用户名: 密码: 验证码:
北京十三陵林场低山针叶林可燃物分布及调控技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
该文基于北京十三陵林场低山针叶林的森林可燃物分布特征,制定相应的可燃物调控方案。根据地形、林分特征设置具有代表性的样地,计9块油松林(Pinus tabulaeformis Forest)和11块侧柏林(Platycladus orientalis Forest),记录林分的地形、林分因子,林下植被特征,利用收获法调查地表枯落物、草本及灌木的可燃物负荷量,利用标准枝法调查乔木可燃物负荷量,进行相关性分析,研究林分、地形因子对地表可燃物负荷量的影响,并探讨防火季时林分易燃可燃物的垂直分布特征。根据结果,提出适合该地区的可燃物调控技术方案,具体结论如下:(1)林下植被的生长主要与林分因子相关。灌木生长主要与郁闭度、密度、平均胸径、死枝高相关;草本生长主要与郁闭度、平均树高、密度相关,同时受灌木平均高度的影响。(2)地表可燃物负荷量主要与林分因子相关。细小可燃物(主要为草本和1h时滞枯枝)与郁闭度、平均胸径、平均树高相关;灌木可燃物负荷量主要与密度、平均胸径、平均树高相关;枯落物层的10h时滞枯枝及下层落叶负荷量主要与郁闭度相关。(3)为了所研究的可燃物垂直分布更具有代表性,通过对林分因子进行因子分析和聚类分析,将调查样地划分为6种类型,包括3类油松林、3类侧柏林,以此代表整个十三陵林场的低山针叶林,同时对每一类型林分的易燃可燃物(主要为地表上层枯落物、草本、灌木、乔木针叶、小枝及死枝)垂直分布进行分析:整体而言,油松林的易燃可燃物主要以地表可燃物为主,树冠可燃物中,死枝可燃物的负荷量占有一定的比例,引燃树冠火的可燃物主要以死枝为主。侧柏林中的易燃可燃物主要以树冠可燃物为主,活枝可燃物占有的比例较大,引燃树冠火的可燃物负荷量相对较大,而地表可燃物相对较少。(4)对6种类型的林分制定相应的可燃物调控方案。整体看来,油松林主要以割灌为主,适当的进行地表枯枝落叶的清理。侧柏林主要以修枝为主,适当的进行割灌,同时根据林分密度情况进行疏伐和乡土阔叶树种的补植。通过森林易燃可燃物分布特征及林分特点制定相应的可燃物调控方案,避免了因盲目地进行可燃物大面积清理所浪费的不必要的人力、物力,同时维持了森林生态系统的稳定性与多样性,实现了对森林可燃物进行综合调控、生态调控的理念。
Based on the fuel distribution., propose the reasonable fuel control technology plan. Study on the9Pinus tabulaeformis forest plots and11Platycladus orientalis forest plots in the low mountain coniferous forest of the Beijing Ming Tombs Forest Farm. Investigate topography factor, stand factor, undergrowth and fuel load. Research on the correlation relationship between fuel load and topography, stand factors, analysis the flammable fuel load and it's vertical distribution in non-fireproof time. According to the result, propose the fuel control technology plan in different stand, specific conclusions as follows:(1) Undergrowth growth mainly had correlation with the stand factor in the low mountain coniferous forest of the Beijing Ming Tombs Forest Farm. The shrub growth mainly had correlation with the crown coverage, density, average tree height, average DBH and height to live crown; The herb growth mainly had correlation with the crown coverage, density, average tree height and shrub height.(2) The surface fuel load mainly had correlation with the stand factor. Fine fuel load (including herb fuel and1hr death branch fuel) mainly had correlation with the crown coverage, average DBH and average tree height; Shrub fuel load mainly had correlation with the density, average DBH and average tree height; The surface death fuel load mainly had correlation with crown coverage.(3) According to the factor analysis and cluster analysis, divided the plots into6types and represent the whole low mountain coniferous forest of the Beijing Ming Tombs Forest Farm. Meanwhile analysis the flammable fuel load vertical distribution. The flammable fuel (including surface death fuel, shrub fuel, herb fuel, tree twig, tree needles) mainly is surface fuel,and the crown fuel and death branch fuel have a certain percentage in Pinus tabulaeform forest. The flammable fuel mainly is crown fuel, the live branch fuel have a relatively larger load and the surface fuel had a relatively smaller load in Platycladus orientalis forest.(4) Research on the6type stand for fuel control techniques. The mainly techniques is mechanical management, and appropriately to clean the surface death fuel in Pinus tabulaeformis forest. The mainly techniques is pruning and mechanical management, and appropriately to thin and plant local hardwood in Platycladus orientalis forest.It is scientific that propose the fuel control technology plan through the flammable fuel load distribution.Develop appropriate control technology for different stand type, to avoid unnecessary waste of material and labor force for blindly fuel reduction in large area, while maintaining the stability and diversity of forest ecosystems. Realize the idea about the comprehensive control and ecological control on forest fuel
引文
[1]陈宏伟,常禹,胡远满,等.大兴安岭呼中林区森林死可燃物载量及其影响因子[J].生态学杂志,2008,27(1):50-55.
