米凝胶粒子。我们还根据文献报道通过去溶剂-热交联法制备了单独白蛋白纳米粒子,并对比了单独白蛋白纳米粒子和白蛋白-葡聚糖纳米凝胶在不同pH条件下的聚集行为,发现单独白蛋白纳米粒子在白蛋白等电点附近发生明显的二次聚集,而白蛋白-葡聚糖纳米凝胶在白蛋白等电点附近不发生二次聚集。白蛋白-葡聚糖纳米凝胶具有核壳结构,其核由白蛋白组成,其壳由葡聚糖组成。白蛋白-葡聚糖纳米凝胶溶液很稳定,4℃储存期可达数月以上,其冻干粉末样品可重新水合分散。以芘为探针进行荧光测试,发现白蛋白-葡聚糖纳米凝胶具有较强的疏水性。我们选用阿霉素为药物模型,研究了白蛋白-葡聚糖纳米凝胶在不同的pH下对阿霉素的包埋性质,其最高包埋量和包埋效率分别可达30%和75%。
     第三部分选用布洛芬、白蛋白和葡聚糖制备布洛芬-白蛋白-葡聚糖纳米凝胶。首先通过Maillard反应制备白蛋白-葡聚糖共价结合物,然后混合布洛芬和白蛋白-葡聚糖共价结合物形成纳米复合物,再进一步加热得到布洛芬-白蛋白-葡聚糖纳米凝胶。我们详细考察了制备布洛芬-白蛋白-葡聚糖纳米凝胶过程中的各种影响因素,得到了纳米凝胶的最佳制备条件,在最佳制备条件下可以得到单分散的粒径约60-70 nm的纳米凝胶粒子。研究发现布洛芬-白蛋白-葡聚糖纳米凝胶粒子呈球形,具有核壳结构,其壳由葡聚糖组成,核由布洛芬和白蛋白共同组成。布洛芬在纳米凝胶中的最高包埋量和包埋效率可分别达到50%和90%以上。布洛芬-白蛋白-葡聚糖纳米凝胶溶液很稳定,其冻干粉末样品可重新水合分散。布洛芬的体外释放研究表明,包载布洛芬的布洛芬-白蛋白-葡聚糖纳米凝胶在高离子强度下释放布洛芬的速度较快,在低离子强度下释放速度较慢。
     第四部分选用抗肿瘤药物盐酸阿霉素、白蛋白和葡聚糖制备阿霉素-白蛋白-葡聚糖纳米凝胶。首先通过Maillard反应制备白蛋白-葡聚糖共价结合物,然后混合阿霉素和白蛋白-葡聚糖共价结合物形成复合物,经过加热组装得到阿霉素-白蛋白-葡聚糖纳米凝胶。我们详细考察了制备阿霉素-白蛋白-葡聚糖纳米凝胶过程中的各种影响因素,得到了纳米凝胶的最佳制备条件,在最佳制备条件下可以得到单分散的粒径约120 nm的纳米凝胶粒子。纳米凝胶粒子呈球形,具有核壳结构,其壳由葡聚糖组成,其核由阿霉素和白蛋白共同组成。阿霉素在阿霉素-白蛋白-葡聚糖纳米凝胶中的最高包埋量和包埋效率可分别达到45%和95%以上。阿霉素的体外释放研究表明,包载阿霉素的阿霉素-白蛋白-葡聚糖纳米凝胶具备较好的缓释效果,在pH 7.4缓冲溶液中释放阿霉素较慢,在pH 5.0缓冲溶液中释放阿霉素相对较快。
With the development of science and technology,the knowledge on different subjects is intercrossing and integrating.Nanomedicine that emerges from nanotechnology and medicine shows great potential in diagnosis and therapy. Multifunctional nanocarriers are a particularly hot topic in nanomedicine.The concept of self-assembly in life science was introduced into chemistry,and molecular based self-assembly offers one of the most general strategies for fabricating nanostructure materials.Self-assembled core-shell nanoparticles of amphiphilic polymers with PEG segment show its unique "stealth" properties when they are used as drug carriers.The polymeric nanoparticles based on synthetic polymers have been widely studied; however,they are limited by their high cost,non-green process and health safety.On the other hand,biopolymers such as proteins and polysaccharides with good biocompatibility and biodegradability are extensively used in pharmaceutics fields, because of its natural source and binding abilities with drugs.However,up to now, there are few reports of self-assembled core-shell nanoparticles based on proteins and polysaccharides as well as their biomedical application.
     Maillard reaction and protein gelation were introduced into our work to prepare nanogels from globular proteins and polysaccharides(dextran).Upon heating globular proteins tend to be denatured and form aggregates,but dextran that conjugated into the protein prevents the macroscopic aggregates leading to nanogels formation.The shell of the nanogels is composed of dextran and their core is protein gels.The nanogels display good stabilities in physiological conditions.The preparation process is carried out in aqueous solution,avoiding of organic solvent,surfactants and other toxic agents.In addition,non-covalent interactions between proteins and drugs were also introduced into our work to obtain high drug loading capacity and sustained release.This thesis contains the following four parts:
     Firstly,lysozyme and dextran,two natural biopolymers,were used to prepare lysozyme-dextran nanogels.A novel method has been developed for preparing nanogels with globular protein core and dextran shell.The method involves Maillard dry-heat process and heat-gelation process.The effects of different factors on the formation of nanogels were studied,and monodispersed nanogels with 200 nm diameter were obtained under optimum conditions.The nanogels have a spherical shape having a lysozyme core and dextran shell structure and swelling ratio of about 30.The nanogel solutions are very stable against long term storage at 4℃,even with pH and ionic strength changes.Besides,the nanogels can be stored as lyophilized powder.As a drug model,ibuprofen can be loaded into the nanogels by virtue of their electrostatic and hydrophobic interactions.The largest loading amount(8.8%) and the best efficiency(43%) of ibuprofen loading were achieved in its protonated form.The knowledge gained from these studies on the mechanism of formation of lysozyme-dextran nanogels is significant and the strategies developed thereby can be effectively applied to prepare other globular protein-dextran nanogels.
     Secondly,bovine serum albumin(BSA) and dextran were used to fabricate BSA-dextran nanogels.In general,dextran was first covalent conjugated to albumin by Maillard reaction,and then the conjugate solution was heated to produce BSA-dextran nanogels.Effects of variable parameters of formulation and process on nanogel formation were studied,and monodispersed nanogels with 200 nm diameter were obtained under optimum conditions.TEM and t-potential confirmed a core-shell structure and a spherical shape.The nanogel can be stored for months at 4℃and re-dispersible after lyophilization.In addition,the nanogels are stable in a broad pH range,while unmodified BSA nanoparticles flocculate around the isoelectric point of BSA.A pyrene probe fluorescence measurement shows a relative hydrophobic environment in the nanogels.As a drug model,doxorubicin can be loaded into the nanogels by virtue of their electrostatic and hydrophobic interactions.The largest loading amount(30%) and the best efficiency(75%) of doxorubicin loading were achieved at neutral pH.
     Thirdly,ibuprofen,bovine serum albumin(BSA) and dextran were used to fabricate ibuprofen-BSA-dextran nanogels.BSA-dextran conjugates were first synthesized,then ibuprofen and the conjugates were mixed together to produce ibuprofen-BSA-dextran nanocomplexes,finally the nanocomplexes were heated to obtain ibuprofen-BSA-dextran nanogels.Effects of variable parameters of formulation and process on ibuprofen-BSA-dextran nanogel formation were studied, and monodispersed nanogels with 60 - 70 nm diameter were obtained under optimum conditions.Besides,the nanogels can be stored as lyophilized powder.The nanogels have a spherical shape having a BSA and ibuprofen core and dextran shell structure. The technique used can produce a high loading capacity for ibuprofen,the largest loading amount and efficiency of ibuprofen in the nanogels is above 50%and 90%, respectively.In vitro release study showed a sustained release of ibuprofen from the nanogels in a low ionic strength solution,and a rapid release of ibuprofen from the nanogels in a high ionic strength solution.
     Finally,doxorubicin,bovine serum albumin(BSA) and dextran were used to fabricate doxorubicin-BSA-dextran nanogels.BSA-dextran conjugates were first synthesized,then doxorubicin and the conjugates were mixed to produce doxorubicin-BSA-dextran soluble complexes,finally the complexes were further heated to obtain doxorubicin-BSA-dextran nanogels.Effects of variable parameters of formulation and process on doxorubicin-BSA-dextran nanogel formation were studied, and monodispersed nanogels with 120 nm diameter were obtained under optimum conditions.The nanogels have a spherical shape having a BSA and doxorubicin core and dextran shell structure.The technique used can produce a high loading capacity for doxorubicin,the largest loading amount and efficiency of doxorubicin in the nanogels is 45%and 95%,respectively.In vitro release study shows a sustained release of doxorubicin from the nanogels,and a relatively rapider release of doxorubicin at pH 5.0 than that of at pH 7.4.
引文
[1]徐辉碧,杨亚江.纳米医药[M].清华大学出版社:北京,2004;p117-146.
    [2]Ikkala O,ten Brinke G.Functional materials based on self-assembly of polymeric supramolecules[J].Science 2002,295(5564):2407-2409.
    [3]Whitesides G M,Boncheva M.Beyond molecules:Self-assembly of mesoscopic and macroscopic components[J].Proceedings of the National Academy of Sciences of the United States of America 2002,99(8):4769-4774.
    [4]Whitesides G M,Grzybowski B.Self-assembly at all scales[J].Science 2002,295(5564):2418-2421.
    [5]Kwon G S,Kataoka K.Block-Copolymer Micelles as Long-Circulating Drug Vehicles[J].Advanced Drug Delivery Reviews 1995,16(2-3):295-309.
    [6]Alexandridis P.Amphiphilic copolymers and their applications[J].Current Opinion in Colloid & Interface Science 1996,1(4):490-501.
    [7]Kwon G S.Polymeric micelles as new drug carriers[J].Advanced Drug Delivery Reviews 1996,21(2):107-116.
    [8]Allen C,Maysinger D,Eisenberg A.Nano-engineering block copolymer aggregates for drug delivery[J].Colloids and Surfaces B-Biointerfaces 1999,16(1-4):3-27.
    [9]Marty J J,Oppenheim R C,Speiser P.Nanoparticles-New Colloidal Drug Delivery System[J].Pharmaceutica Acta Helvetiae 1978,53(1):17-23.
    [10]Kreuter J.Nanoparticles-a historical perspective[J].International Journal of Pharrnaceutics 2007,331(1):1-10.
    [11]Scheffel U,Wagner H N,Rhodes B A,Nataraja.Tk.Albumin Microspheres for Study of Reticuloendothelial System[J].Journal of Nuclear Medicine 1972,13(7):498-&.
    [12]Scheffel U,Rhodes B A,Wagner H N.Further Development of Albumin Microspheres for Quantitative Studies of Recticuloendothelial System[J].Journal of Nuclear Medicine 1971,12(6):462-&.
    [13]Panyam J,Labhasetwar V.Biodegradable nanoparticles for drug and gene delivery to cells and tissue[J].Advanced Drug Delivery Reviews 2003,55(3):329-347.
    [14]查刘生,高海峰,杨武利,蒋新国,府寿宽,聚合物纳米粒子用于给药载体[J].高分子通报 2002,3(6):24-32.
    [15]Soppimath K S,Aminabhavi T M,Kulkarni A R,Rudzinski W E.Biodegradable polymeric nanoparticles as drug delivery devices[J].Journal of Controlled Release 2001,70(1-2):1-20.
    [16]姚日生,董岸杰,刘永琼.药用高分子材料[M].化学工业出版社:北京,2003.
    [17]Murakami H,Kobayashi M,Takeuchi H,Kawashima Y.Further application of a modified spontaneous emulsification solvent diffusion method to various types of PLGA and PLA polymers for preparation of nanoparticles[J].Powder Technology 2000,107(1-2):137-143.
    [18]Galindo-Rodriguez S A,Puel F,Briancon S,Allemann E,Doelker E,Fessi H.Comparative scale-up of three methods for producing ibuprofen-loaded nanoparticles [J].European Journal of Pharmaceutical Sciences 2005,25(4-5):357-367.
    [19]Dreis S,Rothweller F,Michaelis A,Cinatl J,Kreuter J,Langer K.Preparation,characterisation and maintenance of drug efficacy of doxorubicin-loaded human serum albumin(HSA) nanoparticles[J].International Journal of Pharmaceutics 2007,341(1-2):207-214.
    [20]Lu B,Xiong S B,Yang H,Yin X D,Zhao R B.Mitoxantrone-loaded BSA nanospheres and chitosan nanospheres for local injection against breast cancer and its lymph node metastases-Ⅰ:Formulation and in vitro characterization[J].International Journal of Pharmaceutics 2006,307(2):168-174.
    [21] Lin W, Garnett M C, Schacht E, Davis S S, Ilium L. Preparation and in vitro characterization of HSA-mPEG nanoparticles [J]. International Journal of Pharmaceutics 1999,189(2): 161-170.
    
    [22] Lin W, Garnett M C, Davis S S, Schacht E, Ferruti P, Ilium L. Preparation and characterisation of rose Bengal-loaded surface-modified albumin nanoparticles [J]. Journal of Controlled Release 2001, 71(1): 117-126.
    
    [23] Lin W, Garnett M C, Davies M C, Bignotti F, Ferruti P, Davis S S, Ilium L. Preparation of surface-modified albumin nanospheres [J]. Biomaterials 1997, 18(7): 559-565.
    
    [24] Steinhauser I, Spankuch B, Strebhardt K, Langer K. Trastuzumab-modified nanoparticles: Optimisation of preparation and uptake in cancer cells [J]. Biomaterials 2006,27(28): 4975-4983.
    
    [25] Irache J M, Bergougnoux L, Ezpeleta I, Gueguen J, Orecchioni A M. Optimization and in vitro stability of legumin nanoparticles obtained by a coacervation method [J]. International Journal of Pharmaceutics 1995, 126(1-2): 103-109.
    
    [26] Agnihotri S A, Mallikarjuna N N, Aminabhavi T M. Recent advances on chitosan-based micro- and nanoparticles in drug delivery [J]. Journal of Controlled Release 2004,100(1): 5-28.
    
    [27] Mao H Q, Roy K, Troung-Le V L, Janes K A, Lin K Y, Wang Y, August J T, Leong K W. Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency [J]. Journal of Controlled Release 2001,70(3): 399-421.
    
    [28] Riess G. Micellization of block copolymers [J]. Progress in Polymer Science 2003,28(7): 1107-1170.
    
    [29] Gref R, Minamitake Y, Peracchia M T, Trubetskoy V, Torchilin V, Langer R. Biodegradable Long-Circulating Polymeric Nanospheres [J]. Science 1994, 263(5153): 1600-1603.
    
    [30] Riley T, Heald C R, Stolnik S, Garnett M C, Ilium L, Davis S S, King S M, Heenan R K, Purkiss S C, Barlow R J, Gellert P R, Washington C. Core-shell structure of PLA-PEG nanoparticles used for drug delivery [J]. Langmuir 2003, 19(20): 8428-8435.
    
    [31] Colfen H. Double-hydrophilic block copolymers: Synthesis and application as novel surfactants and crystal growth modifiers [J]. Macromolecular Rapid Communications 2001, 22(4): 219-252.
    [32] Dou H J, Kang S. Double-hydrophilic block copolymers and their self-assembly [J]. Progress in Chemistry 2005,17(5): 854-859.
    
    [33] He L H, Zhang Y H, Ren L X, Chen Y M, Wei H, Wang D J. Double-hydrophilic polymer brushes: Synthesis and application for crystallization modification of calcium carbonate [J]. Macromolecular Chemistry and Physics 2006,207(7): 684-693.
    
    [34] Martin T J, Prochazka K, Munk P, Webber S E. pH-dependent micellization of poly(2-vinylpyridine)-block-poly(ethylene oxide) [J]. Macromolecules 1996, 29(18): 6071-6073.
    
    [35] Butun V, Liu S, Weaver J V M, Bories-Azeau X, Cai Y, Armes S P. A brief review of 'schizophrenic' block copolymers [J]. Reactive & Functional Polymers 2006, 66(1): 157-165.
    
    [36] Butun V, Billingham N C, Armes S P. Unusual aggregation behavior of a novel tertiary amine methacrylate-based diblock copolymer: Formation of micelles and reverse micelles in aqueous solution [J]. Journal of the American Chemical Society 1998,120(45): 11818-11819.
    
    [37] Wei H, Zhang X Z, Zhou Y, Cheng S X, Zhuo R X. Self-assembled thermoresponsive micelles of poly(N-isopropylacrylamide-b-methyl methacrylate) [J]. Biomaterials 2006,27(9): 2028-2034.
    
    [38] Wei H, Zhang X Z, Cheng C, Cheng S X, Zhuo R X. Self-assembled, thermosensitive micelles of a star block copolymer based on PMMA and PNIPAAm for controlled drug delivery [J]. Biomaterials 2007,28(1): 99-107.
    
    [39] Harada A. Formation of Polyion Complex Micelles in an Aqueous Milieu from a Pair of Oppositely-Charged Block-Copolymers with Poly(Ethylene Glycol) Segments [J]. Macromolecules 1995, 28(15): 5294-5299.
    