    [2]邓湘雯,田大伦,康文星,等.杉木人工林生态系统可燃物空间分布规律研究[J].火灾科学,2007,16(1):21-25.
    [3]邸学颖,王宏良,姚树人,等.大兴安岭森林地表可燃物生物量与林分因子关系的研究[J].森林防火,1994,(2):16-18.
    [4]高国平,周志权,王忠友.森林可燃物研究综述[J].辽宁林业科技,1998,(4):34-37.
    [5]戈峰.害虫生态调控的原理与方法[J].生态学杂志,1998,17(2):38-42.
    [6]顾香凤,门志平,吴宝林,等.营林用火对森林地表径流的影响[J].林业科技,2001,26(2):26-27.
    [7]郭富伟,王立明,牛树奎.十三陵林场森林可燃物分布特征与防灭火对策研究[J].林火研究,2008,(4):9-12.
    [8]郭利峰,牛树奎,阚振国.北京八达岭人工松林地表枯死可燃物负荷量的研究[J].林业资源管理,2007,10(5):53-58.
    [9]郭文霞.北京地区油松林抗火性综合分析及调控研究[D].北京;北京林业大学,2009:1-4.
    [10]韩恩贤,薄颖生,韩刚,等.陕西针叶林下可燃物分布状况调查研究[J].陕西林业科技,20032:38-39.
    [11]贺红士,常禹,胡远满,等.森林可燃物及其管理的研究进展与展望[J].植物生态学报,2010,34(6):741-752.
    [12]何秋虹,杨知建,肖润林.农田生态控草技术研究进展[J].湖南农业大学学报,2009,35(1):59-62.
    [13]何忠秋,张成钢,王天辉.森林可燃物负荷量模型研究[J].森林防火,1993,(3):11-13.
    [14]胡海清.利用林分因子预测森林地被可燃物载量的研究[J].林业科学,2005a,41(5):96-100.
    [15]胡海清,牛树奎,金森,等.林火生态与管理[M].北京:中国林业出版社,2005b:37-38.
    [16]江西军,柴一新.红花尔基樟子松林细小可燃物载量与林分因子关系研究[J].林火研究,2007,(3):23-27.
    [17]金文斌.长白山森林地被可燃物载量及林火行为研究[D].北京:北京林业大学,2009:2-5.
    [18]梁军,张星耀.森林有害生物生态控制[J].林业科学,2005,41(4):168-17.
    [19]刘志华,常禹,陈宏伟,等.大兴安岭呼中林区地表死可燃物载荷量空间格局[J].应用生态学报,2008,19(3):487-493.
    [20]刘志华,常禹,贺红士,等.模拟不同森林可燃物处理对大兴安岭潜在林火状况的影响[J].生态学杂志,2009,28(8):1462-1469.
    [21]马爱丽,李小川,王振师,等.计划烧除的作用与应用研究综述[J].广东林业科技,2009,25(6):95-99.
    [22]马志贵,鄢武先,杨道贵,等.云南松林计划烧除区水土流失量研究[J].森林防火,2000,(1):41-43.
    [23]屈宇,景洁.北京十三陵风景区林火管理对策[J].河北林果研究,2001,16(4):347-351.
    [24]屈宇,于汝元,张延达,等.营林防火的理论与实践[J].林业资源管理,2002,(4):13-17.
    [25]戎建涛,雷相东,陆元昌,等.北京十三陵林场侧柏人工林林分结构的研究[J].安徽农业科,2010,38(2):989-994.