    [40] Lysenko E A, Chelushkin P S, Bronich T K, Eisenberg A, Kabanov V A, Kabanov A V. Formation of multilayer polyelectrolyte complexes by using block ionomer micelles as nucleating particles [J]. Journal of Physical Chemistry B 2004, 108(33): 12352-12359.
    
    [41] Harada A, Kataoka K. Formation of stable and monodispersive polyion complex micelles in aqueous medium from poly(L-lysine) and poly(ethylene glycol)-poly(aspartic acid) block copolymer [J]. Journal of Macromolecular Science-Pure and Applied Chemistry 1997, A34(10): 2119-2133.
    
    [42] Kataoka K, Togawa H, Harada A, Yasugi K, Matsumoto T, Katayose S. Spontaneous formation of polyion complex micelles with narrow distribution from antisense oligonucleotide and cationic block copolymer in physiological saline [J]. Macromolecules 1996,29(26): 8556-8557.
    
    [43] Vinogradov S V, Bronich T K, Kabanov A V. Self-assembly of polyamine-poly(ethylene glycol) copolymers with phosphorothioate oligonucleotides [J]. Bioconjugate Chemistry 1998,9(6): 805-812.
    
    [44] Harada A, Kataoka K. On-off control of enzymatic activity synchronizing with reversible formation of supramolecular assembly from enzyme and charged block copolymers [J]. Journal of the American Chemical Society 1999,121(39): 9241-9242.
    
    [45] Harada A, Kataoka K. Novel polyion complex micelles entrapping enzyme molecules in the core. 2. Characterization of the micelles prepared at nonstoichiometric mixing ratios [J]. Langmuir 1999,15(12): 4208-4212.
    
    [46] Jaturanpinyo M, Harada A, Yuan X F, Kataoka K. Preparation of bionanoreactor based on core-shell structured polyion complex micelles entrapping trypsin in the core cross-linked with glutaraldehyde [J]. Bioconjugate Chemistry 2004,15(2): 344-348.
    
    [47] Oh K T, Bronich T K, Kabanov V A, Kabanov A V. Block polyelectrolyte networks from poly(acrylic acid) and poly(ethylene oxide): Sorption and release of cytochrome C [J]. Biomacromolecules 2007, 8(2): 490-497.
    
    [48] Thunemann A F, Schutt D, Sachse R, Schlaad H, Mohwald H. Complexes of poly(ethylene oxide)-block-poly(L-glutamate) and diminazene [J]. Langmuir 2006, 22(5): 2323-2328.
    
    [49] Thunemann A F, Beyermann J, Kukula H. Poly(ethylene oxide)-b-poly(L-lysine) complexes with retinoic acid [J]. Macromolecules 2000,33(16): 5906-5911.
    
    [50] Wang G, Tong X, Zhao Y. Preparation of azobenzene-containing amphiphilic diblock copolymers for light-responsive micellar aggregates [J]. Macromolecules 2004,37(24): 8911-8917.
    
    [51 ] Jiang J Q, Tong X, Zhao Y. A new design for light-breakable polymer micelles [J]. Journal of the American Chemical Society 2005, 127(23): 8290-8291.
    
    [52] Babin J, Lepage M, Zhao Y. "Decoration" of shell cross-linked reverse polymer micelles using ATRP: A new route to stimuli-responsive nanoparticles [J]. Macromolecules 2008,41: 1246-1253.
    
    [53] Harada A, Kataoka K. Novel polyion complex micelles entrapping enzyme molecules in the core: Preparation of narrowly-distributed micelles from lysozyme and poly(ethylene glycol)-poly(aspartic acid) block copolymer in aqueous medium [J]. Macromolecules 1998, 31(2): 288-294.
    [54]Nishiyama N,Kataoka K.Preparation and characterization of size-controlled polymeric micelle containing cis-dichlorodiammineplatinum(Ⅱ) in the core[J].Journal of Controlled Release 2001,74(1-3):83-94.
    [55]Bronich T K,Keifer P A,Shlyakhtenko L S,Kabanov A V.Polymer micelle with cross-linked ionic core[J].Journal of the American Chemical Society 2005,127(23):8236-8237.
    [56]Cegnar M,Kristl J,Kos J.Nanoscale polymer carriers to deliver chemotherapeutic agents to tumours[J].Expert Opinion on Biological Therapy 2005,5(12):1557-1569.
    [57]Fukumori Y,Ichikawa H.Nanoparticles for cancer therapy and diagnosis[J].Advanced Powder Technology 2006,17(1):1-28.
    [58]Sutton D,Nasongkla N,Blanco E,Gao J M.Functionalized micellar systems for cancer targeted drug delivery[J].Pharmaceutical Research 2007,24(6):1029-1046.
    [59]Hu J H,Johnston K P,Williams R O.Nanoparticle engineering processes for enhancing the dissolution rates of poorly water soluble drugs[J].Drug Development and Industrial Pharmacy 2004,30(3):233-245.
    [60]Forrest M L,Yanez J A,Remsberg C M,Ohgami Y,Kwon G S,Davies N M.Paclitaxel prodrugs with sustained release and high solubility in poly(ethylene glycol)-b-poly(epsilon-caprolactone) micelle nanocarriers:Pharmacokinetic disposition,tolerability,and cytotoxicity[J].Pharmaceutical Research 2008,25(1):194-206.
    [61]Lee S C,Huh K M,Lee J,Cho Y W,Galinsky R E,Park K.Hydrotropic polymeric micelles for enhanced paclitaxel solubility:In vitro and in vivo characterization[J].Biomacromolecules 2007,8(1):202-208.
    [62]李玉宝,顾宁,魏于全.纳米生物医药材料[M].化学工业出版社:北京,2004.
    [63]Dang J M,Leong K W.Natural polymers for gene delivery and tissue engineering[J].Advanced Drug Delivery Reviews 2006,58(4):487-499.
    [64]Damge C,Reis C P,Maincent P.Nanoparticle strategies for the oral delivery of insulin[J].Expert Opin Drug Deliv 2008,5(1):45-68.
    [65]Illum L,Jabbal-Gill I,Hinchcliffe M,Fisher A N,Davis S S.Chitosan as a novel nasal delivery system for vaccines[J].Advanced Drug Delivery Reviews 2001,51(1-3):81-96.
    [66]Kabanov A V,Batrakova E V.New technologies for drug delivery across the blood brain barrier[J].Current Pharmaceutical Design 2004,10(12):1355-1363.
    [67]Kreuter J.Nanoparticulate systems for brain delivery of drugs[J].Advanced Drug Delivery Reviews 2001,47(1):65-81.
    [68]Hartig S M,Greene R R,Dikov M M,Prokop A,Davidson J M.Multifunctional nanoparticulate polyelectrolyte complexes[J].Pharmaceutical Research 2007,24:2353-2369.
    [69]Rapoport N.Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery[J].Progress in Polymer Science 2007,32(8-9):962-990.
    [70]马光辉,苏志国.新型高分子材料[M].化学工业出版社:北京,2003;p 1-30.
    [71]Couvreur P.Controlled Drug-Delivery with Nanoparticles-Current Possibilities and Future-Trends[J].European Journal of Pharmaceutics and Biopharmaceutics 1995,41(1):2-13.
    [72]Otsuka H,Nagasaki Y,Kataoka K.PEGylated nanoparticles for biological and pharmaceutical applications[J].Advanced Drug Delivery Reviews 2003,55(3):403-419.
    [73]高志贤,李小强.纳米生物医药[M].化学工业出版社:北京,2007;p 157-191.
    [74]Lemarchand C,Gref R,Couvreur P.Polysaccharide-decorated nanoparticles[J].European Journal of Pharmaceutics and Biopharmaceutics 2004,58(2):327-341.
    [75]O'Reilly R K,Hawker C J,Wooley K L.Cross-linked block copolymer micelles:Functional nanostructures of great potential and versatility[J].Chemical Society Reviews 2006,35(11):1068-1083.
    [76]Huang H Y,Remsen E E,Kowalewski T,Wooley K L.Nanocages derived from shell cross-linked micelle templates[J].Journal of the American Chemical Society 1999,121(15):3805-3806.
    [77]Zhang Y,Jiang M,Zhao J,Ren X,Chen D,Zhang G.A novel route to thermosensitive polymeric core-shell aggregates and hollow spheres in aqueous media [J].Advanced Functional Materials 2005,15(4):695-699.
    [78]Vinogradov S V,Bronich T K,Kabanov A V.Nanosized cationic hydrogels for drug delivery:preparation,properties and interactions with cells[J].Advanced Drug Delivery Reviews 2002,54(1):135-147.
    [79] Santhi K. A study on the preparation and anti-tumor efficacy of bovine serum albumin nanospheres containing 5-fluorouracil [J]. Drug Development and Industrial Pharmacy 2002,28(9): 1171-1179.
    