    [26]舒立福,田晓瑞.国外森林防火工作现状及展望[J].世界林业研究,1997,2:28-36.
    [27]舒立福,田晓瑞,吴鹏超,等.火干扰对森林水文的影响[J].土壤侵蚀与水土保持学报,1999,5(6):82-85.
    [28]宋志杰.林火原理和林火预报[M].北京:气象出版社,1991:56-58.
    [29]唐荣易.云南松林可燃物载量的遥感估测研究[D].昆明:西南林学院,2007:4.
    [30]田晓瑞,宋光辉.我国天然林的火管理对策[J].林业资源管理,2000,(3):14-17.
    [31]王京民,李清顺.应用因子分析法对林分蓄积相关因子的分析[J].西北林学院学报,2012,27(1):169-172.
    [32]王明玉,舒立福,赵凤君,等.北京西山可燃物特点及潜在火行为[J].林业科学,2010,46(1):84-90.
    [33]王立夫,杜嘉林,田力范.计划烧除技术规范化管理的探讨[J].森林防火,2006(91):22-24.
    [34]王小红,周祖基.竹林生态系统健康与生物调控研究[J].世界竹藤通讯,2006,4(2):21-25.
    [35]王晓丽,牛树奎,马钦彦,等.北京地区主要针叶林易燃可燃物垂直分布[J].北京林业大学学报,2009,31(2):31-35.
    [36]王晓丽.北京山区森林燃烧性研究[D].北京:北京林业大学,2010,24-25.
    [37]王绪高,李秀珍,贺红士.大兴安岭森林景观在不同火干扰及人工更新下的演替动态[J].北京林业大学学报,2006,28(1):14-22.
    [38]王月,魏振宏,高国平.辽东桤木防火林带内草本可燃物的动态变化分析[J].沈阳农业大学学报,2008,39(2):197-200.
    [39]魏云敏,鞠琳.森林可燃物载量研究综述[J].林火研究,2006,(4):18-21.
    [40]吴国玺,朱俊阁.基于可持续发展的城市生态调控与绿化配置研究[J].生态经济,2007,(1):149.151.
    [41]吴雄周,曾福生.湖南城市可持续发展水平的区域差异实证分析——基于因子分析法和聚类分析法[J].华中农业大学学报,2010,(89):99-103.
    [42]武军.森林地表细小可燃物载量和含水率分布特性的研究[D].北京:中国科学技术大学,2011:6-8.
    [43]肖化顺,曾思齐,谢绍锋,等.森林可燃物管理研究进展[J].世界林业研究,2009,22(1):48-53.
    [44]谢晨岚,朱晓东,李杨帆.景观生态调控:概念提出与方法研究[J].生态经济,2005,(2):34-36.
    [45]徐崇刚,胡远满,常禹,等.空间直观景观模型LANDISI运行机制[J].应用生态学报,2004,15(5):837-844.
    [46]杨矫.从生态调查到系统规划一一山地城镇建设的生态调控方案[J].华中建筑,2000,(18):86-88.
    [47]叶云峰,付岗,缪剑华,等.植物病害生态防治技术应用研究进展[J].广西农业科学,2009,40(7):850-853.
    [48]伊伯乐.北京周边山地森林燃烧性与林分结构关系研究[D].呼和浩特:内蒙古农业大学,2007:11-12.
    [49]于永浩,欧海英.城市园林植物病虫害的特点及生态控制策略[J].广西农业科学,2009,40(6):658-661.
    [50]张景群,王春雷,王得祥.树冠火与林分层间易燃可燃物分布关系研究[J].森林防火,1995,(4):5-9.
    [51]张景群,窦彬生,叶宏谋.八种林分类型易燃可燃物分布研究[J].陕西林业科技,1996,(1):50-51.
    [52]张思玉,兰海涛.针叶幼林树冠火发生的内在机制[J].东北林业大学学报,1998,26(5):77-80.
    [53]张思玉,张运生,黎义明.芒萁马尾松林下可燃物分布及其燃烧性[J].林火研究,2005,(4):17-18.
    [54]张永春,黄镇,关国经,等.不同农业生态调控措施对烟草青枯病的影响[J].中国烟草科学,2007,28(4):49-52.
    [55]郑焕能,胡海清.东北东部山地可燃物类型的研究[J].森林防火,1990,(3):8-10.