    [80] Santhi K. Nonliposomal approach - A study of preparation of egg albumin nanospheres containing amphotericin-B [J]. Drug Development and Industrial Pharmacy 1999,25(4): 547-551.
    
    [81] Merodio M, Arnedo A, Renedo M J, Irache J M. Ganciclovir-loaded albumin nanoparticles: characterization and in vitro release properties [J]. European Journal of Pharmaceutical Sciences 2001,12(3): 251-259.
    
    [82] Arnedo A, Irache J M, Merodio M, Millan M S E. Albumin nanoparticles improved the stability, nuclear accumulation and anticytomegaloviral activity of a phosphodiester oligonucleotide [J]. Journal of Controlled Release 2004, 94(1): 217-227.
    
    [83] Arnedo A, Espuelas S, Irache J M. Albumin nanoparticles as carriers for a phosphodiester oligonucleotide [J]. International Journal of Pharmaceutics 2002, 244(1-2): 59-72.
    
    [84] Chen G Q, Lin W, Coombes A G A, Davis S S, Ilium L. Preparation of Human Serum-Albumin Microspheres by a Novel Acetone-Heat Denaturation Method [J]. Journal of Microencapsulation 1994,11(4): 395-407.
    
    [85] Li F Q, Su H, Wang J, Liu J Y, Zhu Q G, Fei Y B, Pan Y H, Hu J H. Preparation and characterization of sodium ferulate entrapped bovine serum albumin nanoparticles for liver targeting [J]. International Journal of Pharmaceutics 2008,349: 274-282.
    
    [86] Luppi B, Cerchiara T, Bigucci R, Caponio D, Zecchi V. Bovine serum albumin nanospheres carrying progesterone inclusion complexes [J]. Drug Delivery 2005, 12(5): 281-287.
    
    [87] Santhi K. Study of biodistribution of methotrexate-loaded bovine serum albumin nanospheres in mice [J]. Drug Development and Industrial Pharmacy 2000, 26(12): 1293-1296.
    
    [88] Michaelis K, Hoffmann M M, Dreis S, Herbert E, Alyautdin R N, Michaelis M, Kreuter J, Langer K. Covalent linkage of apolipoprotein E to albumin nanoparticles strongly enhances drug transport into the brain [J]. Journal of Pharmacology and Experimental Therapeutics 2006, 317(3): 1246-1253.
    [89] Segura S, Espuelas S, Renedo M J, Irache J M. Potential of albumin nanoparticles as carriers for interferon gamma [J]. Drug Development and Industrial Pharmacy 2005,31(3): 271-280.
    
    [90] Roser M, Fischer D, Kissel T. Surface-modified biodegradable albumin nano- and microspheres. II: effect of surface charges on in vitro phagocytosis and biodistribution in rats [J]. European Journal of Pharmaceutics and Biopharmaceutics 1998,46(3): 255-263.
    
    [91] Zhang L K, Hou S X, Mao S J, Wei D P, Song X R, Lu Y. Uptake of folate-conjugated albumin nanoparticles to the SKOV3 cells [J]. International Journal of Pharmaceutics 2004,287(1-2): 155-162.
    
    [92] Kreuter J, Hekmatara T, Dreis S, Vogel T, Gelperina S, Langer K. Covalent attachment of apolipoprotein A-I and apolipoprotein B-100 to albumin nanoparticles enables drug transport into the brain [J]. Journal of Controlled Release 2007, 118(1): 54-58.
    
    [93] Gupta A K, Gupta M, Yarwood S J, Curtis A S G. Effect of cellular uptake of gelatin nanoparticles on adhesion, morphology and cytoskeleton organisation of human fibroblasts [J]. Journal of Controlled Release 2004, 95(2): 197-207.
    
    [94] Leo E, Vandelli M A, Cameroni R, Forni F. Doxorubicin-loaded gelatin nanoparticles stabilized by glutaraldehyde: Involvement of the drug in the cross-linking process [J]. International Journal of Pharmaceutics 1997, 155(1): 75-82.
    
    [95] Saxena A, Sachin K, Bohidar H B, Verma A K. Effect of molecular weight heterogeneity on drug encapsulation efficiency of gelatin nano-particles [J]. Colloids and Surfaces B-Biointerfaces 2005,45(1): 42-48.
    
    [96] Lu Z, Yeh T K, Tsai M, Au J L S, Wientjes M G. Paclitaxel-loaded gelatin nanoparticles for intravesical bladder cancer therapy [J]. Clinical Cancer Research 2004,10(22): 7677-7684.
    
    [97] Bajpai A K, Choubey J. In vitro release dynamics of an anticancer drug from swellable gelatin nanoparticles [J]. Journal of Applied Polymer Science 2006, 101(4): 2320-2332.
    
    [98] Lee G Y, Park K, Nam J H, Kim S Y, Byun Y. Anti-tumor and anti-metastatic effects of gelatin-doxorubicin and PEGylated gelatin-doxorubicin nanoparticles in SCC7 bearing mice [J]. Journal of Drug Targeting 2006,14(10): 707-716.
    [99] Kaul G, Amiji M. Biodistribution and targeting potential of poly(ethylene glycol)-modified gelatin nanoparticles in subcutaneous murine tumor model [J]. Journal of Drug Targeting 2004,12(9-10): 585-591.
    
    [100] Kaul G, Amiji M. Tumor-targeted gene delivery using poly(ethylene glycol)-modified gelatin nanoparticles: In vitro and in vivo studies [J]. Pharmaceutical Research 2005,22(6): 951 -961.
    
    [101] Kaul G, Amiji M. Long-circulating poly(ethylene glycol)-modified gelatin nanoparticles for intracellular delivery [J]. Pharmaceutical Research 2002, 19(7): 1061-1067.
    
    [102] Mirshahi T, Irache J M, Gueguen J, Orecchioni A M. Development of drug delivery systems from vegetal proteins: Legumin nanoparticles [J]. Drug Development and Industrial Pharmacy 1996,22(8): 841-846.
    
    [103] Mirshahi T, Irache J M, Nicolas C, Mirshahi M, Faure J P, Gueguen J, Hecquet C, Orecchioni A M. Adaptive immune responses of legumin nanoparticles [J]. Journal of Drug Targeting 2002,10(8): 625-631.
    
    [104] Parris N, Cooke P H, Hicks K B. Encapsulation of essential oils in zein nanospherical particles [J]. Journal of Agricultural and Food Chemistry 2005, 53(12): 4788-4792.
    
    [105] Ezpeleta I, Irache J M, Stainmesse S, Chabenat C, Gueguen J, Popineau Y, Orecchioni A M. Gliadin nanoparticles for the controlled release of all-trans-retinoic acid [J]. International Journal of Pharmaceutics 1996,131(2): 191-200.
    
    [106] Duclairoir C, Nakache E, Marchais H, Orecchioni A M. Formation of gliadin nanoparticles: Influence of the solubility parameter of the protein solvent [J]. Colloid and Polymer Science 1998,276(4): 321-327.
    
    [107] Duclairoir C, Orecchioni A M, Depraetere P, Nakache E. alpha-Tocopherol encapsulation and in vitro release from wheat gliadin nanoparticles [J]. Journal of Microencapsulation 2002,19(1): 53-60.
    
    [108] Arangoa M A, Ponchel G, Orecchioni A M, Renedo M J, Duchene D, Irache J M. Bioadhesive potential of gliadin nanoparticulate systems [J]. European Journal of Pharmaceutical Sciences 2000,11(4): 333-341.
    
    [109] Duclairoir C, Orecchioni A M, Depraetere P, Osterstock F, Nakache E. Evaluation of gliadins nanoparticles as drug delivery systems: a study of three different drugs [J]. International Journal of Pharmaceutics 2003,253(1-2): 133-144.
    [110]周永国,杨越冬,王树元,王莹.天然活性多糖在生物医药领域中的研究进展[J].高分子通报2006,9:16-22.
    [111]Ahrnad Z,Pandey R,Sharma S,Khuller G K.Pharmacokinetic and pharmacodynamic behaviour of antitubercular drugs encapsulated in alginate nanoparticles at two doses[J].International Journal of Antimicrobial Agents 2006,27(5):409-416.
    [112]Jeong Y I,Kim S T,Jin S G,Ryu H H,Jin Y H,Jung T Y,Kim I Y,Jung S.Cisplatin-incorporated hyaluronic acid nanoparticles based on ion-complex formation [J].Journal of Pharmaceutical Sciences 2008,97(3):1268-1276.
    [113]Bilensoy E,Gurkaynak O,Dogan A L,Hincal A A.Safety and efficacy of amphiphilic beta-cyclodextrin nanoparticles for paclitaxel delivery[J].International Journal of Pharmaceutics 2008,347:163-170.
    [114]Akiyama E,Morimoto N,Kujawa P,Ozawa Y,Wirmik F M,Akiyoshit K.Self-assembled nanogels of cholesteryl-modified polysaccharides:Effect of the polysaccharide structure on their association characteristics in the dilute and semidilute regimes[J].Biomacromolecules 2007,8(8):2366-2373.
    [115]Na K,Lee E S,Bae Y H.Self-organized nanogels responding to tumor extracellular pH:pH-dependent drug release and in vitro cytotoxicity against MCF-7cells[J].Bioconjugate Chemistry 2007,18:1568-1574.
    [116]Rodrigues J S,Santos-Magalhaes N S,Coelho L,Couvreur P,Ponchel G,Gref R.Novel core(polyester)-shell(polysaccharide) nanoparticles:protein loading and surface modification with lectins[J].Journal of Controlled Release 2003,92(1-2):103-112.
    [117]Sun Y X,Zhang X Z,Cheng H,Cheng S X,Zhuo R X.A low-toxic and efficient gene vector:Carboxymethyl dextran-graft-polyethylenimine[J].Journal of Biomedical Materials Research Part A 2008,84A(4):1102-1110.
    [118]Park K,Lee G Y,Kim Y S,Yu M,Park R W,Kim I S,Kim S Y,Byun Y.Heparin-deoxycholic acid chemical conjugate as an anticancer drug carrier and its antitumor activity[J].Journal of Controlled Release 2006,114(3):300-306.
    [119]Wuang S C,Neoh K G,Kang E T,Pack D W,Leckband D E.Heparinized magnetic nanoparticles:In-vitro assessment for biomedical applications[J].Advanced Functional Materials 2006,16(13):1723-1730.
    [120] Pang H T, Chen X G, Park H J, Cha D S, Kennedy J F. Preparation and rheological properties of deoxycholate-chitosan and carboxymethyl-chitosan in aqueous systems [J]. Carbohydrate Polymers 2007, 69(3): 419-425.
    
    [121] Ye Y-q, Hu F-q, Yuan H. Preparation and characterization of stearic acid-grafted chitosan oligosaccharide polymeric micelles [J]. Yaoxue Xuebao 2004, 39(6): 467-471.
    
    [122] Yao Z, Zhang C, Ping Q N, Yu L L L. A series of novel chitosan derivatives: Synthesis, characterization and micellar solubilization of paclitaxel [J]. Carbohydrate Polymers 2007,68(4): 781-792.
    
    [123] Calvo P, RemunanLopez C, VilaJato J L, Alonso M J. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers [J]. Journal of Applied Polymer Science 1997, 63(1): 125-132.
    
    [124] Heinze T, Liebert T, Heublein B, Hornig S, Functional polymers based on dextran. In Polysaccharides Ii, Springer-Verlag Berlin: Berlin, 2006; Vol. 205: pp 199-291.
    
    [125] Mehvar R. Dextrans for targeted and sustained delivery of therapeutic and imaging agents [J]. Journal of Controlled Release 2000,69(1): 1-25.
    
    [126] Aumelas A, Serrero A, Durand A, Dellacherie E, Leonard M. Nanoparticles of hydrophobically modified dextrans as potential drug carrier systems [J]. Colloids and Surfaces B-Biointerfaces 2007, 59(1): 74-80.
    
    [127] Villemson A, Couvreur P, Gillet B, Larionova N, Gref R. Dextran-poly-epsilon-caprolactone micro- and nanoparticles: preparation, characterization and tamoxifen solubilization [J]. Journal of Drug Delivery Science and Technology 2006,16(4): 307-313.
    
    [128] Nagahama K, Mori Y, Ohya Y, Ouchi T. Biodegradable nanogel formation of polylactide-grafted dextran copolymer in dilute aqueous solution and enhancement of its stability by Stereocomplexation [J]. Biomacromolecules 2007,8(7): 2135-2141.
    
    [129] Labarre D, Vauthier C, Chauvierre U, Petri B, Muller R, Chehimi M M. Interactions of blood proteins with poly(isobutylcyanoacrylate) nanoparticles decorated with a polysaccharidic brush [J]. Biomaterials 2005, 26(24): 5075-5084.
    
    [130] Bertholon I, Lesieur S, Labarre D, Besnard M, Vauthier C. Characterization of dextran-poly(isobutylcyanoacrylate) copolymers obtained by redox radical and anionic emulsion polymerization [J]. Macromolecules 2006, 39(10): 3559-3567.
    [131]Liu J Y,Zhang L M.Preparation of a polysaccharide-polyester diblock copolymer and its micellar characteristics[J].Carbohydrate Polymers 2007,69(1):196-201.
    [132]Wang L Q,Tu K H,Li Y P,Zhang J,Jiang L M,Zhang Z H.Synthesis and characterization of temperature responsive graft copolymers of dextran with poly (N-isopropylacrylamide)[J].Reactive & Functional Polymers 2002,53(1):19-27.
    [133]Dou H J,Tang M H,Sun K.A facile one-pot synthesis to dextran-based nanoparticles with carboxy functional groups[J].Macromolecular Chemistry and Physics 2005,206(21):2177-2181.
    [134]陈惠黎,李茂深,朱运松.生物大分子的结构和功能[M].第二版ed.;复旦大学出版社,上海医科大学出版社:上海,2001;p 1-219.
    [135]周海梦,王洪睿.蛋白质化学修饰[M].清华大学出版社:北京,1998;p 1-50.
    [136]林钧材.生物化学[M].辽宁科学技术出版社:沈阳,1987;p 16.
    [137]管斌,林洪,王广策.食品蛋白质化学[M].2005;p 311-326.
    [138]Oakenfull D,Pearce J,Burley R W.Protein Gelation,in Food Proteins and Their Applications,[M].Marcel Dekker,Inc.:New York.:1997;Vol.80:p 111-142.
    [139]Hatta H,Kitabatake N,Doi E.Turbidity and Hardness of a Heat-Induced Gel of Hen Egg Ovalbumin[J].Agricultural and Biological Chemistry 1986,50(8):2083-2089.
    [140]Maillard L C.The action of amino acids on sugar;The formation of melanoidin by a methodic route.[J].Comptes Rendus Hebdomadaires Des Seances De L Academic Des Sciences 1912,154:66-68.
    [141]Hodge J E.Dehydrated Foods,Chemistry of Browning Reactions in Model Systems[J].J Agric Food Chem 1953,1(15):928-943.
    [142]Martins S.A review of Maillard reaction in food and implications to kinetic modelling[J].Trends in Food Science & Technology 2000,11(9-10):364-373.
    [143]郑文华,许旭.美拉德反应的研究进展[J].化学进展 2005,17(1):122.
    [144]王延平,赵谋明,彭志英,马志玲.美拉德反应产物研究进展[J].食品科学 1991,(1):15-19.
    [145]钟芳,麻建国,王璋,许时婴.蛋白质-多糖共价复合物[J].食品科技2005.5:12-15.
    [146]Kato A,Kobayashi K.Excellent Emulsifying Properties of Protein Dextran Conjugates[J].Acs Symposium Series 1991,448:213-229.
    [147] Kato A, Sasaki Y, Furuta R, Kobayashi K. Functional protein-polysaccharide conjugate prepared by controlled dry-heating of ovalbumin-dextran mixtures [J]. Agricultural and biological chemistry 1990, 54(1): 107-112.
    
    
    [148] Pan X Y, Mu M F, Hu B, Yao P, Jiang M. Micellization of casein-graft-dextran copolymer prepared through Maillard reaction [J]. Biopolymers 2006, 81(1): 29-38.
    
    [149] Jimenez-Castano L, Villamiel M, Lopez-Fandino R. Glycosylation of individual whey proteins by Maillard reaction using dextran of different molecular mass [J]. Food Hydrocolloids 2007,21(3): 433-443.
    
    [150] Diftis N, Kiosseoglou V. Stability against heat-induced aggregation of emulsions prepared with a dry-heated soy protein isolate-dextran mixture [J]. Food Hydrocolloids 2006,20(6): 787-792.
    
    [151] Jimenez-Castano L, Villamiel M, Martin-Alvarez P J, Olano A, Lopez-Fandino R. Effect of the dry-heating conditions on the glycosylation of beta-lactoglobulin with dextran through the Maillard reaction [J]. Food Hydrocolloids 2005,19(5): 831-837.
    
    [152] Nakamura S, Kato A, Kobayashi K. New Antimicrobial Characteristics of Lysozyme Dextran Conjugate [J]. Journal of Agricultural and Food Chemistry 1991, 39(4): 647-650.
    