    [56]周宇峰,周国模,余树全,等.木荷林分可燃物载量空间分布的研究[J].北京林业大学学报,2008,30(6):99-106.
    [57] Agee J K, Skinner C N. Basic principles of forest fuel reduction treatments [J]. Forest Ecology and Management,2005, (211):83-96.
    [58] Amacher A J, Barrett R H., Moghaddas J J, et al. Preliminary effects of fire and mechanical fuel treatments on the abundance of small mammals in the mixed-conifer forest of the Sierra Nevada[J]. Forest Ecology and Management,2008, (255):3193-3202.
    [59] Brown, J K. Estimating crown fuel Weights of red Pine and jaek Pine [M]. Ogden:USDA Forest Service Research Paper Ls-20,1965:12.
    [60] Brown R T, Agee J K. Forest restoration and fire:Principles in the context of place [J]. Conservation Biology,2004,18(4):903-912.
    [61] Cary G J. Predicting Fire Regimes and Their Ecological Effects in Spatially Complex Landscapes[D]. Canberra:The Australian National University,1998:21-23.
    [62] Chen Z, Grady K, Stephens K, et al. Fuel reduction treatment and wildfire influence on carabid and tenebrionid community assemblages in the ponderosa pine forest of northern Arizona, USA[J]. Forest Ecology and Management,2006, (225):168-177.
    [63] Deeming J E, Robert E, Burgan, Jack D C. The National Fire-Danger Rating System-1978 [M]. Washington:USDA Forest Service,1977:45-46.
    [64] Demchik M C, Abbas D, Current D, et al. Combing Biomass Harvest and Forest Fuel Reduction in the Superior National Forest, Minnesota [J]. Journal of Forestry,2009,107(5):235-241.
    [65] Dodson E K, Peterson D W, Harrod R J. Understory vegetation response to thinning and burning restoration treatments in dry conifer forests of the eastern Cascades, USA [J]. Forest Ecology and Management,2008,(255):3130-3140.
    [66] Duguy B, Alloza J A, Roder A, et al. Modeling the effects of landscape fuel treatments on fire growth and behavior in a Mediterranean landscape (eastern Spain) [J]. International Journal of Wild land Fire,2007,16(5):619-632.
    [67] Finney M A. Design of regular landscape fuel treatment patterns for modifying fire growth and behavior [J]. Forest Science,2001,(47):219-228.
    [68] Farnsworth A, Summerfelt P, Neary D G, et al. Flagstaff s wildfire fuels treatments:prescriptions for community involvement and a source of bioenergy [J]. Biomass and Bioenergy,2003,(24): 269-276.
    [69] Grosby J S. Litter and duff fuel in short leaf Pine stands in southeast Missouri[M].Washington: USDA Forest Sfervice,1961:178.
    [70] Hart S C, Classen A T, Whright R J. Long-term interval burning alters fine root and mycorrhizal dynamics in a ponderosa pine forest [J]. Journal of Applied Ecology,2005, (42):752-761.
    [71] He H S, Shang B Z, Crow T.R, et al. Simulating forest fuel and fire risk dynamics across landscapes—LANDIS fuel module design[J]. Ecological Modeling,2004, (180),135-151.
    [72] HuggettJr R J, Abt K L, Shepperd W. Efficacy of mechanical fuel treatments for reducing wildfire hazard [J]. Forest Policy and Economics,2008, (10):408-414.
    [73] Hurteau M, North M. Fuel treatment effects on tree-based forest carbon storage and emissions under modeled wildfire scenario [J]. Front Ecology Environment,2009,7(8):409-414.
    [74] Jia G J, Burke I C, et al. Assessing spatial patterns of forest fuel using AVIRIS data [J]. Remote Sensing of Environment,2006, (102):318-327.
    [75] Knapp E E, Keeley J E, Ballenger E A, et al. Fuel reduction and coarse woody debris dynamics with early season and late season prescribed fire in a Sierra Nevada mixed conifer forest[J]. Forest Ecology and Management,2005, (208):383-397.
    [76] King K J, Cary G J, Bradstock R A, et al. Simulation of prescribed burning strategies in south west Tasmania, Australia:effects on unplanned fires, fire regimes, and ecological management values[J]. International Journal of Wild land Fire,2006, (15),527-540.