    [153] Jung S H, Choi S J, Kim H J, Moon T W. Molecular characteristics of bovine serum albumin-dextran conjugates [J]. Bioscience, Biotechnology and Biochemistry 2006,70(9): 2064-2070.
    
    [154] Nakamura S, Kato A. Multi-functional biopolymer prepared by covalent attachment of galactomannan to egg-white proteins through naturally occurring Maillard reaction [J]. Nahrung-Food 2000,44(3): 201-206.
    
    [155] Shepherd R, Robertson A, Ofman D. Dairy glycoconjugate emulsifiers: casein-maltodextrins [J]. Food Hydrocolloids 2000,14(4): 281-286.
    
    [156] Einhorn-Stoll U, Ulbrich M, Sever S, Kunzek H. Formation of milk protein-pectin conjugates with improved emulsifying properties by controlled dry heating [J]. Food Hydrocolloids 2005, 19(2): 329-340.
    
    [157] Song Y, Babiker E E, Usui M, Saito A, Kato A. Emulsifying properties and bactericidal action of chitosan-lysozyme conjugates [J]. Food Research International 2002,35(5): 459-466.
    
    [158] Kato A. Industrial applications of Maillard-type protein-polysaccharide conjugates [J]. Food Science and Technology Research 2002, 8(3): 193-199.
    [159] Oliver C M, Melton L D, Stanley R A. Creating proteins with novel functionality via the Maillard reaction: A review [J]. Critical Reviews in Food Science and Nutrition 2006,46(4): 337-350.
    
    [160] Yu S Y, Yao P, Jiang M, Zhang G Z. Nanogels prepared by self-assembly of oppositely charged globular proteins [J]. Biopolymers 2006, 83(2): 148-158.
    
    [161] Yu S Y, Hu J H, Pan X Y, Yao P, Jiang M. Stable and pH-sensitive nanogels prepared by self-assembly of chitosan and ovalbumin [J]. Langmuir 2006, 22(6): 2754-2759.
    [1]Lin W,Garnett M C,Davies M C,Bignotti F,Ferruti P,Davis S S,Illum L.Preparation of surface-modified albumin nanospheres[J].Biomaterials 1997,18(7):559-565.
    [2]Lin W,Garnett M C,Schacht E,Davis S S,Illum L.Preparation and in vitro characterization of HSA-mPEG nanoparticles[J].International Journal of Pharmaceutics 1999,189(2):161-170.
    [3]Pan X Y,Mu M F,Hu B,Yao P,Jiang M.Micellization of casein-graft-dextran copolymer prepared through Maillard reaction[J].Biopolymers 2006,81(1):29-38.
    [4]Yu S Y,Hu J H,Pan X Y,Yao P,Jiang M.Stable and pH-sensitive nanogels prepared by self-assembly of chitosan and ovalbumin[J].Langmuir 2006,22(6):2754-2759.
    [5]Yu S Y,Yao P,Jiang M,Zhang G Z.Nanogels prepared by self-assembly of oppositely charged globular proteins[J].Biopolymers 2006,83(2):148-158.
    [6]Dreis S,Rothweller F,Michaelis A,Cinatl J,Kreuter J,Langer K.Preparation,characterisation and maintenance of drug efficacy of doxorubicin-loaded human serum albumin(HSA) nanoparticles[J].International Journal of Pharmaceutics 2007,341(1-2):207-214.
    [7] Ibrahim H R, Higashiguchi S, Juneja L R, Kim M, Yamamoto T. A structural phase of heat-denatured lysozyme with novel antimicrobial action [J]. Journal of Agricultural and Food Chemistry 1996,44(6): 1416-1423.
    
    [8] Mine Y. Recent Advances in the Understanding of Egg-White Protein Functionality [J]. Trends in Food Science & Technology 1995,6(7): 225-232.
    
    [9] Campbell L, Raikos V, Euston S R. Modification of functional properties of egg-white proteins [J]. Nahrung-Food 2003,47(6): 369-376.
    
    [10] Mehvar R. Dextrans for targeted and sustained delivery of therapeutic and imaging agents [J]. Journal of Controlled Release 2000, 69(1): 1-25.
    
    [11] Lemarchand C, Gref R, Couvreur P. Polysaccharide-decorated nanoparticles [J]. European Journal of Pharmaceutics and Biopharmaceutics 2004, 58(2): 327-341.
    
    [12] Rodrigues J S, Santos-Magalhaes N S, Coelho L, Couvreur P, Ponchel G, Gref R. Novel core (polyester)-shell(polysaccharide) nanoparticles: protein loading and surface modification with lectins [J]. Journal of Controlled Release 2003, 92(1-2): 103-112.
    
    [13] Sinha V R, Kumria R. Polysaccharides in colon-specific drug delivery [J]. International Journal of Pharmaceutics 2001,224(1-2): 19-38.
    
    [14] Lemarchand C, Gref R, Lesieur S, Hommel H, Vacher B, Besheer A, Maeder K, Couvreur P. Physico-chemical characterization of polysaccharide-coated nanoparticles [J]. Journal of Controlled Release 2005,108(1): 97-111.
    
    [15] Lemarchand C, Gref R, Passirani C, Garcion E, Petri B, Muller R, Costantini D, Couvreur P. Influence of polysaccharide coating on the interactions of nanoparticles with biological systems [J]. Biomaterials 2006,27(1): 108-118.
    
    [16] Villemson A, Couvreur P, Gillet B, Larionova N, Gref R. Dextran-poly-epsilon-caprolactone micro- and nanoparticles: preparation, characterization and tamoxifen solubilization [J]. Journal of Drug Delivery Science and Technology 2006,16(4): 307-313.
    
    [17] Nakamura S, Kato A, Kobayashi K. New Antimicrobial Characteristics of Lysozyme Dextran Conjugate [J]. Journal of Agricultural and Food Chemistry 1991, 39(4): 647-650.
    
    [18] Aminlari M, Ramezani R, Jadidi F. Effect of Maillard-based conjugation with dextran on the functional properties of lysozyme and casein [J]. Journal of the Science of Food and Agriculture 2005, 85(15): 2617-2624.
    [19]Dickinson E,Izgi E.Foam stabilization by protein-polysaccharide complexes[J].Colloids and Surfaces a-Physicochemical and Engineering Aspects 1996,113(1-2):191-201.
    [20]Yan H,Saiani A,Gough J E,Miller A F.Thermoreversible protein hydrogel as cell scaffold[J].Biomacromolecules 2006,7(10):2776-2782.
    [21]Li-Chan E,Nakai S.Raman spectroscopic study of thermally and/or dithiothreitol induced gelation of lysozyme[J].Journal of Agricultural and Food Chemistry? 1991,39(7):1238-1245.
    [22]Tani F,Murata M,Higasa T,Goto M,Kitabatake N,Doi E.Heat-Induced Transparent Gel from Hen Egg Lysozyme by a 2-Step Heating Method[J].Bioscience Biotechnology and Biochemistry 1993,57(2):209-214.
    [23]Hayakawa S,Nakamura R.Optimization Approaches to Thermally Induced Egg-White Lysozyme Gel[J].Agricultural and Biological Chemistry 1986,50(8):2039-2046.
    [24]中华人民共和国药典.国家药典委员会,Ed.化学工业出版社:2005;Vol.二部:p 95.
    [25]Tani F,Murata M,Higasa T,Goto M,Kitabatake N,Doi E.Molten Globule State of Protein Molecules in Heat-Induced Transparent Food Gels[J].Journal of Agricultural and Food Chemistry 1995,43(9):2325-2331.
    [26]Dukes B C,Butzke C E.Rapid determination of primary amino acids in grape juice using an o-phthaldialdehyde/N-acetyl-L-cysteine spectrophotometric assay[J].American Journal of Enology and Viticulture 1998,49(2):125-134.
    [27]Petersen S B,Jonson V,Fojan P,Wirnmer R,Pedersen S.Sorbitol prevents the self-aggregation of unfolded lysozyme leading to an up to 13 degrees C stabilisation of the folded form[J].Journal of Biotechnology 2004,114(3):269-278.
    [28]Zhang G Z,Winnik F M,Wu C.Structure of a collapsed polymer chain with stickers:A single-or multiflower?[J].Physical Review Letters 2003,90(3).
    [29]Zhang G Z,Li X L,Jiang M,Wu C.Model system for surfactant-free emulsion copolymerization of hydrophobic and hydrophilic monomers in aqueous solution[J].Langmuir 2000,16(24):9205-9207.
    [30]Miksa B,Slomkowski S,Marsault J P.Surface morphology of polypyrrole core polyacrolein shell latex by atomic force microscopy(AFM)[J].Colloid and Polymer Science 1998,276(1):34-39.
    [31] Murray M J, Snowden M J. The Preparation, Characterization and Applications of Colloidal Microgels [J]. Advances in Colloid and Interface Science 1995, 54: 73-91.
    
    [32] Riley T, Govender T, Stolnik S, Xiong C D, Garnett M C, Ilium L, Davis S S. Colloidal stability and drug incorporation aspects of micellar-like PLA-PEG nanoparticles [J]. Colloids and Surfaces B-Biointerfaces 1999,16(1-4): 147-159.
    
    [33] Li M, Jiang M, Wu C. Fluorescence and light-scattering studies on the formation of stable colloidal nanoparticles made of sodium sulfonated polystyrene ionomers [J]. Journal of Polymer Science, Part B: Polymer Physics 1997,35(10): 1593-1599.
    
    [34] Wilhelm M, Zhao C L, Wang Y C, Xu R L, Winnik M A, Mura J L, Riess G, Croucher M D. Polymer Micelle Formation .3. Poly(Styrene-Ethylene Oxide) Block Copolymer Micelle Formation in Water - a Fluorescence Probe Study [J]. Macromolecules 1991,24(5): 1033-1040.
    
    [35] Jiang B B, Hu L, Gao C Y, Shen J C. Ibuprofen-loaded nanoparticles prepared by a co-precipitation method and their release properties [J]. International Journal of Pharmaceutics 2005,304(1-2): 220-230.
    
    [36] Cooper C L, Dubin P L, Kayitmazer A B, Turksen S. Polyelectrolyte-protein complexes [J]. Current Opinion in Colloid & Interface Science 2005, 10(1-2): 52-78.
    [1]姚日生,董岸杰,刘永琼.药用高分子材料[M].化学工业出版社:北京,2003.
    [2]Kreuter J.Nanoparticles-a historical perspective[J].International Journal of Pharmaceutics 2007,331(1):1-10.
    [3]Boye J I,Alli I,Ismail A A.Interactions involved in the gelation of bovine serum albumin[J].Journal of Agricultural and Food Chemistry 1996,44(4):996-1004.
    [4]Dreis S,Rothweller F,Michaelis A,Cinatl J,Kreuter J,Langer K.Preparation,characterisation and maintenance of drug efficacy of doxorubicin-loaded human serum albumin(HSA) nanoparticles[J].International Journal of Pharmaceutics 2007,341(1-2):207-214.
    [5]Roser M,Fischer D,Kissel T.Surface-modified biodegradable albumin nano-and microspheres.Ⅱ:effect of surface charges on in vitro phagocytosis and biodistribution in rats[J].European Journal of Pharmaceutics and Biopharmaceutics 1998,46(3):255-263.
    [6]Zhang L K,Hou S X,Mao S J,Wei D P,Song X R,Lu Y.Uptake of folate-conjugated albumin nanoparticles to the SKOV3 cells[J].International Journal of Pharmaceutics 2004,287(1-2):155-162.
    [7]Lin W,Garnett M C,Davies M C,Bignotti F,Ferruti P,Davis S S,Illum L.Preparation of surface-modified albumin nanospheres[J].Biomaterials 1997,18(7):559-565.
    [8]Lin W,Garnett M C,Davis S S,Schacht E,Ferruti P,Illum L.Preparation and characterisation of rose Bengal-loaded surface-modified albumin nanoparticles[J].Journal of Controlled Release 2001,71(1):117-126.
    [9]Lin W,Garnett M C,Schacht E,Davis S S,Illum L.Preparation and in vitro characterization of HSA-mPEG nanoparticles[J].International Journal of Pharmaceutics 1999,189(2):161-170.
    [10]Tobitani A,RossMurphy S B.Heat-induced gelation of globular proteins.2.Effect of environmental factors on single-component and mixed-protein gels[J].Macromolecules 1997,30(17):4855-4862.
    [11]Tobitani A,RossMurphy S B.Heat-induced gelation of globular proteins.1. Model for the effects of time and temperature on the gelation time of BSA gels [J]. Macromolecules 1997, 30(17): 4845-4854.
    
    [12] Jung S H, Choi S J, Kim H J, Moon T W. Molecular characteristics of bovine serum albumin-dextran conjugates [J]. Bioscience, Biotechnology and Biochemistry 2006, 70(9): 2064-2070.
    
    [13] 尤启冬.药物化学[M].化学工业出版社:北京,2004;Vol.第一版:p208.
    
    [14] Lu B, Xiong S B, Yang H, Yin X D, Zhao R B. Mitoxantrone-loaded BSA nanospheres and chitosan nanospheres for local injection against breast cancer and its lymph node metastases -1: Formulation and in vitro characterization [J]. International Journal of Pharmaceutics 2006,307(2): 168-174.
    
    [15] Decout A, Dubernet C, HenryToulme N. Mechanism of doxorubicin release from polymeric particles: An interfacial transfer limited process affected by serum proteins [J]. Journal of Colloid and Interface Science 1996,181(1): 99-107.
    
    [16] Li F Q, Su H, Wang J, Liu J Y, Zhu Q G, Fei Y B, Pan Y H, Hu J H. Preparation and characterization of sodium ferulate entrapped bovine serum albumin nanoparticles for liver targeting [J]. International Journal of Pharmaceutics 2008, 349: 274-282.
    
    [17] Yuan B. Temperature-dependent near-infrared spectra of bovine serum albumin in aqueous solutions: Spectral analysis by principal component analysis and evolving factor analysis [J]. Applied Spectroscopy 2003, 57(10): 1223-1229.
    
    [18] Zhang G Z, Li X L, Jiang M, Wu C. Model system for surfactant-free emulsion copolymerization of hydrophobic and hydrophilic monomers in aqueous solution [J]. Langmuir 2000,16(24): 9205-9207.
    
    [19] Zhang G Z, Winnik F M, Wu C. Structure of a collapsed polymer chain with stickers: A single- or multiflower? [J]. Physical Review Letters 2003, 90(3).
    
    [20] Santhi K. A study on the preparation and anti-tumor efficacy of bovine serum albumin nanospheres containing 5-fluorouracil [J]. Drug Development and Industrial Pharmacy 2002,28(9): 1171-1179.
    
    [21] Yu S Y, Hu J H, Pan X Y, Yao P, Jiang M. Stable and pH-sensitive nanogels prepared by self-assembly of chitosan and ovalbumin [J]. Langmuir 2006, 22(6): 2754-2759.
    
    [22] Yu S Y, Yao P, Jiang M, Zhang G Z. Nanogels prepared by self-assembly of oppositely charged globular proteins [J]. Biopolymers 2006, 83(2): 148-158.
    
    [23] Oakenfull D, Pearce J, Burley R W. Protein Gelation, in Food Proteins and Their Applications, [M]. Marcel Dekker, Inc.: New York.: 1997; Vol. 80: p 111-142.
    [24] Brahma A. Characterization of a dimeric unfolding intermediate of bovine serum albumin under mildly acidic condition [J]. Biochimica Et Biophysica Acta-Proteins and Proteomics 2005,1751(2): 159-169.
    
    [25] Tokumaru T. Spectroscopic Investigation of the Pyrene Molecule Adsorbed by Bovine Serum-Albumin in Aqueous-Solution [J]. Journal of Photochemistry and Photobiology a-Chemistry 1993, 72(1): 69-72.
    
    [26] Antonov Y A. Calorimetric and structural investigation of the interaction between bovine serum albumin and high molecular weight dextran in water [J]. Biomacromolecules 2005,6(6): 2980-2989.
    