    [77] Kobziar L N, Stephens S L. The effects of fuels treatments on soil carbon respiration in a Sierra Nevada pine forest [J]. Agricultural and Forest Meteorology,2006, (141):161-178.
    [78] Kuenzi A M, Fule P Z, Sieg C H. Effects of fire severity and pre-fire stand treatment on plant community recovery after a large wildfire[J]. Forest Ecology and Management,2008,(255): 855-865.
    [79] Lezberg A L, Battaglia M A, Shepperd W D, et al. Decades-old silvicultural treatments influence surface wildfire severity and post-fire nitrogen availability in a ponderosa pine forest[J]. Forest Ecology and Management,2008, (255):49-61.
    [80] Loucks E, Arthur M A, Lyons J E, et al. Character of fuel before and after a single prescribed fire in an Appalachian hardwood forest [J]. Southern Journal of Applied Forestry,2008,32(2):80-88.
    [81] Moghaddas E E, Stephens S L. Mechanized fuel treatment effects on soil compaction in Sierra Nevada mixed-conifer stands [J]. Forest Ecology and Management,2008, (255):3098-3106.
    [82] Moghaddas J J, York R A.Stephens S L. Initial response of conifer and California black oak seedlings, following fuel reduction activities in a Sierra Nevada mixed conifer forest[J]. Forest Ecology and Management,2010, (255):3141-3150.
    [83] Pausas J G, Gasals P, Romanya J. Litter decomposition and faunal activity in Mediterranean forest soil:effects of N content and the moss layer[J]. Soil Biochemistry,2004,(36):989-997.
    [84] Penman T D,Kavanagh R P, Binns D L, et al. Patchiness of prescribed burns in dry sclerophyll eucalypt forests in South-eastern Australia[J]. Forest Ecology and Management,2007,(252):24-32.
    [85] Penman T D, Binns D L, Shiels R J, et al. Changes in understory plant species richness following logging and prescribed burning in shrubby dry sclerophyll forests of south-eastern Australia[J]. Austral Ecology,2008,33(2):197-210.
    [86] Potts J B, Stephens S L. Invasive and native plant responses to shrub land fuel reduction: comparing prescribed fire, mastication, and treatment season [J]. Biological Conservation,2009, (142):1657-1664.
    [87] Sah J P, Ross M S, Snyder J R et al. Fuel loads, fire regimes and post-fire fuel dynamics in Florida Keys pine forests[J]. International Journal of Wild land Fire,2006, (15),463-478.
    [88] Schwilk D W, Keeley J E, Knapp E E, et al. The national Fire and Fire Surrogate study:effects of fuel reduction methods on forest vegetation structure and fuels [J]. Ecological Applications,2009, 19(2):285-304.
    [89] Schmidt D A,Taylor A H, Skinner A H. The influence of fuels treatment and landscape arrangement on simulated fire behavior, Southern Cascade range, California[J]. Forest Ecology and Management,2008, (255):3170-3184.
    [90] Shang B Z, He H S,Crow T R, et al. Fuel load reductions and fire risk in central hardwood forests of the United States:a spatial simulation study[J]. Ecological Modeling,2004,(180):89-102.
    [91] Shang B Z, He H S, Lytle D E, et al. Modeling the long-term effects of fire suppression on central hardwood forests in Missouri Ozarks, using LANDIS [J]. Forest Ecology and Management,2007, (242):776-790.
    [92] Show, S B, Kotok, E I. Cover type and fire control in the National Forests of northern California [M]. Washington:US Department of Agriculture,1929:34-35.
    [93] Stephens S L, Moghaddas J J, Edminster C, et al. Fire treatment effects on vegetation structure, fuels and potential fire severity in western U.S. forests [J]. Ecological Applications,2009,19(2): 305-320.
    [94] Sturtevant B R, Gustafson E J, He H S. Modeling disturbance and succession in forest landscapes using LANDIS:introduction[J]. Ecological Modeling,2004,180(1):1-5.
    [95] Suffling R, Grant A, Feick R, et al. Modeling prescribed burns to serve as regional firebreaks to allow wildfire activity in protected areas[J]. Forest Ecology and Management,2008,(256): 1815-1824.
    [96] Tanskanen H, Granstrom A, Venalainen A, Puttonen Poisture dynamics of moss-dominated surface fuel in relation to the structure of Picea abies and Pinus sylvestris stands[J]. Forest Ecology and Management,2006, (266):189-198.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700