    [27] Yang S C, Ge H X, Hu Y, Jiang X Q, Yang C Z. Doxorubicin-loaded poly(butylcyanoacrylate) nanoparticles produced by emulsifier-free emulsion polymerization [J]. Journal of Applied Polymer Science 2000, 78(3): 517-526.
    [1]de Kruif C G,Weinbreck F,de Vries R.Complex coacervation of proteins and anionic polysaccharides[J].Current Opinion in Colloid & Interface Science 2004,9(5):340-349.
    [2]Chen Y.Designing chitosan-dextran sulfate nanoparticles using charge ratios[J].Aaps Pharmscitech 2007,8.
    [3]Jiang B B,Hu L,Gao C Y,Shen J C.Ibuprofen-loaded nanoparticles prepared by a co-precipitation method and their release properties[J].International Journal of Pharrnaceutics 2005,304(1-2):220-230.
    [4]Kumar P V,Jain N K.Suppression of agglomeration of ciprofloxacin-loaded human serum albumin nanoparticles[J].Aaps Pharmscitech 2007,8(1).
    [5]Wang Y S,Zhang Y W,Wu C X,Zhao J X.Preparation of bovine serum albumin/poly(acrylic acid) nanoparticles by self-assembly[A].Proceedings of the 2007 International Conference on Advanced Fibers and Polymer Materials vol 1 and 2[C],2007;2007:pp 836-838.
    [6]Bayomi M A.Aqueous preparation and evaluation of albumin-chitosan microspheres containing indomethacin[J].Drug Development and Industrial Pharmacy 2004,30(4):329-339.
    [7]林钧材.血液生物化学[M].人民卫生出版社:北京,1988;p41.
    [8]Ji Z S.H-1-NMR study of the effect of acetonitrile on the interaction of ibuprofen with human serum albumin[J].Journal of Pharmaceutical and Biomedical Analysis 2002,30(1):151-159.
    [9]Essassi D.Use of 1-Anilino-8-Naphthalene Sulfonate as a.Fluorescent-Probe in the Investigation of Drug-Interactions with Human Alpha-1-Acid Glycoprotein and Serum-Albumin[J].Journal of Pharmaceutical Sciences 1990,79(1):9-13.
    [10]Sudlow G.Characterization of 2 Specific Drug Binding-Sites on Human-Serum Albumin[J].Molecular Pharmacology 1975,11(6):824-832.
    [11]Baroni S.Effect of ibuprofen and warfarin on the allosteric properties of haem-human serum albumin-A spectroscopic study[J].European Journal of Biochemistry 2001,268(23):6214-6220.
    [12]Li C.lH NMR evidence of the influence of solution pH on low-affinity binding of ibuprofen to human serum albumin[J].American Biotechnology Laboratory 2000,18(11):36.
    [13]Li C G.H-1 NMR study of low-affinity binding of ibuprofen to human serum albumin at different pH[J].Applied Magnetic Resonance 2000,19(2):179-186.
    [14]Zhang G Z,Li X L,Jiang M,Wu C.Model system for surfactant-free emulsion copolymerization of hydrophobic and hydrophilic monomers in aqueous solution[J].Langmuir 2000,16(24):9205-9207.
    [15]Yao X M,Chen D Y,Jiang M.Formation of PS-b-P4VP/formic acid core-shell micelles in chloroform with different core densities[J].Journal of Physical Chemistry B 2004,108(17):5225-5229.
    [16]Zhang G Z,Winnik F M,Wu C.Structure of a collapsed polymer chain with stickers:A single-or multiflower?[J].Physical Review Letters 2003,90(3).
    [17]Wu C,Zhou S Q.First observation of the molten globule state of a single homopolymer chain[J].Physical Review Letters 1996,77(14):3053-3055.
    [1]Dreis S,Rothweller F,Michaelis A,Cinatl J,Kreuter J,Langer K.Preparation,characterisation and maintenance of drug efficacy of doxorubicin-loaded human serum albumin(HSA) nanoparticles[J].International Journal of Pharmaceutics 2007,341(1-2):207-214.
    [2]Choucair A.Active loading and tunable release of doxorubicin from block copolymer vesicles[J].Langmuir 2005,21(20):9308-9313.
    [3]Couvreur P,Kante B,Grislain L,Roland M,Speiser P.Toxicity of Polyalkylcyanoacrylate Nanoparticles.2.Doxorubicin-Loaded Nanoparticles[J].Journal of Pharmaceutical Sciences 1982,71(7):790-792.
    [4]Nakanishi T,Fukushima S,Okamoto K,Suzuki M,Matsumura Y,Yokoyama M,Okano T,Sakurai Y,Kataoka K.Development of the polymer micelle carrier system for doxorubicin[J].Journal of Controlled Release 2001,74(1-3):295-302.
    [5]张阳德,龚连生.磁性阿霉素白蛋白纳米粒的研制[J].中国现代医学杂志2001,11(3):1-4.
    [6]Leo E,Vandelli M A,Cameroni R,Forni F.Doxorubicin-loaded gelatin nanoparticles stabilized by glutaraldehyde:Involvement of the drug in the cross-linking process[J].International Journal of Pharmaceutics 1997,155(1):75-82.
    [7]Janes K A,Fresneau M P,Marazuela A,Fabra A,Alonso M J.Chitosan nanoparticles as delivery systems for doxorubicin[J].Journal of Controlled Release 2001,73(2-3):255-267.
    [8]Hu Y,Jiang X Q,Ding Y,Chen Q,Yang C Z.Core-template-free strategy for preparing hollow nanospheres[J].Advanced Materials 2004,16(11):933-937.
    [9] Liu C, Fan W, Chen X, Liu C, Meng X, Park H J. Self-assembled nanoparticles based on linoleic-acid modified carboxymethyl-chitosan as carrier of adriamycin [J]. Current Applied Physics 2007, 7S1: el25-el29.
    
    [10] Yoo H S, Oh J E, Lee K H, Park T G. Biodegradable nanoparticles containing doxorubicin-PLGA conjugate for sustained release [J]. Pharmaceutical Research 1999,16(7): 1114-1118.
    
    [11] Maksimenko O, Pavlov E, Toushov E, Molin Y, Stukalov A, Prudskova T, Feldman V, Kreuter J, Gelperina S. Radiation sterilisation of doxorubicin bound to poly(butyl cyanoacrylate) nanoparticles [J]. Radiation sterilisation of doxorubicin bound to poly(butyl cyanoacrylate) nanoparticles 2008.
    
    [12] Yokoyama M, Okano T, Sakurai Y, Kataoka K. Improved Synthesis of Adriamycin-Conjugated Poly(Ethylene Oxide) Poly(Aspartic Acid) Block-Copolymer and Formation of Unimodal Micellar Structure with Controlled Amount of Physically Entrapped Adriamycin [J]. Journal of Controlled Release 1994,32(3): 269-277.
    
    [13] Yoo H S, Park T G. Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA-PEG block copolymer [J]. Journal of Controlled Release 2001, 70(1-2): 63-70.
    
    [14] Hruby M, Konak C, Ulbrich K. Polymeric micellar pH-sensitive drug delivery system for doxorubicin [J]. Journal of Controlled Release 2005,103(1): 137-148.
    
    [15] Kataoka K, Matsumoto T, Yokoyama M, Okano T, Sakurai Y, Fukushima S, Okamoto K, Kwon G S. Doxorubicin-loaded poly(ethylene glycol)-poly(beta-benzyl-l-aspartate) copolymer micelles: their pharmaceutical characteristics and biological significance [J]. Journal of Controlled Release 2000, 64(1-3): 143-153.
    
    [16] Sutton D, Nasongkla N, Blanco E, Gao J M. Functionalized micellar systems for cancer targeted drug delivery [J]. Pharmaceutical Research 2007,24(6): 1029-1046.
    
    [17] Pan X Y, Mu M F, Hu B, Yao P, Jiang M. Micellization of casein-graft-dextran copolymer prepared through Maillard reaction [J]. Biopolymers 2006, 81(1): 29-38.
    
    [18] Cegnar M, Kristl J, Kos J. Nanoscale polymer carriers to deliver chemotherapeutic agents to tumours [J]. Expert Opinion on Biological Therapy 2005, 5(12): 1557-1569.
    
    [19] Gref R, Minamitake Y, Peracchia M T, Trubetskoy V, Torchilin V, Langer R. Biodegradable Long-Circulating Polymeric Nanospheres [J]. Science 1994, 263(5153): 1600-1603.
    [20] Yang S C, Ge H X, Hu Y, Jiang X Q, Yang C Z. Doxorubicin-loaded poly(butylcyanoacrylate) nanoparticles produced by emulsifier-free emulsion polymerization [J]. Journal of Applied Polymer Science 2000, 78(3): 517-526.
    
    [21] Rivory L P, Pond S M, Winzor D J. The Influence of Ph on the Interaction of Lipophilic Anthracyclines with Bovine Serum-Albumin - Quantitative Characterization by Measurement of Fluorescence Quenching [J]. Biochemical Pharmacology 1992,44(12): 2347-2355.
    
    [22] Monkos K. Viscosity of bovine serum albumin aqueous solutions as a function of temperature and concentration [J]. International Journal of Biological Macromolecules 1996,18(1-2): 61-68.
    
    [23] Huang B, Zou G L, Yang T M. Studies on the interaction between adriamycin and bovine serum albumin [J]. Acta Chimica Sinica 2002,60(10): 1867-1871.
    
    [24] Demant E J F, Friche E. Equilibrium binding of anthracycline cytostatics to serum albumin and small unilamellar Phospholipid vesicles as measured by gel filtration [J]. Biochemical Pharmacology 1998,55(1): 27-32.
    
    [25] Zhang G Z, Li X L, Jiang M, Wu C. Model system for surfactant-free emulsion copolymerization of hydrophobic and hydrophilic monomers in aqueous solution [J]. Langmuir 2000,16(24): 9205-9207.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700